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Abstract

The retroviral restriction factor TRIMCyp, which is a fusion protein derived from the TRIM5 gene, blocks replication at a post-
entry step. Among Old World primates, TRIMCyp has been found in four species of Asian macaques, but not in African
monkeys. To further define the evolutionary origin of Old World TRIMCyp, we examined two species of baboons (genus
Papio) and three additional macaque species, including M. sylvanus, which is the only macaque species found outside Asia,
and represents the earliest diverging branch of the macaque lineage. None of four P. cynocephalus anubis, one P.
hamadryas, and 36 M. sylvanus had either TRIMCyp mRNA or the genetic features required for its expression. M. sylvanus
genomic sequences indicated that the lack of TRIMCyp in this species was not due to genetic homogeneity among
specimens studied and revealed the existence of four TRIM5a alleles, all distinct from M. mulatta and Papio counterparts.
Together with existing data on macaque evolution, our findings indicate that TRIMCyp evolved in the ancestors of Asian
macaques approximately 5–6 million years before present (ybp), likely as a result of a retroviral threat. TRIMCyp then
became fixed in the M. nemestrina lineage after it diverged from M. nigra, approximately 2 million ybp. The macaque lineage
is unique among primates studied so far due to the presence and diversity of both TRIM5 and TRIMCyp restriction factors.
Studies of these antiviral proteins may provide valuable information about natural antiviral mechanisms, and give further
insight into the factors that shaped the evolution of macaque species.
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Introduction

Primates have been infected with retroviruses frequently

throughout their evolution. Retroviral infections are believed to

have driven the evolution of host factors such as the restriction

factors TRIM5a and TRIMCyp [1]. These restriction factors

specifically inhibit retroviral replication [2–5], and bear the marks

of previous evolutionary conflicts [6,7].

TRIM5a and TRIMCyp are two of several alternatively spliced

isoforms of the TRIM5 gene [8]. This gene belongs to the tripartite

motif (TRIM) gene family, of which several members in addition to

TRIM5 have been implicated in immune responses to pathogens

[9]. TRIM proteins contain, in order, a RING domain, one or two

B-Box domains, and a coiled coil domain. TRIM5a also has a C-

terminal B30.2/SPRY domain, which recognizes and binds to the

capsids of susceptible retroviruses, leading to post-entry restriction

of infection [8,10,11]. This restriction occurs in a two-stage process,

with stages both before and after reverse transcription [2,4,12].

In a striking instance of convergent evolution, cyclophilin A

(CypA) sequences have been inserted into the TRIM5 gene by

independent retrotransposition events in both New World (Aotus/

owl monkey) and Old World (Macaca/macaque) primate lineages.

Alternative splicing to these sequences leads to the production of

TRIMCyp, in which the B30.2/SPRY domain of TRIM5a is

replaced with a CypA domain. Because CypA, like the B30.2/

SPRY domain, can bind to retroviral capsids, TRIMCyp also has

antiretroviral activity [13,14]. New World and Old World

TRIMCyp proteins have distinct antiretroviral specificities, which

also differ from that of TRIM5a [15–18].

In macaques, the retrotransposed CypA sequence required for

TRIMCyp production is found in the 39 untranslated region (UTR)

of the TRIM5 gene. TRIMCyp expression and the presence of this

CypA insertion are correlated with a single nucleotide polymorphism

(SNP) at the exon 7 splice acceptor site, in which the canonical AG

dinucleotide splice acceptor is changed to AT [19]. This change

leads to the production of alternatively spliced products including

TRIMCyp, which results from skipping of exons 7 and 8 and

splicing to the CypA insertion (Figure 1) [15–19].

TRIMCyp, and the splice acceptor SNP and CypA insertion

required for its expression, have been found in all four species of

Asian macaques that have been tested so far. In these four species,

Macaca nemestrina, M. leonina, M. mulatta, and M. fascicularis, the

genetic changes are found at varying frequencies. They appear to be

fixed in M. nemestrina and the closely related M. leonina [16,19–21]. In

M. mulatta, TRIMCyp is present in animals of Indian origin at an

allele frequency of approximately 25%. It has not been found in

Chinese M. mulatta, among at least 76 individuals that have been

screened [18,20].

