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Abstract

Motivation: Recent completion of the global proteomic characterization of The Cancer Genome

Atlas (TCGA) colorectal cancer (CRC) cohort resulted in the first tumor dataset with complete mo-

lecular measurements at DNA, RNA and protein levels. Using CRC as a paradigm, we describe the

application of the NetGestalt framework to provide easy access and interpretation of multi-omics

data.

Results: The NetGestalt CRC portal includes genomic, epigenomic, transcriptomic, proteomic and

clinical data for the TCGA CRC cohort, data from other CRC tumor cohorts and cell lines, and exist-

ing knowledge on pathways and networks, giving a total of more than 17 million data points. The

portal provides features for data query, upload, visualization and integration. These features can be

flexibly combined to serve various needs of the users, maximizing the synergy among omics data,

human visualization and quantitative analysis. Using three case studies, we demonstrate that the

portal not only provides user-friendly data query and visualization but also enables efficient data

integration within a single omics data type, across multiple omics data types, and over biological

networks.

Availability and implementation: The NetGestalt CRC portal can be freely accessed at http://www.

netgestalt.org.

Contact: bing.zhang@vanderbilt.edu

Supplementary Information: Supplementary data are available at Bioinformatics online.

1 Introduction

Technology advancements have enabled comprehensive character-

ization of genomic, epigenomic, transcriptomic, proteomic and

metabolomic changes in tumor specimens. A prime example is the

TCGA project’s generation of multiple types of omics data from

hundreds of human tumor specimens for each of the more than

20 selected tumor types.

Bridging the gap between data generation and investigators’ abil-

ity to retrieve and interpret the data is essential to fully realize the

biological and clinical value of the vast amount of omics data.

To address this challenge, powerful but user-friendly data query sys-

tems such as the cBioPortal for cancer genomics (Cerami et al.,

2012) have been established. Moreover, the UCSC Cancer

Genomics Browser (Zhu et al., 2009) enables simultaneous visual-

ization of various types of omics data within the context of genomic

sequence, providing an excellent platform for integrating genome-

anchored information.

Biological networks provide excellent functional contexts for

exploring omics data; however, node-link diagram-based network

visualization becomes inadequate as network size and data
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complexity increase (Gehlenborg et al., 2010). Using CircleMaps,

the UCSC Interaction Browser allows simultaneous visualization of

multiple omics datasets within the context of gene interactions

(Wong et al., 2013). Although very useful, this approach cannot

scale up to large networks. Previously, we developed NetGestalt

(Shi et al., 2013) that exploits the inherent hierarchical modular

architecture of biological networks to achieve high scalability.

NetGestalt orders the nodes of a network along the horizontal di-

mension of a webpage based on the underlying hierarchical organ-

ization of the network. Visualization in the horizontal dimension

conveys the functional relationship between different nodes (i.e.

genes) as encoded in the network. The linear layout facilitates

scaling up to thousands of genes. Moreover, because it only uses one

dimension to display network nodes, node-related information from

different data sources can be rendered as ‘tracks’ along the vertical

dimension for visual comparison and integration. This unique ap-

proach makes NetGestalt an appropriate framework for the study of

multidimensional cancer omics data in the context of biological

networks.

Recent completion of the global proteomic characterization of

the TCGA CRC cohort (TCGA Research Network, 2012) resulted

in the first tumor dataset with complete molecular measurements at

DNA, RNA and protein levels (Zhang et al., 2014). In this article,

we describe the application of the NetGestalt framework, using

CRC as a paradigm, to provide a network-centric view of multidi-

mensional cancer omics data. We use three case studies to demon-

strate that the portal not only provides for easy data querying

and visualization but also enables efficient data integration within a

single omics data type, across multiple omics data types and over

biological networks.

2 Methods

2.1 Data architecture
As shown in Figure 1, experimental data in the portal are organized

on the basis of sample types, data types and data processing levels.

The portal also includes existing knowledge on pathways and net-

works. Details on data sources and data processing are provided in

Supplementary Methods.

2.1.1 Sample types

The portal includes data for both CRC tumors and cell lines. The

former were collected from TCGA and the Gene Expression

Omnibus (GEO), whereas the latter were from the Cancer Cell Line

Encyclopedia (CCLE) project (Barretina et al., 2012) and the

Achilles project (Cheung et al., 2011).

