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Contributions of dietary miRNAs 
to circulating small RNA profiles 

would have profound implications for 
interpretation of miRNA biomarker 
studies: presumptive disease-specific 
markers might instead indicate responses 
to disease-associated quantitative or 
qualitative dietary alteration. This exam-
ination weighs the evidence for a 2-fold 
hypothesis: first, that ingested biological 
matter contributes directly to the miRNA 
complement of body compartments; and 
second, that these diet-derived exog-
enous miRNAs (or “xenomiRs”) affect 
total miRNA profiles as part of a circu-
lating miRNA homeostasis that is altered 
in many diseases. Homeostasis of high-
density lipoprotein (HDL), a known 
miRNA carrier—provides a model as a 
proposed component of broader miRNA 
homeostasis. Further research into the 
dietary xenomiR hypothesis is needed to 
ensure rigor in the search for truly dis-
ease-specific miRNA biomarkers.

Introduction

Interest in microRNAs has expanded rap-
idly during the past decade as these short, 
single-stranded RNA oligonucleotides, 
once considered a curiosity of the model 
organism C. elegans, have been identified 
as managers of mRNA stability and trans-
lation,1,2 and as biomarkers of disease.3,4 
Presence in non-invasively obtained 
body fluids renders miRNAs particularly 
attractive as biomarkers, while the types 
and provenance of vehicles that protect 
circulating miRNAs from degradation 
may provide insight into disease processes. 
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These vehicles include exosomes and 
microvesicles,5 lipid-protein complexes 
such as high-density lipoproteins (HDL),6 
and protein complexes7,8 similar or iden-
tical to those that contain miRNA inside 
the cell.9 miRNA biomarker studies in 
oncology have greatly outnumbered inves-
tigations of small RNA in all other dis-
eases combined10—and for good reason, 
since the largely clonal nature of many 
cancers simplifies detection of altered 
profiles in this high-priority group of dis-
eases—but miRNA associations have also 
been reported in other conditions, from 
brain and metabolic disorders to infec-
tious diseases.11

It may be premature, however, to con-
clude from existing biomarker studies that 
disease-associated miRNA profile changes 
are necessarily and in their entirety attrib-
utable directly to disease. Differential 
expression of miRNAs could instead 
be due to unrelated or indirect factors  
(Table 1), but analyses of potential con-
founders are not usually included in 
biomarker studies. Perhaps the largest 
pachyderm in the disease biomarker room, 
though, is diet, which may exert 3-fold 
modulation on circulating miRNA profiles:

(1) The indirect influence of dietary 
substances on endogenous miRNA 
production;

(2) The direct entry into the circulat-
ing miRNA population of dietary exog-
enous miRNAs, or “xenomiRs,” many of 
which would be largely or wholly indistin-
guishable, sequence- and function-wise, 
from endogenous miRNAs; and

(3) The indirect influence of dietary 
xenomiRs and their vehicles on known 
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circulation through the gut. Protection is 
achieved by artificial shells for therapeu-
tic siRNAs, but multiple protective means 
are available for food miRNAs, includ-
ing natural lipid vesicles49 and protein 
complexes.38 This process is thought to 
involve transcytosis across the gut epithe-
lium, particularly by M cells of the Peyer’s 
patches. Macrophages and T-cells of the 
gut-associated lymphoid tissue (GALT) 
have been implicated in subsequent dis-
tribution of RNA-containing complexes 
throughout the body,47 and these cells con-
tribute to the miRNA-containing circu-
lating vesicle population.50,51 It is possible 
that there are additional, uncharacterized 
mechanisms for uptake from the GI tract 
of unprotected small RNAs. Although 
unshielded miRNAs are degraded much 
more rapidly in an acidic environment 
than are miRNAs in fresh food, even 
these exposed miRNAs may survive for 
several hours,38 long enough for uptake via 
receptor-mediated endocytosis or, specu-
latively, by uncharacterized transporters. 
(Interestingly, the first miRNA receptor 
was recently described.52)