Phylogenetically, M. mulatta and M. fascicularis belong to the

fascicularis group of Asian macaques. M. nemestrina and M. leonina
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belong to the earliest diverging group, the silenus group [22, 23; See

Figure 6]. Thus, TRIMCyp is present in maximally divergent

groups within the Asian macaques, and was likely present in the

ancestor of all Asian macaques. TRIMCyp was not found in sooty

mangabeys (Cercocebus atys), the only other Old World monkey

species that has been tested [20]. This African monkey species,

along with baboons (genus Papio), belongs to the papionin clade, a

sister clade to the macaques. However, the absence of TRIMCyp

in sooty mangabeys does not necessarily imply that it is absent in

the papionin clade as a whole, because at least one Asian macaque

lineage (Chinese M. mulatta) also appears to lack TRIMCyp.

Therefore, studies of additional Old World primate species are

necessary to help establish the evolutionary origin of TRIMCyp.

M. sylvanus, the only African macaque, has a unique position

within the macaque lineage. This species diverged from the Asian

macaques after the macaques diverged from the papionin clade,

making it the most closely related outgroup to the Asian macaques.

Thus, study of M. sylvanus will help to determine whether

TRIMCyp evolved before or after the divergence of African from

Asian macaques.

In this study, we tested M. sylvanus, two baboon species, and two

additional Asian macaques, M. nigra and M. thibetana, for

TRIMCyp. We find that all samples lack the CypA insertion in

the TRIM5 39 UTR, the splice site SNP associated with

TRIMCyp, and TRIMCyp expression. These findings indicate

that TRIMCyp likely evolved in Old World primates after the

divergence of M. sylvanus from the Asian macaques, approximately

5–6 million years before present (ybp). It then became fixed in M.

nemestrina and M. leonina after their divergence from M. nigra,

approximately 2 million ybp. Identification of the evolutionary

origin of TRIMCyp in Old World primates suggests that retroviral

selection may have helped to shape the speciation of Asian

macaques.

Results

Baboons lack TRIMCyp and the CypA insertion
Old World primate TRIMCyp has so far been found in Asian

macaques, and not in sooty mangabeys, which are African

primates that belong to the papionin clade, a sister clade to the

macaques. Because the frequency of the TRIMCyp allele is

variable among Asian macaques, we reasoned that it may also be

present in species related to sooty mangabeys. To test this

possibility, we examined baboons, which also belong to the

papionin clade. We tested five baboons, including four P.

cynocephalus anubis and one P. hamadryas, for the TRIM5 exon 7

splice site SNP, which is required for TRIMCyp expression. As

controls, we used three M. fascicularis animals of known genotype.

We initially used the restriction assay developed by Newman et al.

[20], which takes advantage of a second polymorphism upstream

of the splice site. In macaques, the presence of an upstream NsiI

restriction site is linked to the T allele at the splice site, and thus

correlated with TRIMCyp expression. The absence of the NsiI site

is linked to the G allele and correlated with the absence of

TRIMCyp.

However, we found that this correlation does not apply in

baboons. All five Papio samples had the NsiI restriction site at the

expected location, but sequencing of this region of the genome

demonstrated that these animals have the G allele at the splice site

(Figure 2a) (GenBank HM468444-HM468446). Therefore, while

the restriction assay is useful for genotyping macaques, it is not

valid for baboons and should be verified when testing any new

species.

We tested the same animals for the CypA insertion, using PCR

primers designed to bind on either side of the putative CypA

sequence in the 39 UTR of the TRIM5 gene (Primers 3 and 6). All

five baboons had only the shorter PCR product, demonstrating

the absence of the CypA insertion (Figure 2b). P. cynocephalus anubis

individuals for which RNA was available also lacked TRIMCyp

mRNA expression (Figure 2c). Thus, baboons, like sooty

mangabeys, lack TRIMCyp expression and the CypA insertion.

These data support the view that TRIMCyp is not present in the

papionin clade, and that it evolved in the macaque lineage after its

divergence from papionins.