2.1.2 Data types

For the TCGA tumor cohort, we collected (i) somatic mutation data

for 224 tumor samples; (ii) somatic copy number alteration (SCNA)

data for 257 tumor samples; (iii) DNA methylation data for 234

tumor samples and 42 normal samples; (iv) mRNA expression data

for 222 tumor samples and 22 normal samples; (v) protein expres-

sion data for 90 tumor samples and 30 normal samples; and (vi) all

available clinical data. Because patient survival data for the TCGA

cohort are very limited, we further collected microarray gene expres-

sion data from GEO for five CRC cohorts. These cohorts have a total

of 431 samples, with overall survival (OS) and disease-free survival

(DFS) information for 326 and 318 samples, respectively. For cell lines

from the CCLE project, we included (i) mRNA expression data for 61

CRC cell lines; (ii) copy number data for 58 CRC cell lines; (iii)
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Fig. 1. Data and analysis features in the NetGestalt CRC portal. The portal contains both experimental data and existing knowledge on pathways and networks.

Experimental data are organized based on sample types, data types, and data processing levels. In the portal, networks provide functional ‘views’, whereas all

other data are converted to ‘tracks’. The portal allows users to perform data query/upload, visualization and integrative analysis
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mutation data for 61 CRC cell lines; and (iv) drug response data for

23 CRC cell lines. From the Achilles project, we further collected

genes showing enhanced dependencies in the 18 CRC cell lines based

on short hairpin RNA screens of 11 194 genes in 102 cell lines.

2.1.3 Processing levels

Experimental data downloaded from various sources were processed

at four different levels. At Level 1, data for individual samples were

summarized at the gene level to generate gene-by-sample matrices.

At level 2, for selected sample attributes, appropriate statistical

analyses such as the Student’s t-test, Wilcoxon rank-sum test, Cox

regression or Spearman’s correlation test were performed based on

the matrices to generate test statistics, nominal P values, and False

Discovery Rates (FDRs) for individual genes. At Level 3, based on

pre-defined thresholds, such as FDR <0.01 and/or fold change >2,

significant genes were identified. At Level 4, data integration was

performed. As an example, survival analysis results for the five GEO

CRC cohorts were integrated to identify genes consistently corre-

lated with survival time in multiple cohorts. As another example,

correlations between SCNA and protein levels measured in the same

tumor cohort were computed for individual genes to identify SCNAs

that potentially drive protein abundance changes.

2.1.4 Knowledge

The portal includes three protein–protein interaction networks:

HPRD is based on the Human Protein Reference Database (Keshava

Prasad et al., 2009), iRef is based on the iRef database (Turner

et al., 2010) and iRef_HI expands the iRef network by further inte-

grating �14000 interactions recently made available through an un-

biased human interactome project (http://interactome.dfci.harvard.

edu/H_sapiens/). We also included pathway data from Cancer Cell

Map (10 pathways), GO Biological Process (808 GO terms), GO

Cellular Component (231 GO terms), GO Molecular Function (383

GO terms), HumanCyc (267 pathways), KEGG (200 pathways),

NCI Pathway Interaction Database (PID, 223 pathways) and

Reactome (1108 pathways).

2.1.5 File formats

All data described earlier were processed to one of the standardized

data formats and stored on the web server. NetGestalt supports the

nsm format for serialized and modularized networks, the cct format

for composite continuous tracks (e.g. expression matrices), the cbt

format for composite binary tracks (e.g. mutation matrices), the sct

format for single continuous tracks (e.g. fold changes), and the sbt

format for single binary tracks (e.g. significant genes). For composite

tracks containing multiple samples, sample annotations can be

stored in the tsi format. Detailed description of the file formats

can be found in the Supplementary Manual. As shown in Figure 1,

networks provide functional ‘views’ in NetGestalt, whereas all other

data are converted to ‘tracks’, which can be queried, visualized and

integrated using the analysis features in NetGestalt.

2.2 Data query and upload features
All data in the portal can be accessed through the menu bar located

at the top of the web page. Under the ‘View’ menu, users can select

one of the three network views (HPRD, iRef or iRef_HI) as the basis

for data visualization and analysis. User-specific networks can also

be uploaded through this menu. Under the ‘Track’ menu, users can

browse all 3356 system tracks or search for a specific system track.