Direct support for uptake of dietary 
xenomiRs was lacking, however, until a 
recent report that miRNAs from dietary 
plant matter circulate in the blood, enter 
multiple tissues, including the liver, and 
even regulate genes in mammals38 with 
rice-based diets. The authors specifically 
reported that the LDL receptor associ-
ated protein LDLRAP1 contained a plant 
miRNA target site in its 3' untranslated 
region and could be regulated by dietary 
miRNAs. (In the future, further genetic 
analyses will be useful to identify addi-
tional plant miRNA target sites in ani-
mal transcripts.) Several reviews of these 
findings appeared in the popular and 

storage, and drying reduce levels in milk 
products.39)

Infectious diseases provide a second 
broad example of the diet-disease axis. Loss 
of appetite is part of the acute cytokine-
induced “sickness behavior” accompany-
ing innate immune responses.40 Specific 
pathogens may also precipitate chronic 
nutrition-related conditions, e.g., wast-
ing and other nutrition-related conditions 
that preceed or define AIDS.41,42 While 
these conditions may stem from metabolic 
alterations, alimentary intake is usually 
changed as well, and appetite stimulants 
may be necessary for cachexic patients.43 
A recent study of nutrition and HCV-
infected individuals concluded that “(m)
alnutrition occurs early…and progresses 
relentlessly throughout the spectrum of 
HCV disease.”44 Finally, some infectious 
diseases disproportionately afflict indi-
viduals with particular socioeconomic 
backgrounds and attendant diets. Unless 
controls are carefully selected with atten-
tion to nutrition status, diet itself may dis-
tinguish patients from controls.

Dietary miRNA uptake and function 
in animals. Because miRNAs are found in 
animals and plants, and miRNA-like spe-
cies are present in fungi,45 almost all fresh 
foods contain small RNAs that could con-
tribute to the circulating miRNA popula-
tion. Even processed foods—e.g., cooked 
rice, potatoes, cabbage,38 and baby milk 
formula39—contain miRNAs, albeit at 
reduced concentrations. That these miR-
NAs could be delivered to the blood is 
supported by oral delivery of pharmaco-
logical preparations of siRNA.46-48 When 
protected from the acidic and enzymatic 
environment of the digestive tract by lip-
ids, proteins, or polysaccharides, ingested 
small RNA molecules may enter into 

and unknown homeostatic mechanisms 
that maintain the concentration of circu-
lating miRNA-containing vehicles (lipo-
protein particles, exosomes, microvesicles, 
and specific protein complexes) and could 
thus effect changes in the concentration of 
specific miRNAs in response to diet.

The first influence of diet is well estab-
lished. From vitamin A to zinc, nutrients 
affect miRNA production in animals28-30 
and plants.31 This examination will not 
review these studies but will instead focus 
on aspects of diet that distinguish it from 
other potential confounders of disease bio-
marker studies: food itself contains miR-
NAs that, if absorbed, would contribute 
directly to apparent circulating miRNA 
“expression,” and indirectly by affecting 
homeostasis of miRNA vehicles such as 
HDL. Because diet and disease are closely 
linked, these possibilities present wide-
ranging implications for the investigation 
of miRNA disease biomarkers.

The diet-disease axis. The interre-
latedness of disease and diet is evident, 
for example, in cancers, most cases of 
which are associated with one or more of 
the following related, often definition-
ally overlapping, conditions: anorexia, 
malnutrition, weight loss, cachexia, and 
wasting.32-34 Each is usually connected 
with reduced alimentary intake, often in 
step with metabolic changes and negative 
energy balance.35-37 Qualitative dietary 
changes may also accompany cancers, 
especially during advanced disease and 
physical blockages that necessitate enteral 
or parenteral nutrition with highly pro-
cessed product that are less likely than 
fresh food to contain intact miRNAs. 
(Cooking reduces the amounts of mea-
surable miRNA in vegetable foods by 
as much as 100-fold,38 while mixing, 