TRIMCyp evolved after the divergence of Asian
macaques and M. sylvanus

In order to further define the evolutionary origin of TRIMCyp

among Old World primates, we examined M. sylvanus, which

Figure 1. Genomic organization and mRNA splicing of TRIM5 alleles. (A) DNA sequence of the TRIM5a-expressing allele is shown
schematically on top, with open boxes representing exons 2–8 numbered in bold. The mRNA splicing pattern indicated below. The canonical splice
acceptor sequence with a G nucleotide upstream of exon 7 is as indicated. (B) The CypA insertion in the TRIMCyp-expressing allele is located as
indicated. A SNP (T) at the exon 7 splice acceptor allows the splicing of exon 6 to the coding region of the CypA insertion. Minor splice isoforms in
both alleles are not depicted. Primers used for analyses described in subsequent figures and text are depicted as arrows and numbered in italics.
Primers used for genomic analysis are shown above the mRNA diagram, and those for RT-PCR analysis shown below. Primer 4 was used for both
analyses.
doi:10.1371/journal.pone.0014019.g001
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represents the earliest diverging macaque species. We sampled 36

M. sylvanus individuals from Gibraltar [24]. Unlike the baboons, all

M. sylvanus lacked the NsiI restriction site (Figure 3a). Sequence

analysis confirmed that they had the G allele at the splice site.

Thus, the genetic linkage between the NsiI site and the SNP

associated with TRIMCyp expression appears to be conserved

among macaque species, including M. sylvanus, but not in baboons.

As expected from these results, none of the M. sylvanus tested had

either the CypA insertion (Figure 3b) or TRIMCyp mRNA

expression (Figure 3c). We sequenced the PCR products shown in

Figure 3b for eight animals. These sequences were similar to M.

mulatta sequences known to lack TRIMCyp, and showed no

evidence of any deletions or rearrangements in this region (data

not shown). Thus, it is unlikely that the CypA insertion was present

in these animals but deleted at the sequence level. This suggests

that TRIMCyp evolved after the divergence of M. sylvanus from

the Asian macaques.

M. sylvanus TRIM5a is polymorphic and distinct from
orthologues in closely related species

In order to determine the level of diversity among the M. sylvanus

samples tested and to ensure that the sample population was not

homogeneous, we cloned and sequenced TRIM5a cDNA from

seven M. sylvanus (GenBank HM468429-HM468432). We found six

SNPs, of which four result in amino acid substitutions and two are

synonymous (Table 1). We also cloned and sequenced TRIM5 exon

8 from genomic DNA in nine animals, including the same seven

from which TRIM5a was cloned. At least four of nine animals were

heterozygotes. Four of the SNPs (three nonsynonymous and one

synonymous) are in the B30.2/SPRY domain, which is the capsid-

binding domain and has been described as the most variable

domain in other primate TRIM5a sequences [6,7,25]. The SNP at

amino acid 339 (nucleotide 1016) is within the ‘‘patch’’ of amino

acids previously described as being under strong positive selection in

primate lineages [6]. The other two polymorphisms are in the

RING and coiled-coil domains, respectively.

We also compared the predicted M. sylvanus TRIM5a amino acid

sequence with all six common alleles identified in M. mulatta [7], and

with two P. cynocephalus anubis TRIM5a sequences (Table 2). One of

these baboon sequences was characterized for this study (GenBank

HM468433), while the other was previously published [26]. We

found 13 M. sylvanus-specific residues, suggesting that extensive

evolution has occurred in this species since its divergence from a

common ancestor. Two residues (P29 and E247) were shared with

baboons but not with M. mulatta, and four (K44, A296, M330, and

T339 in some alleles) were shared with M. mulatta but not baboons.

Six residues (M142, M310, M339, L358, L385, and R423) were not

found in any other available TRIM5a sequence, including those of

apes and New World monkeys. Like the intraspecies polymor-

phisms, these interspecies differences were distributed throughout

the length of the TRIM5a gene, with a large number found in the

B30.2/SPRY domain. We also found intraspecies polymorphism

within P. cynocephalus anubis TRIM5a, as there were one synonymous

and three nonsynonymous SNPs between the newly characterized

sequence and the published sequence [26]. A synonymous variation

in nucleotide 90 is polymorphic in both M. sylvanus and P.

cynocephalus anubis.

TRIMCyp-related sequences evolved once in the Asian
macaque lineage

In order to further examine the phylogenetic origin of

TRIMCyp-linked sequences, we sequenced TRIM5 genomic

DNA from P. cynocephalus anubis, M. sylvanus, M. nigra, M. thibetana,

and M. fascicularis (GenBank HM468434-HM468446). The

sequenced region was amplified using Primers 2 and 4 and

consisted of introns 6 and 7 and exons 7 and 8 (see Figure 1). We

also analyzed published sequences from M. mulatta and M.

nemestrina. Of the sequences analyzed, four (three M. fascicularis

and one M. nemestrina) had the T allele at the exon 7 splice

acceptor, and were known or presumed to be linked to the CypA

insertion; the remainder had the G allele at the splice site. M.

fascicularis was the only species for which genomic DNA sequences

in this region for both T-containing and G-containing alleles were

available. Although some M. mulatta have the T allele, a complete

sequence for the region analyzed here was not available from

publicly accessible data.