All tracks in the current version of NetGestalt are summarized in

Supplementary Table S1. Users can also upload their own track files

in one of the NetGestalt file format or simply enter a list of gene

symbols to create a new track.

2.3 Visualization features
Visualization in the portal follows the basic visual design principles

summarized as the Visual Information Seeking Mantra

(Shneiderman, 1996): Overview first, zoom and filter, then details-

on-demand (Fig. 1).

2.3.1 Overview

Genes in a network are ordered in one dimension based on the

underlying hierarchical organization of the network, making it pos-

sible to provide an overview of data for all genes in a network, with

composite tracks visualized as heat maps, single continuous tracks

as bar charts, and single binary tracks as barcode plots. For a com-

posite track, samples annotations can be co-visualized as a compan-

ion heat map, which also enables interactive sorting of the samples

based on annotations of interest. For composite continuous and

single continuous tracks, visualization may be improved through

data transformation.

To provide a concise overview for the multidimensional omics

data for the TCGA tumor cohort, we created an ‘omics snapshot’

track that summarizes all tumor-related molecular alterations in five

sub-tracks corresponding to somatic mutations, SCNAs, epigenetic

alterations, and differential expression at mRNA and protein levels,

respectively (Fig. 2a). Similarly, a ‘clinical relevance snapshot’ track

was created with four sub-tracks indicating markers for DFS,

markers for OS, signature genes for the microsatellite instable (MSI)

versus microsatellite stable (MSS) comparison, and signature genes

for the stage IV versus stage I comparison, respectively. Each sub-

track was generated by meta-analysis of multiple independent stud-

ies when possible. Based on the cell line data, a ‘drug response snap-

shot’ track was generated with 24 sub-tracks each representing the

correlations between the sensitivity of the 23 cell lines to one of the

24 drugs and mRNA expression of individual genes across the cell

lines.

2.3.2 Zoom and filter

Because the one-dimensional layout of network nodes is created on

the basis of the hierarchical modular organization of the network, a

quick overview of one or multiple data tracks can often reveal net-

work modules or sub-networks with interesting patterns, e.g. mod-

ules enriched with mutated or differentially expressed genes.

Accordingly, users can easily zoom into the areas of interest. When

a pattern cannot be easily recognized by visual examination, net-

work analysis methods described in the ‘Integrative analysis fea-

tures’ section (see below) can be used. If a single gene of interest is

pre-specified, it is also possible to directly zoom to the gene. When

zoomed-in, users can also pan to left or right and adjust the zoom

level to explore the data.

Although the network-derived 1D layout of the genes provides a

convenient functional framework for data visualization, many im-

portant functional relationships between genes cannot be revealed in

such a layout due to the complexity of biological systems and the

multi-functional nature of the genes. We address this limitation by

the filtering feature associated with single binary tracks, through

which a subset of data for the genes in a single binary track can be

retrieved and visualized. In NetGestalt, single binary tracks can be

defined based on experimental data (e.g. recurrently mutated genes or

genes significantly correlated with survival time), existing knowledge

on pathways, or user provided gene lists. Moreover, through the

1438 J.Zhu et al.

4
(shRNA) 
    Data 
. 
,
p 
<
>
. 
-
,
&sim;
,
http://interactome.dfci.harvard.edu/H_sapiens/
http://interactome.dfci.harvard.edu/H_sapiens/
,
. 
above 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu834/-/DC1
``
''
``
''
``
''
,
``
''
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu834/-/DC1
. 
``
''
``
''
overall survival
vs 
vs 
``
''
. 
,
one-dimensional 


filtering feature associated with single continuous tracks, it is also pos-

sible to apply user-defined criteria to derive single binary tracks.

2.3.3 Details-on-demand

For all data tracks, after zooming into a network area with less than

a pre-specified number of genes (i.e. 500 in the current implementa-

tion), a node-link diagram can be used to visualize detailed inter-

action relationships between all genes in the area. For single binary

tracks, the node-link diagram option is also available for network

areas with less than a pre-specified number of present genes to visu-

alize detailed interaction relationships between present genes in the

area. Data in the single continuous and single binary tracks for indi-

vidual genes are used to determine node colors in the node-link

diagrams. In addition, two tracks can also be co-visualized in a

node-link diagram in which node and edge colors are determined by

data in one of the tracks, respectively.