Table 1. Potentially confounding factors in miRNA disease biomarker studies

Factors influencing miRNA profiles Selected example(s)

Physical activity miRNA profiles in rat12,13 and in human muscle,14 circulating immune cells,15 and extracellular blood fractions16

Age disparity Brain profiles in macaques and humans17

Ethnicity miRNA profiles of cells derived from European-Americans and Nigerians18

Immune activation Endotoxemia,19 acute SIV infection20

Pharmacologic substances Circulating miR-134 during lithium and valproic acid treatment of bipolar disorder21

Drugs of abuse Cocaine,22 heroin23 and alcohol24-26

Cell populations Differing proportions of circulating blood cell types influence circulating miRNA profiles27

Technical artifact Batch effects from separate processing of disease and control samples;97-99 extent of hemolysis100
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needed to identify these xenomiRs and 
their contributions to disease profiles.

When disease results in reduced food 
intake, as is often the case, we might 
exclusively expect a deficit of certain diet-
derived miRNAs. Such a prediction might 
be overly simplistic, however, because it 
assumes that the direct effects of dietary 
miRNAs are the only effects or the pre-
dominant effects. However, miRNA 
profiling studies rarely identify uniform 
downmodulation of circulating miRNA 
concentrations, even with diseases such as 
cancers that can greatly affect food intake. 
This observation leads us to the next part 
of the dietary xenomiR hypothesis, pro-
posing a mechanistically multipartite sys-
tem of circulating miRNA homeostasis 
that is closely related to hunger impulses 
and metabolism.

Indirect effects of diet and xenomiRs 
on circulating miRNA homeostasis—the 
HDL example. A system of circulating 
miRNA homeostasis would include sen-
sors to monitor miRNA concentration 
in the blood and mechanisms of miRNA 
release or uptake to replenish or deplete the 
extracellular pool of miRNAs. However, 
the lipids and proteins that protect extra-
cellular miRNAs from degradation would 
also presumably preclude recognition 
by cell-surface receptors (note, though, 
the recent characterization of TLR8 as 
a miRNA sensor52). Plausibly, miRNA 
homeostasis would involve recognition of 
surface features of the various small vehi-
cles that transport miRNAs. Maintenance 

be xenomiRs of plant and animal origin. 
The authors showed that serum and liver 
plant miRNA concentrations were upreg-
ulated 2-fold or more following a dietary 
switch from processed to fresh food. This 
magnitude of regulation is consistent both 
with functional consequences, as under-
lined by the authors,38,57,58 and with bio-
marker changes that have been reported 
in the literature.59-61 If plant miRNAs—
with plant-specific chemical modifica-
tions and surrounded by proteins foreign 
to the ingesting animal—can enter the 
bloodstream, it is probable that dietary 
animal miRNAs would follow a similar 
path. Indeed, artificial mammalian miR-
150 was delivered to the blood by the oral 
route.62 Albeit currently without experi-
mental support, animal miRNAs could 
well undergo preferential uptake due to 
the “familiar” nature of their sequence and 
packaging. At the same time, sequence 
similarity greatly complicates analyti-
cal separation of xenomiRs from endog-
enous animal miRNAs. While the human 
genome does not contain sequences 
homologous to abundant plant miRNAs, 
abundant animal miRNAs are often 
100% identical from fish to ruminants to 
humans. In existing biomarker reports, 
then, xenomiRs that are present have 
been conflated with endogenous miR-
NAs, the apparent concentration of which 
might thus differ based on diet quantity 
and quality. Experiments with carefully 
controlled diet or with food sources con-
taining in vivo labeled miRNAs will be 