Figure 2. Baboons lack TRIMCyp. (A) Sequence of the intron 6/exon 7 junction, showing the splice site SNP and the NsiI polymorphism, in a
macaque that expresses TRIMCyp (M. nemestrina, GenBank EU371641.1); a macaque lacking TRIMCyp (M. mulatta sequenced genome, GenBank
NC_007871.1); and baboons (Papio, GenBank HM468444-HM468446). Capital letters, exon; lowercase letters; intron. Box, splice acceptor site. DNA
from both P. cynocephalus anubis and P. hamadryas was sequenced, and all sequences were identical in the region shown here. (B) PCR across the
TRIM5 39 UTR (Primers 3 and 6) in P. cynocephalus anubis (4 individuals, lanes 1–4) and P. hamadryas (lane 5). Three M. fascicularis of known genotypes
were used as controls. Lane 6, CypA insertion heterozygote. Lane 7, homozygote with CypA insertion. Lane 8, homozygote lacking CypA insertion. (C)
RT-PCR for TRIM5a (lanes 1, 3, and 5) and TRIMCyp (lanes 2, 4, and 6) in cDNA from 3 P. cynocephalus anubis.
doi:10.1371/journal.pone.0014019.g002
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The four sequences containing the T allele at the exon 7 splice

site clearly formed a monophyletic group (Figure 4). In particular,

the M. fascicularis sequences clustered according to their allele at

this site. M. fascicularis sequences containing the G allele grouped

with M. mulatta. Similarly, M. fascicularis sequences containing the

T allele grouped with M. nemestrina. This finding is consistent with

the notion that the T allele associated with TRIMCyp expression

evolved once, in the common ancestor of M. fascicularis and M.

nemestrina (and thus of all Asian macaques), and has not been

subsequently lost in any of the lineages studied.

TRIMCyp fixation in M. nemestrina and M. leonina
occurred after divergence from M. nigra

To further define TRIMCyp evolution in Asian macaques, we

tested one sample each from M. thibetana and M. nigra. Both of

these samples lacked the CypA insertion and had the G allele at the

exon 7 splice site (Figure 5). Thus, TRIMCyp is absent in at least

some individuals of these species. Phylogenetically, M. thibetana

belongs to the sinica group, of which no members have previously

been tested. M. nigra belongs to the silenus group, along with M.

nemestrina and M. leonina. Because the CypA insertion and the T

allele are fixed in M. nemestrina and M. leonina [16,19–21], we

conclude that TRIMCyp must have become fixed in the M.

nemestrina/M. leonina lineage after it diverged from M. nigra.

Discussion

We report here that TRIMCyp, and the genetic changes

required for its expression, are absent in M. sylvanus and in two

species of baboons. These data, in combination with data on sooty

mangabeys [20], suggest that the common ancestor of the

macaques also lacked TRIMCyp, and that TRIMCyp evolved

after M. sylvanus diverged from the Asian macaques (Figure 6). Old

World TRIMCyp expression results from two genetic changes that

are invariably linked in species examined to date, namely a T allele

at the exon 7 splice junction and a CypA insertion. The CypA

insertion required for production of functional TRIMCyp in Old

World primates is consistently found in the same genetic location,

in the 39 UTR downstream of exon 8. Furthermore, we show that

CypA-containing TRIM5 DNA sequences are monophyletic.

Taken together, these data indicate that functional TRIMCyp

Figure 3. M. sylvanus lack TRIMCyp. (A) NsiI restriction site assay on 36 M. sylvanus. (B) PCR across the TRIM5 39 UTR in 36 M. sylvanus. Three M.
fascicularis of known genotype were used as controls (last 3 lanes of both parts A and B). (C) RT-PCR for TRIM5 (left lanes) and TRIMCyp (right lanes) in
cDNA from 36 M. sylvanus. Mfa, M. fascicularis heterozygote expressing both TRIM5 and TRIMCyp. –RT, M. sylvanus sample run without reverse
transcriptase.
doi:10.1371/journal.pone.0014019.g003

Table 1. Intraspecies polymorphisms in M. sylvanus TRIM5a.