As described earlier, data in the portal are processed at four dif-

ferent levels. Users can usually start from a higher-level summary

track, and when an interesting network area is located, correspond-

ing lower-level data can be retrieved to gain more detailed informa-

tion. For example, when a network area with enriched number of

mutated genes is located, the corresponding mutation matrix can be

retrieved to investigate mutation status for these genes in individual

samples.

2.4 Integrative analysis features
The portal enables data integration at three levels and provides vari-

ous features for each level of data integration.

First, comparable data generated at the same omics level from

multiple independent studies can be integrated. For example, mul-

tiple groups have performed gene expression profiling studies to

identify genes significantly correlated with patient survival time

(Jorissen et al. 2009; Reid et al., 2009; Smith et al., 2010; Staub

et al., 2009). We used the order statistics method (Wang et al.,

2013) to integrate data from these studies, and the pre-computed re-

sults are readily available as a track. Similarly, integrated tracks for

differential expression between stages I and IV tumors or between

MSI and MSS tumors in multiple gene expression studies have also

been pre-computed, respectively. In addition to retrieving pre-com-

puted results, users can also use the filtering feature to select genes

from individual studies and then use the Boolean operation feature

(i.e. interactive Venn diagram) to perform simple data integration

on the fly.

Second, data generated at multiple omics levels can also be inte-

grated. The omics snapshot based on the multi-omics data from the

TCGA tumor cohort provides an easy way to achieve such integra-

tion by visual examination. Moreover, based on data from

the TCGA tumor cohort, correlation between SCNA level and

mRNA/protein abundance has been pre-computed for individual

genes, which provides a means for prioritizing genes in the SCNA re-

gions. Users can also combine the filtering and Boolean operation

features to perform multi-omics data integration on the fly. For

example, genes that are epigenetically silenced and also down regu-

lated at protein level can be identified through such integration.

Similarly, genes that are mutated or deleted in CRC can also be

identified.

Moreover, experimental data can be integrated with network or

pathway information. Experimental data can be either an individual

omics dataset or an integrated dataset resulted from abovemen-

tioned methods. For network analysis, NetGestalt has implemented

a module-based approach and a direct neighborhood approach.

In the module-based approach, enrichment analysis is performed for

a single binary or a single continuous track against protein–protein

interaction network modules at all hierarchical levels based on the

Fisher’s exact test or the Kolmogorov-Smirnov test, respectively.

In addition to the network modules, enrichment analysis can also be

performed against the GO or pathway gene sets. In the direct neigh-

borhood approach, genes in a single binary track are considered

‘seeds’. For individual genes in the network, all direct neighbors are

identified and evaluated for the enrichment of the seeds using the

Fisher’s exact test. To prioritize the seed genes, the analysis can be

focused on only the seed genes. To expand seed genes to include

other potentially interesting genes, the analysis can be focused on

only the non-seed genes. When a single binary track contains 10 or

(a)

(b)

(c)

(d)

(e)

Fig. 2. Retrieving information for KRAS. (a) The Omics snapshot summarizes

the tumor-related somatic mutations, SCNAs, epigenetic alterations and dif-

ferential expression at mRNA and protein levels for all genes. For somatic

mutation, red represents significantly mutated genes and light red represents

genes mutated in at least 5% of the CRC samples; for SCNA, red/light red rep-

resent genes in the focal amplification regions and blue/light blue represent

genes in the focal deletion regions, with red/blue representing candidates

drivers; for epigenetic alteration, red represents epigenetically silenced

genes; for mRNA/protein expression, red and blue represent significantly

over- and under-expressed genes with fold change >2, whereas light red and

light blue represent significantly over- and under-expressed genes with fold

change <2. Grey represents missing data. (b) When zooming into the KRAS

gene, it can be seen that KRAS is significantly mutated in CRC and down

regulated at both mRNA and protein levels in tumors compared with normal

colon biopsies. Data for genes in the network neighborhood are visualized

simultaneously. (c) The proteomics data show that the KRAS protein abun-

dance is lower in tumors compared with normal controls; however, tumors

with mutant KRAS have higher KRAS abundance compared with those with-

out mutant KRAS. Red and blue represent relative over- and under-expres-

sion, respectively. (d) Sample-level mutation information for KRAS and genes

in this network neighborhood. (e) Protein–protein interactions between KRAS

and genes in this network neighborhood
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fewer genes, NetGestalt allows easy retrieval of all direct neighbors

of the genes.