scientific press,53-55 often in the context 
of “cross-kingdom regulation” and specu-
lated implications for herbal medicine and 
genetic engineering. It is important to 
emphasize that the data from this study 
do not suggest that all ingested miRNAs 
end up in the bloodstream in potentially 
functional quantities. While the investiga-
tors found 25 plant miRNAs by sequenc-
ing pools of human serum, only four 
were identified in all pools. Also, absolute 
numbers of specific miRNA sequence 
reads as well as relative proportions were 
quite variable (Table 2), even for the con-
sistently detected miR156 and miR168a, 
which are among the most conserved 
plant miRNAs and the most abundant 
in nutritionally useful parts of plants and 
in pollen.56 No low-abundance, species-
specific miRNAs were reported. While it 
is thus unlikely that some of the specula-
tive claims of Zhang, et al.’s reviewers are 
plausible—for example, that miRNAs 
specific to Chinese folk remedies contrib-
ute to their effects,53 or that engineering 
of plants could expose humans to danger-
ous miRNAs53—the central conclusion 
of Zhang et al., stands: abundant dietary 
xenomiRs enter the mammalian blood-
stream and have functional consequences 
in the liver.38

Despite the noted limitations, these 
findings raise important questions for 
biomarker research that have not yet been 
carefully reviewed, first and foremost 
the possibility that some proportion of 
miRNA biomarkers in disease studies may 

Table 2. Plant miRNAs detected in human serum (adapted from Zhang, et al.38)

miRNA
Detected in # of pools 

(out of 10)
# sequence reads/

sample (range)
# sequence reads/
sample (median)

% of total plant reads 
per sample

% of total miRNA reads 
per sample

miR160a 5 (3–42) 8

miR162a 5 (1–18) 9

miR171c 5 (2–131) 8

miR169b 6 (1–1777) 89.5

miR390a 6 (1–63) 7

miR156 g 8 (3–87) 12

miR157a 8 (27–6254) 356

miR164a 9 (3–2126) 79

miR172a 9 (1–1513) 294

miR166a 10 (3–3397) 2905

miR167a 10 (3–761) 483.5

miR156a 10 (846–12363) 94.5 24–95 0.2–1.2

miR168a 10 (12–27758) 2852 0.5–54 0.001–2.8



©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te

1150	 RNA Biology	 Volume 9 Issue 9

While miRNA-mediated modulation of 
cholesterol homeostasis would not strictly 
be required to establish HDL as a regu-
lated carrier of miRNA, the existence of 
these mechanisms supports the hypoth-
esis that miRNA homeostasis is an evo-
lutionarily conserved corollary of HDL 
homeostasis.

Cholesterol-containing lipoprotein parti-
cles carry miRNA. The involvement of the 
ceramide pathway in miRNA export from 
cells79 and the finding that some exported 
particles were cholesterol rich and exo-
some or sub-exosome-sized63,80 prompted 
an investigation of lipoproteins as poten-
tial miRNA carriers.6 In this study by 
the Remaley group, HDL particles were 
confirmed as miRNA vehicles, and they 
were found to harbor a unique miRNA 
profile: specific miRNAs, for example 
miR-223, were enriched in HDL RNA in 
comparison with RNA from the cells of 
origin (see Fig. 1).6 Moreover, RNA-free 
reconstituted HDL particles were capa-
ble of miRNA incorporation.6,81 miR-
NAs were also discovered in low-density 

miRNAs regulate the machinery of cho-
lesterol homeostasis. Recent advances have 
highlighted the role of miRNA in cho-
lesterol homeostasis (Fig. 1). miR-3364,65 
and miR-2666 family members, as well 
as miRs-106b,67 -122,68,69 -335,70 -613,71 
and -758,72 are reported to modulate gov-
ernors of cholesterol efflux, uptake, syn-
thesis, and HDL metabolism.73 miRNA 
precursor transcription, in turn, is inhib-
ited by cholesterol metabolism-related 
liver X receptors (LXRs).66 Inhibition 
of miR-33 allows cholesterol efflux to 
increase, along with HDL particle con-
centrations, and miR-33 targets include 
members of additional metabolic path-
ways74 (note, as well, further evidence of 
reciprocal influence of miRNA networks 
and metabolism.75,76) In a mouse model of 
atherosclerosis in which both copies of the 
LDL receptor gene are knocked out, miR-
33 inhibition prompted increases in HDL 
levels, shrinkage of sclerotic plaques, 
and decreased inflammatory signaling.77 
Higher HDL and concomitantly reduced 
VLDL were also observed in primates.78 