SNP 1 2 3 4 5 6

nt aa nt aa nt aa nt aa nt aa nt aa

Residue 90 30 424 142 1016 339 1071 357 1072 358 1268 423

Allele 1 T C A M T M C S A I A H

Allele 2 C C G V C T T S C L A H

Allele 3 C C A M C T T S C L G R

Allele 4 T C A M C T T S C L G R

Domain RING Coiled Coil B30.2/SPRY

Nonsynonymous SNPs are marked in bold.
nt = nucleotide residue number.
aa = amino acid residue number.
doi:10.1371/journal.pone.0014019.t001
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evolved only once in Old World primates. Given the widespread

distribution of TRIMCyp among the Asian macaques and its

absence in African primates, we conclude that TRIMCyp

expression evolved in the common ancestor of the Asian

macaques.

Based on molecular evidence, the macaques are thought to have

diverged from the papionin clade about 9–10 million ybp [27],

although fossil and geological evidence indicates that this event

could have occurred as recently as 6 million ybp [28]. Molecular

evidence suggests that the Asian macaques diverged from M.

sylvanus approximately 5.5–6 million ybp, and diverged from each

other about 5–6 million ybp [22,29]. Based on these data and on

our findings, we hypothesize that a retrovirus invaded the

population of the Asian macaque progenitors approximately 5–6

million ybp, causing selection for a novel antiretroviral factor and

leading to the evolution of TRIMCyp in this clade. This event

could have occurred either in Asia or in Europe or Africa, before

these species arrived in Asia. The oldest macaque fossil found in

Asia is dated at approximately 5.5 million years old, not long after

the presumed divergence of Asian from African macaques,

suggesting that the migration to Asia was relatively rapid [30].

However, our data do not allow us to pinpoint a location for the

evolution of TRIMCyp.

Although our data are most consistent with an origin of

TRIMCyp in the common ancestor of Asian macaques, we have

also considered several alternative hypotheses. First, it is possible

that TRIMCyp was present in ancestral Old World primates but

has been lost in all lineages other than Asian macaques. Results

shown in Figure 4 clearly show that TRIMCyp sequences have not

been lost at the DNA level, by deletion of the CypA sequence or by

reversion of the exon 7 splice site. If this had occurred in some

species, we would expect them to have the G allele but to group

with the T-containing sequences, or to have the T allele in the

absence of the CypA insertion. Neither of these features is present

in any of the species tested. Instead, our data show unambiguously

that sequences containing the T allele form a monophyletic group,

distinct from those containing the G allele. Thus, it is unlikely that

TRIMCyp was lost at the DNA level in any lineage.

In contrast, we cannot formally rule out the possibility that

TRIMCyp was lost by lineage sorting. In our phylogenetic

analysis, the T alleles appear to branch off before the separation of

baboon and macaque G alleles (see Figure 4). This could be taken

to suggest that the T allele evolved before this evolutionary

branching, and thus that TRIMCyp, or at least TRIMCyp-linked

sequence changes, may be older than suggested by our other data.

However, this analysis is complicated by the possibility of different

evolutionary rates in different sequences. In sequences that do not

encode TRIMCyp (i.e. those with the G allele), approximately half

of the region included in this analysis consists of coding sequence.

In sequences containing the T allele, the entire region could be

considered to be noncoding and thus potentially under relaxed

selection. In these sequences, exon 8 (587 bp) is still used to code

Table 2. Interspecies comparison of predicted TRIM5a amino acid sequence from M. sylvanus, M. mulatta, and Papio cynocephalus
anubis.