2.5 Software implementation
NetGestalt is developed using the Ajax (Asynchronous JavaScript

and XML) technology with JavaScript on the client side and PHP/

Python/Cþþ/R on the server side. A complete list of features imple-

mented in NetGestalt is provided in Supplementary Table S2. All

data described in this article can be accessed at http://www.netges-

talt.org. A detailed usage guide is available in the Supplementary

Manual.

3 Case studies

In this section, we use three case studies to illustrate some of the pos-

sible applications of the NetGestalt CRC portal.

3.1 Retrieving information for a gene
One simple usage of the portal is to retrieve information for a gene

of interest, and we will use KRAS, one of the best-studied proto-

oncogene in CRC, as an example. After retrieving the omics snap-

shot for visualization (Fig. 2a) and zooming into the KRAS gene

(Fig. 2b), we can immediately see that KRAS is significantly mutated

in CRC, does not have significant copy number or methylation

changes, and is down-regulated at both mRNA and protein levels in

tumors compared with normal colon biopsies. As KRAS is an onco-

gene, this is somewhat counterintuitive. To better understand the

KRAS protein expression pattern, corresponding proteomics data

can be retrieved and visualized. Although the KRAS protein abun-

dance is indeed lower in tumors compared with normal controls, it

is obvious that tumors with mutant KRAS have higher KRAS abun-

dance compared with those without mutant KRAS (Fig. 2c), suggest-

ing the dependence of CRC tumors on the mutant but not wild-type

KRAS protein. In addition to acquiring information for KRAS,

NetGestalt also allows a quick overview of information for genes in

this network neighborhood. Several other significantly mutated

genes, including BRAF, NRAS and PIK3CA, reside in this neighbor-

hood (Fig. 2b), which suggest the functional importance of this net-

work neighborhood and also reinforces the critical role of KRAS in

colon cancer. Sample-level mutation information for these genes can

be further retrieved and visualized (Fig. 2d). Although many genes

are frequently mutated in the hypermutated tumors, only the above-

mentioned genes are frequently mutated in the non-hypermutated

tumors. Moreover, a node-link diagram depicting detailed inter-

action relationships between genes in the neighborhood can also be

created (Fig. 2e). Although many databases provide gene-centric

data retrieval, the portal enables unparalleled easy, intuitive, and

flexible access to multi-omics data within a biological network

context.

3.2 Retrieving information for a gene set
Another common usage of the portal is to retrieve information for a

set of genes defined in a single binary track, and we will use the

WNT signaling pathway as an example. A search for ‘WNT’ in the

portal returned four WNT pathways in the Cancer Cell Map,

KEGG, PID and Reactome databases, respectively. Co-visualization

of these pathway annotations showed that the Reactome annotation

is clearly different from all the others (Fig. 3a). A Venn diagram

comparison of the remaining three annotations showed a moderate

overlap, with only 34 common genes out of the total of 292 genes

annotated by these three databases (Fig. 3b). This type of

information, although very important to the users, cannot be easily

retrieved from other pathway databases or analysis tools. Among

the 34 common genes, 33 form a connected protein–protein inter-

action network that covers the well-known components of the WNT

signaling pathway (Fig. 3c). After adding other tracks, data for these

genes can be easily retrieved and visualized using the filtering fea-

ture. As shown in Figure 3d, both TCF7L2 and APC are mutated,

deleted, and under-expressed in CRC tissues. AXIN2 is amplified

and over-expressed in CRC tissues; it also shows a CRC lineage-spe-

cific dependency based on cell line data from the Achilles project

(Fig. 3e). CTNNB1 is mutated in CRC tissues and shows CRC lin-

eage-specific dependency (Fig. 3d and e). Molecular alterations for

other genes can also be easily spotted. Thus, NetGestalt provides a

convenient way to annotate gene sets based on multi-omics data.