of relatively constant levels of miRNA in 
circulation would then depend on homeo-
stasis of miRNA vehicles. If inclusion of 
miRNA in these systems has evolution-
ary consequences and is not merely a 
bystander effect, each such system would 
likely involve:

•	 Feedback controls linking miR-
NAs and elements of vehicle-specific regu-
latory pathways

•	 Incorporation of specific miR-
NAs into specific vehicles

•	 A mechanism for sensing con-
centration of extracellular miRNA vehi-
cles and release or uptake of the vehicles;

•	 Changes in appetite and/or 
metabolism that are direct or bystander 
effects of sensing.

Importantly, although not yet assem-
bled into a whole from the standpoint of 
miRNA, it appears that each individual 
piece has already been characterized for 
at least one known extracellular miRNA 
vehicle: lipoprotein particles. We will 
now review this evidence, with a focus on 
HDL.

Figure 1. Cholesterol, HDL, and miRNAs. Mutual relationships of miRNAs and cholesterol transport components in the extracellular space, cytosol, 
lysosome, and nucleus (not to scale). Inhibitory and stimulatory effects are depicted in red and green, respectively. The mechanism(s) that impart 
specificity to miRNA HDL loading are unknown. Because of seemingly conflicting results concerning the effects of neutral sphyngomyelinase 2 on 
miRNA export,6,63 nSMase2 is not depicted here.
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mechanisms of dietary miRNA influence 
on homeostasis of circulating miRNA 
profiles. In the most complete model, 
HDL, a well characterized, diet- and 
metabolism-related homeostatic system 
(cholesterol transport) is regulated by 
miRNA and includes carriers of miRNAs 
that, when sensed by cellular receptors 
(e.g., SCARB1), initiate canonical intra-
cellular signaling pathways. Depending 
on the level and type of signal, this 
may result in uptake of vehicular small 
RNA contents into recipient cells as a 
non-canonical form of signaling—with 
demonstrated functional consequences 
and partial depletion of the extracel-
lular miRNA population—or provoke 
release of additional miRNA vehicles 
and supplementation of specific portions 
of the circulating miRNA complement. 
Furthermore, the HDL system is often 
deranged in disease. With differential 
miRNA concentration in HDL vs. cell 
of origin, disease-associated dietary influ-
ence on miRNA profiles could involve 
apparent up- or downregulation of spe-
cific miRNAs, changes that may be only 
ancillary to pathology. Such miRNAs 
would not be true disease biomarkers, 
and manipulating them therapeutically 
would likely be ineffective.

The findings and syntheses reported in 
this Point-of-View suggest research direc-
tions and precautions that should be taken 
in ongoing and future miRNA biomarker 
research (Table 3).

It is hoped that further development 
and research of the xenomiR hypothesis 
will help to distinguish between directly 
disease-associated biomarkers and those 
that result from altered diet quality or 
quantity. This outcome will allow inves-
tigators to focus on specific biomarkers 
that are also most promising as targets of 
future small RNA-based therapeutics.96
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been used to deliver therapeutic miRNAs 
successfully in a mouse model of hepato-
cellular carcinoma.88