Amino acid 29 44 69 112 139 142 177 217 247 296 298 310 330 333 339 358 385 423

Papio P R Q S E V D T E V R I T A S I P H

M. sylvanus P K R R K V/M E M E A C M M T T/M I/L L H/R

M. mulatta H K Q S E V D T D A R I M A/S T/Ä I S H

Domain RING B-Box Coiled Coil B30.2/SPRY

Bold = not found in P. cynocephalus or M. mulatta.
doi:10.1371/journal.pone.0014019.t002

Figure 4. TRIMCyp-linked alleles form a monophyletic group. Phylogenetic tree of TRIM5 genomic sequences from the exon 6–8 region. Tree
was built using a neighbor-joining algorithm using the homologous human sequence as an outgroup (not shown). Bootstrap values from 1000
replicates are shown. Scale bar, substitutions per site.
doi:10.1371/journal.pone.0014019.g004
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for TRIM5g; however, no biological function has been described

for this isoform [19]. Due to this uncertainty, no firm conclusions

can be drawn from our phylogenetic analysis about the timing of

the evolution of the T allele. Thus, the most parsimonious

explanation for our data remains that TRIMCyp-related sequenc-

es evolved once in the ancestral Asian macaque lineage.

Although it is unlikely that Old World TRIMCyp itself has been

lost by lineage sorting, it should be noted that lineage sorting has

almost certainly played a part in the evolution of this gene.

Expression of functional Old World TRIMCyp requires two

genetic changes that must originally have happened independent-

ly, namely a single nucleotide transversion and a retrotransposon-

mediated insertion. Therefore, ancestral individuals must have had

one in the absence of the other. The splice site T allele in the

absence of the CypA insertion would probably be disadvantageous,

since such an animal would be unable to produce either TRIM5a
or TRIMCyp, likely making it more susceptible to retroviruses

[19]. It is unclear whether the presence of the CypA insertion in the

absence of the T allele would allow any expression of TRIMCyp.

However, under these circumstances, TRIMCyp would likely be

only a minor splice variant. Thus, these two genetic changes are

expected to confer a strong selective advantage only in

combination. The hypothetical ancestral form, with only one of

the two genetic changes, has likely been lost by lineage sorting, due

either to selection or to genetic drift.

We also considered the possibility that TRIMCyp is present in

M. sylvanus but was not detected in our study. M. sylvanus

individuals have been repeatedly introduced into Gibraltar, and

animals in this population have mitochondrial haplotypes

representative of the most common alleles found in both Algerian

and Moroccan populations [24]. All existing wild M. sylvanus

populations live in these three countries; thus, the Gibraltar

population is representative of the species as a whole [24]. Our M.

sylvanus samples consisted of 36 animals from the Gibraltar colony.

This colony currently contains approximately 230 animals

belonging to six groups, with group sizes ranging from 14–64

individuals per group. We sampled individuals from all six groups.

The animals in our sample also have diverse TRIM5 sequences, so

they do not represent closely related animals with similar or

identical genotypes. Statistically, the absence of TRIMCyp in any

of our 36 sample animals implies that the prevalence of TRIMCyp

in our population of 230 is no higher than 8.3 percent or 19

animals (p,0.05, according to the binomial probability distribu-

tion). Thus, although we cannot rule out the possibility that

TRIMCyp is present in less than 10% of the Gibraltar population,

or that it is a rare genotype in African M. sylvanus that is not

present in the Gibraltar population, we believe that the available

data are best explained by a model in which TRIMCyp evolved

after the divergence of M. sylvanus from the Asian macaques.

A final alternative hypothesis is that TRIMCyp evolved in one

group of Asian macaques after their divergence from other Asian

macaques, and entered other groups by hybridization and

introgression. A scenario in which TRIMCyp evolved specifically

in the silenus group, which includes M. nemestrina and M. leonina,

and later entered the fascicularis group, could explain the fact that it

is fixed in M. nemestrina and M. leonina but not in M. mulatta or M.

fascicularis. However, we believe that this hypothesis is not

plausible. Although there is extensive literature on introgression

between M. fascicularis and M. mulatta, there is currently no

evidence of introgression between more distant macaque groups

[29,31]. Further, the geographic range of M. nemestrina and M.

leonina overlaps with that of Chinese, but not Indian, M. mulatta.

This contrasts with the presence of TRIMCyp in Indian but not

Chinese M. mulatta. Thus, we believe that the most plausible

scenario is that TRIMCyp evolved in the common ancestor of

Asian macaques, and is not present in M. sylvanus or other Old

World monkeys. We suggest that its variable frequency in different

taxa results from the complex selective pressures exerted by

multiple and different retroviral challenges.