3.3 Prioritizing epigenetically silenced genes
The TCGA CRC study identified hundreds of epigenetically silenced

genes. Here we use the portal to prioritize and interpret these epige-

netically silenced genes. After retrieving both epigenetically silenced

genes and genes significantly down-regulated at the protein level in

CRC, a Venn diagram analysis identified 15 epigenetically silenced

genes that were repressed at the protein level (Fig. 4a). Using the fil-

tering feature, an omics snapshot for the 15 genes was created

(Fig. 4b). As expected, most of these genes were also significantly

down-regulated at the mRNA level. Using AKAP12 as an example,

we illustrate how to use the portal to find evidence to support the

functional importance of the gene. AKAP12 resides in a network

module with 76 genes, and the GO biological process enrichment

(a)

(c)(b)

(e)

(d)

Fig. 3. Retrieving information for the WNT signaling pathway. (a) Genes in

four WNT signaling pathways annotated by the Cancer Cell Map, KEGG, PID

and Reactome databases, respectively are visualized as four single binary

tracks. (b) A Venn diagram comparison of the WNT signaling pathways anno-

tated by the Cancer Cell Map, KEGG and PID databases identified 34 common

genes. (c) Among these common genes, 33 genes form a connected protein-

protein interaction network that covers the well-known components of the

WNT signaling pathway. The omics snapshot (d) and the CRC cell line specific

essential gene track (e) depict CRC related molecular alterations and CRC de-

pendency of these 34 genes
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analysis showed that the module is significantly enriched with cell–-

cell adhesion genes (26 out of the 76 genes, FDR¼4.48e-24, enrich-

ment ratio¼18.3) (Fig. 4c).

Notably, the omics snapshot revealed five significantly mutated

genes in the module (Fig. 4d). To test whether this module is signifi-

cantly enriched with mutated genes, we performed network module

enrichment analysis for the 92 significantly mutated genes (Fig. 4g),

and the AKAP12 containing module was one of four enriched mod-

ules (Fig. 4h, FDR¼0.006, enrichment ratio¼8.6). As shown in

Figure 4i, the involvement of AKAP12 in this module is mediated

through the interaction with CTNNB1. The portal also allows quick

identification and visualization of all direct interaction partners of

AKAP12, which includes other well-known cancer genes such as

EGFR and PRKCA (Fig. 4j). Network-based analysis thus suggests

potential importance of AKAP12 in cancer. The clinical snapshot

showed that higher mRNA level of AKAP12 was significantly

associated with decreased OS and DFS time (Fig. 4e). Because

AKAP12 is hypermethylated and under-expressed in CRC compared

with normal colon tissues, this was unexpected. A detailed view of

the proteomics data showed that compared with normal colon tis-

sue, AKAP12 is down-expressed in most tumor samples except for

subtype C tumors (Fig. 4f), which have been associated with epithe-

lial-mesenchymal transition and possibly poor outcome (Zhang

et al., 2014). A literature review indicates that hypermethylation of

AKAP12 and accompanied under-expression of the gene has been

noted in CRC (Liu et al., 2010; Mori et al., 2006) as well as other

human cancers (Choi et al., 2004; Flotho et al., 2007; Heller et al.,

2008; Jin et al., 2008; Tessema et al., 2008). It has been shown that

AKAP12 mRNA was under-expressed in 31 out of 45 (69%) colo-

rectal carcinoma tissues and methylation of AKAP12 promoter re-

gion was detected in 35 (78%) of these tissues (Liu et al., 2010).

Similarly, we found that the AKAP12 protein was under-expressed

(a) (b)

(c)

(d)

(f)

(g)

(h)

 (j) (i)

(e)

Fig. 4. Prioritizing and interpreting epigenetically silenced genes. (a) Venn diagram analysis identified 15 epigenetically silenced genes that were also significantly

down-regulated at the protein level in CRC. (b) Using the filtering feature, an omics snapshot for the 15 genes was created. (c) AKAP12 resides in a network mod-

ule with 76 genes, and the module is significantly enriched with cell-cell adhesion genes. (d) The omics snapshot revealed five significantly mutated genes in this

module. (e) The clinical relevance snapshot showed that higher mRNA level of AKAP12 was significantly associated with decreased OS and DFS time. (f) A de-

tailed view of the proteomics data showed that compared with normal colon tissue, AKAP12 is down-expressed in most tumor samples except for subtype C

tumors. (g) Non-random distribution of the 92 significantly mutated genes in the network. (h) These genes are significantly enriched in four network modules,

including the AKAP12 containing module. The four modules are colored in pink and mutated genes in these modules are colored in red. (i) The involvement

of AKAP12 in this module is primarily mediated through the interaction with CTNNB1. (j) All direct interaction partners of AKAP12
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in most of the tumors in the TCGA cohort. However, our analysis

also reveals that AKAP12 under-expression is likely not involved in

the poor-prognosis subtype C tumors, a finding that may have an

important clinical implication.