Changes in appetite and/or metabo-
lism are associated with HDL sensing. If 
homeostases of miRNA and circulat-
ing particles are linked and dietary xen-
omiRs contribute to the extracellular 
miRNA pool, influence of miRNA vehi-
cle concentration on nutrition intake (i.e., 
through appetite) would be expected. In 
cholesterol homeostasis, there is already 
ample evidence for this. In health, appe-
tite is governed largely by hypothalamic 
responses to leptin and other hormones, 
in turn influenced by energy balance and 
tied to insulin signaling and cholesterol 
homeostasis. Consider two examples: 
exercise and treatment with atypical anti-
psychotic drugs. Endurance training has 
well-established effects on lipid profiles, 
decreasing LDL and increasing HDL;89 
exercise also suppresses appetite. However, 
the directionality of this relationship is 
often unclear. Weight gain and low HDL 
are also associated with atypical antipsy-
chotic drugs (AAPDs),90 but do appetite 
changes, caused by blockade of hypo-
thalamic receptors (e.g., histamine H1 
receptor), lead to obesity and thus induce 
dyslipidemias? Or, rather, do AAPDs 
affect HDL, precipitating appetite altera-
tion and obesity by interfering with insu-
lin resistance? Cases of either scenario 
may be found, and additional factors may 
contribute.90 Perhaps the soundest con-
clusion is to assume a normal reciprocity 
between HDL concentration (or a state it 
represents) and appetite. As for HDL, do 
HDL levels directly affect appetite, or are 
they simply one of many manifestations of 
metabolic states that also govern produc-
tion of hunger hormones? Much remains 
to be learned about the reciprocal rela-
tionships of diet, metabolism, and appe-
tite, but the centrality of blood sensing by 
the brain is clear, as recently illustrated by 
the finding that hypothalamus tanycytes, 
which lie outside the blood-brain barrier 
in the median eminence, support neuro-
genesis and respond to high fat intake.91

Conclusions and Future Studies

Taken together, the studies reviewed 
here provide the pieces necessary to trace 

lipoproteins, although the miRNA profile 
of LDL more closely resembled that of 
exosomes.6

Based upon these studies, it is entirely 
possible that diet- or disease-related changes 
in HDL contents or concentration could 
affect overall circulating miRNA profiles 
sufficiently to confound biomarker stud-
ies. When recombinant HDL were recov-
ered from the blood of mice that received 
high-fat or regular diets, concentrations of 
specific miRNAs—including commonly 
disease-associated miRNAs such as miRs-
16, -92, -223, and members of the miR-
27, -29, and -30 families—differed by as 
much as 64-fold or more (Fig. S1), while 
the human genetic disease hypercholester-
olemia was associated with miRNA fold 
changes in the hundreds to thousands 
range.6 It is not uncommon for proposed 
circulating miRNA biomarkers of cancer 
(for example, esophageal squamous cell 
carcinoma) to be differentially regulated 
by 3-fold or less in cancer patients vs. con-
trols, or in before-and-after assessments 
of resection or chemotherapy.59-61 Thus, 
although further studies are needed to 
analyze rigorously and in parallel HDL/
LDL concentrations, the miRNA content 
of these lipoproteins, and overall circulat-
ing miRNA concentrations in health and 
specific diseases, there is ample reason to 
suspect that some proposed miRNA bio-
markers could be significantly affected by 
HDL miRNAs.

Cellular receptors govern sensing, uptake, 
and release of miRNA-containing HDL. 
Circulating HDL particles—and their 
cargo of enriched miRNAs—are sensed 
and taken up by liver cells via scavenger 
receptor SCARB1. Although most abun-
dant in liver, SCARB1 is expressed in 
other tissues,82,83 suggesting that uptake 
of HDL miRNA throughout the body 
involves the HDL-SCARB1 interaction. 
It also appears that SCARB1 regulates 
release of HDL. SCARB1 initiates intra-
cellular signaling84 through a scaffold 
protein, PDZK1.85 Both SCARB1 and 
PDZK1 knockout mice display increased 
cholesterol efflux and production of abnor-
mal HDL particles,86,87 along with altered 
endocrine, GI, and cardiac physiology,85 
supporting involvement of this pathway in 
both uptake and release of HDL miRNA. 
Interestingly, cholesterol conjugation has 
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