Although TRIMCyp expression likely conferred a selective

advantage on Asian macaque ancestors, it did not become fixed in

the general Asian macaque population. TRIMCyp expression is

polymorphic in both M. fascicularis and M. mulatta, and absent in

individuals of M. thibetana and M. nigra reported here. TRIM5a
alleles are thought to be subject to balancing selection in Old

World monkeys, based on the existence of ancient shared

polymorphisms [7], and it seems likely that TRIMCyp is subject

to similar evolutionary pressures. Thus, if animals are subject to

challenge both by retroviruses that are susceptible to TRIM5a and

by those susceptible to TRIMCyp, the maintenance of both

restriction factors in the population would be beneficial. Our

dataset does not provide molecular evidence to support the activity

Figure 6. Model for TRIMCyp evolution in Old World primates.
Schematic dendrogram showing the history of TRIMCyp evolution
inferred here, in the context of established phylogenetic relationships
among Old World primate species studied. Filled star, evolution of
TRIMCyp. Open star, fixation of TRIMCyp. Asian macaque phylogenetic
groups are indicated at right [23]. This graphical representation is not to
scale and is not intended to reflect relative divergence. Relationships
are adapted from [23,29,37].
doi:10.1371/journal.pone.0014019.g006

Figure 5. Single M. thibetana and M. nigra individuals lack
TRIMCyp-related genetic changes. (A) NsiI restriction site assay on
M. thibetana and M. nigra. (B) PCR across the TRIM5 39 UTR in M.
thibetana and M. nigra. Three M. fascicularis of known genotype were
used as controls (last 3 lanes of both parts A and B).
doi:10.1371/journal.pone.0014019.g005

TRIMCyp in Old World Primates

PLoS ONE | www.plosone.org 6 November 2010 | Volume 5 | Issue 11 | e14019



of balancing selection by Tajima’s D test [32] (data not shown);

however, the dataset is small, and its power to detect such selection

is low. Thus, it is possible that the long-term maintenance in some

Asian macaque species of both TRIM5a and TRIMCyp-expressing

alleles may be due to balancing selection. Alternatively, there may

be direct advantages to heterozygosity in this retroviral restriction

factor, which could have led to the maintenance of both alleles.

M. sylvanus lacks many common viruses enzootic to other

macaque species, including herpesviruses (cytomegalovirus and

Cercopithecine herpesvirus) as well as retroviruses (simian

immunodeficiency virus, simian retrovirus, and simian T cell

leukemia virus) [33]. The only retrovirus known to exist in this

species is simian foamy virus [33]. Because M. sylvanus does not

normally have contact with other nonhuman primate species, its

lack of retroviruses commonly found in Asian macaques may

simply be due to a lack of exposure. However, we might also

speculate that M. sylvanus has in fact evolved resistance to some or

all of them. The many species-specific polymorphisms in M.

sylvanus TRIM5a, some of which are in regions known to be

important for antiviral specificity, could be a result of such

evolution. However, the species-specific SNPs in M. sylvanus

TRIM5a could also represent a change in specificity or a loss of

antiviral activity through genetic drift. Functional studies will help

to elucidate these possibilities.

TRIMCyp in New World primates evolved independently from

its counterpart in Old World primates. Based on its presence in all

members of the genus Aotus and its absence from others species,

New World TRIMCyp must have evolved between 4.5 and 22

million ybp [34]. This date range encompasses the 5–6 million ybp

proposed here for the evolution of Old World TRIMCyp.

Available data do not allow us to distinguish whether the

concurrent evolution of TRIMCyp in these two lineages was

due to a worldwide retroviral epidemic or to multiple and separate

events. However, findings reported here, together with existing

evidence [22,23,30], allow us to define with unprecedented

precision the time and possible geographic origin for the evolution

of TRIMCyp in Old World primates. These data also provide

evidence linking the evolution of an antiretroviral restriction factor

with a speciation event, namely the divergence of Asian macaques

from the M. sylvanus lineage. Understanding the evolution of host

restriction factors among macaque species will elucidate natural

antiviral mechanisms and help us to better use these species as

animal models for retroviral diseases such as HIV/AIDS.

Materials and Methods

Ethics Statement
All animal-related work has been conducted according to the

Public Health Services Policy on Humane Care and Use of Labor-

atory Animals (http://grants.nih.gov/grants/olaw/references/

PHSPolicyLabAnimals.pdf). Washington National Primate Re-

search Center (WaNPRC) is an AAALAC-accredited institution.