4 Discussion

The NetGestalt CRC portal brings together a comprehensive collec-

tion of CRC-related omics data. It not only provides easy query and

visualization of the data but also enables efficient data integration

within a single omics data type, across multiple omics data types,

and over biological networks. Our case studies demonstrate the key

features that distinguish NetGestalt from other related tools.

Compared with typical network visualization tools, NetGestalt

allows multi-scale representation and navigation of the data and en-

ables simultaneous visualization of different types of data to facilitate

data integration. Network visualization and analysis tools such as

Cytoscape (Shannon et al., 2003), VisANT (Hu et al., 2009) and

Osprey (Breitkreutz et al., 2003) have already become indispensible

tools in systems biology studies. Nevertheless, node-link diagrams do

not scale well with increasing network size and data complexity.

First, when the number of nodes goes beyond a few hundreds,

neither individual nodes and edges nor the modular structure of the

network can be clearly visualized. Second, simultaneous visualization

of multiple datasets in a network is inevitably problematic because of

a lack of space. Efforts have been made to collapse all members of a

module into a singe ‘meta-node’ (Hu et al., 2009), extend the two-di-

mensional representation into three-dimension (Pavlopoulos et al.,

2008), use animation to visualize data from multiple conditions

(Shannon et al., 2003), use CircleMaps to represent data associated

with individual nodes (Wong et al., 2013) or arrange multiple ver-

sions of the same network in a grid (Barsky et al., 2008). Despite

enormous research efforts, it remains challenging to use networks as

a framework for the visualization and integrative analysis of large

and heterogeneous datasets. NetGestalt offers one solution to pro-

vide a network-centric view of multidimensional cancer omics data.

Although the NetGestalt interface shares many similarities with

that of the genome browsers, they are conceptually different and

complement each other. Genome browsers are effective in integrat-

ing genome-anchored information such as gene structure annotation

and copy number variation (Kent et al., 2002). Nevertheless, they

are not designed to reveal functional relationships among gene prod-

ucts (Nielsen et al., 2010). NetGestalt brings functionally related

genes together to facilitate the interpretation and integration of

multi-omics data within the context of biological networks.

Another unique aspect of NetGestalt is the enabling of seamless

connections among the data query, visualization, and integration

features, which can be used iteratively in different combinations to

serve the needs of the users, maximizing the synergy among omics

data, human visualization, and quantitative analysis. As a result, the

portal can be used for both hypothesis generation and hypothesis

testing, or a combination of both. Moreover, users can also upload

their own datasets to the system for integrative analysis.

The current version of the portal only includes three human pro-

tein–protein interaction networks. Genes not included in the net-

works are not included for visualization and analysis in the portal.

In the future, we will add functional association networks (e.g.

STRING, Szklarczyk et al., 2011) that do not require physical inter-

action in order to further improve gene coverage. Moreover, it

has been shown that tissue-specific networks are more functionally

relevant (Guan et al., 2012; Magger et al., 2012). We will consider

adding context-specific networks to the portal. Meanwhile, users

can analyze the datasets using their own networks, which can be

easily uploaded to the system.

Using CRC as a paradigm, we have demonstrated the power of

NetGestalt in facilitating easy access and interpretation of multidi-

mensional cancer omics data. A natural extension is to expand the

portal to cover data for other cancer types. Analysis across tumor

types, as demonstrated by the Pan-Cancer initiative (Cancer

Genome Atlas Research et al., 2013), has started to provide novel

biological and clinical insights to human cancer. A NetGestalt

pan-cancer portal will complement existing efforts within the

Pan-Cancer initiative to facilitate the discovery of commonalities,

differences and emergent themes across cancer types at gene,

pathway, and network levels.
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