All experimental protocols were reviewed and approved by the

University of Washington’s Institutional Animal Care and Use

Committee (4233-01 and 4202-03) and by the Gibraltar

Ornithological and Natural History Society. Peripheral blood

was collected by venipuncture when animals were under sedation

to relieve pain and suffering. Biological samples were collected and

transported according to all relevant national and international

guidelines.

Samples
DNA samples were obtained from the Coriell Institute

Integrated Primate Biomaterials and Information Resource

(IPBIR) for M. nigra (Repository number PR00726), M. thibetana

(PR00711), and P. hamadryas (PR00559). Peripheral blood

(maximum of 10 ml/kg/week) from P. cynocephalus anubis and M.

fascicularis animals housed at the WaNPRC was collected in

heparinized Vacutainer tubes. M. sylvanus were captured from wild

populations in Gibraltar, and blood was collected in EDTA-coated

Vacutainer tubes. Blood was collected by venipuncture when

animals were under sedation (ketamine 10–15 mg/kg) to relieve

pain and suffering. DNA was isolated using a QIAamp DNA

Blood Mini kit (Qiagen) on fresh whole blood. RNA was isolated

using a QIAamp RNA Blood Mini kit (Qiagen) on fresh whole

blood (P. cynocephalus anubis and M. fascicularis) or frozen leukocyte

pellets preserved using RNAlater (Ambion) (M. sylvanus).

PCR and Restriction assay
For the NsiI restriction assay, genomic DNA was amplified using

Platinum PCR Supermix High Fidelity (Invitrogen), with forward

primer MfaT5ex6F (Primer 2; ATC TGA AAC GAA TGC TAG

ACA TG) and reverse primer 3TrmNotI (Primer 4) (ATC TAG

GCG GCC GCT TAA GAG CTT GGT GAG CAC AGA GTC

ATG). PCR products were digested using FastDigest NsiI enzyme

(Fermentas). All products were run on a 1.2% agarose gel and

visualized using ethidium bromide.

To test for the CypA insertion, genomic DNA was PCR

amplified using Platinum PCR Supermix High Fidelity (Invitro-

gen), with forward primer 3UTRF (Primer 3; TGA CTC TGT

GCT CAC CAA GCT CTT G) and reverse primer 3UTRRLong

(Primer 6; TCA CCC TAC TAT GCA ATA AAA CAT TAG

GAC), as described by Wilson et al. [18]. PCR products were run

on a 1% agarose gel.

For RT-PCR, first-strand cDNA was produced using the

Accuscript High Fidelity 1st Strand cDNA Synthesis Kit

(Stratagene), using random hexamers as primers. The cDNA

was then PCR amplified using AccuPrime Pfx Supermix

(Invitrogen), with forward primer XhoITRIM5 (Primer 1; CTA

GAT CTC GAG ATG GCT TCT GGA ATC CTG GTT AAT

GTA AAG) and reverse primers 3TrmNotI (Primer 4; for TRIM5)

or CypARMCSNotI (Primer 5; GTA TAT GCG GCC GCT

TAT TCG AGT TGT CCA CAG TCA G) (for TRIMCyp).

Cloning and Sequencing
PCR products were cloned using a StrataClone Blunt PCR

Cloning Kit (Stratagene). Sequencing was performed by the

University of Washington Pharmaceutics Sequencing Center.

Sequence Analysis
Sequence analysis was performed using Geneious 4.8 [35] and

MEGA 4.0 software [36]. Sequences were aligned for a 1204 bp

genomic region of TRIM5a encompassing exons 7 and 8 and

introns 6 and 7 (amplified using primers 2 and 4). The sequences

were derived from nine M. fascicularis, one M. nigra, one M.

thibetana, one P. hamadryas, and two P. cynocephalus anubis as well as

from one M. mulatta (extracted from chromosome 14 of the rhesus

macaque genome, NC_007871.1), one M. nemestrina

(EU371641.1), and the homologous H. sapiens sequence (extracted

from chromosome 11 of build 37.1 of the human genome,

NT_009327.18) obtained from GenBank. A phylogenetic tree of

this region was generated in Geneious using a neighbor-joining

algorithm with 1000 bootstrap replicates. The human sequence

was used as an outgroup.

MEGA4.0 software was used to detect departures from

neutrality with Tajima’s D statistic [32]. Positions containing gaps

and missing data were deleted.
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Sequences generated in this work were deposited in GenBank

(Accession numbers HM468429- HM468446).
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