
ignore these results for future treatment targets. Considering this, we
believe that it is too premature to implement the LUCID strategy in
daily clinical practice. However, a subsequent trail studying the effect
of a liberal approach on mortality in patients with DM2 patients is
justified, taking admission HbA1c into consideration when choosing
the glucose target and designing the trial. Probably there is not a one-
size-fits-all approach, and a personalized approach may be the way
forward also in patients with DM2.�
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Deep Learning–based Classification of Fibrotic Lung Disease:
Can Computer Vision See the Future?

Despite existing diagnostic criteria and guidelines for identifying and
classifying fibrotic lung disease such as idiopathic pulmonary fibrosis
(IPF) (1, 2), their diagnosis can be challenging. Current guidelines

emphasize the role of high-resolution computed tomography
(HRCT), and place particular importance on identifying the presence
of underling usual interstitial pneumonia (UIP), which suggests a
diagnosis of IPF (1). However, this approach is binary: it requires
patients be classified based on the predominant pattern on HRCT,
while in practice patients may have some evidence of UIP features but
a different predominant disease pattern (1, 2). Clinically, current UIP
diagnosis also relies on subjective readings of the HRCT that may
vary from radiologist to radiologist (3). These issues are of particular
concern because of the importance of UIP in identifying patients
likely to have faster disease progression and worse prognosis (4–7).
Thus, missed or inaccurate diagnosis has the potential to have
significant clinical impact, and there has been great interest in
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developing tools to improve the detection and classification of UIP on
HRCT (3).

Deep learning is a form of machine learning that utilizes multi-
layered, or deep, neural networks to learn from complex data such as
imaging. Deep learning based tools have proliferated in radiologic
research over the past decade and have shown great promise in the
analysis of HRCTs for diseases ranging from lung cancer to
IPF (8–10). One of the strengths of deep learning algorithms is that
they may capture patterns not seen or ignored by the human eye,
potentially improving disease classification and quantification (11).

In this issue of the Journal, Walsh and colleagues (pp. 883–891)
report the results of their study using the Systematic Objective
Fibrotic Imaging Analysis Algorithm (SOFIA), a previously
developed and validated deep convolutional neural network tool, to
identify UIP in 516 patients from the Australian IPF registry (12, 13).
For each participant’s HRCT, SOFIA generates 500 unique, 4-slice
image montages. Then, for each montage, the device calculates the
probabilities for each of 4 categories: definite UIP, probability UIP,
indeterminate UIP, and not UIP. These probabilities (which sum to 1.0)
are then averaged, and the device provides the patient level
probability for each category (13). The investigators then used Cox
proportional hazards and logistic regression models to determine
the relationships between SOFIA UIP probabilities with
transplant-free survival and with 12-month disease progression,
respectively. Multiple forms of analysis were performed including
using predicted probabilities as continuous measures as well as
grouped into categories based on the Prospective Investigation of
Pulmonary Embolism Diagnosis (PIOPED) approach. Univariate
analyses, bivariable analyses that included both SOFIA based
information and expert radiologist assessment, and multivariable
models that were additionally adjusted for age, gender, radiologist-
defined computed tomography disease severity, and other clinical
measures of disease severity, were all performed as well.

In general, the authors found that not only did SOFIAUIP
probabilities, both as a continuous variable and into grouped into
PIOPED categories, predict transplant free survival and disease
progression in univariate analyses, but also when evaluated using
bivariable analyses that included radiologist defined disease extent. In
fact, in those bivariate analyses only the SOFIA based measures were
associated with adverse outcomes, not the radiologist defined disease
extent. Similar findings were present in multivariable analyses
adjusted for total disease extent and clinical variable associated with
adverse outcomes in fibrotic lung disease like age and lung function.
Importantly, the predictive utility of SOFIAUIP was maintained in
subgroup analyses of patients with UIP on HRCT or histopathology
versus and in those with other fibrotic patterns.

A particularly interesting finding of this study was the predictive
probability of SOFIA in the subset of patients with indeterminate UIP
on HRCT. Using the PIOPED based binning strategy, SOFIA
reclassified over a quarter of HRCTs classified as indeterminate UIP
by expert radiologists as intermediate, high, or pathognomonic
probability of UIP, and this reclassification predicted transplant-free
survival in the multivariable model, with a hazard ratio of 1.73 (95%
confidence interval, 1.40–2.14) in the indeterminate UIP subgroup.
The reclassification of a large proportion of indeterminate UIP HRCT
cases is perhaps unsurprising when considering that the interobserver
agreement between two radiologists for the ATS/ERS/JRS/ALAT
(American Thoracic Society, European Respiratory Society, Japanese
Respiratory Society, and Latin American Thoracic Society) criteria is

only moderate, even among expert thoracic radiologists with over ten
years of experience (3). Still, these results highlight the potential utility
of a deep learning model to identify subtle fibrosis patterns and
improve clinical diagnosis, especially in indeterminate cases that are
more challenging to determine.

Despite this study’s many strengths, it has several limitations as
well. The number of analyses and comparisons raises the question of
multiple testing, and 34.6% of the cohort was receiving antifibrotic
therapy, potentially affecting the analysis of transplant-free survival,
as patients with more severe disease are more likely to be receiving
therapy. Still, the biggest limitations of this work are not unique to
this specific study but related to the field of artificial intelligence in
medicine more generally. For example, when there are multiple
possible algorithms for diagnosing or classifying a disease such as
pulmonary fibrosis available, how do we know which to choose?
And once one is chosen, who will fund its certification as software as
a medical device with regulators, especially when it is unclear who
would pay for its clinical use? Finally, who is responsible if the
algorithm is wrong andmisdiagnoses a patient as having a disease
when they do not, or vice versa? Before a deep learning model like
SOFIA is brought to the clinical setting, these questions and
others need answering. In the meantime, work such as this by
Walsh and colleagues demonstrates the potential power of deep
learning in medicine and the need to answer these difficult questions
so that patients can benefit from the insight artificial intelligence can
provide.�
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The Value of Chest Radiography in Tuberculosis Preventive
Treatment Screening in Children and Adolescents

Despite existing guidelines and strong commitments to increase
tuberculosis preventive treatment (TPT) uptake, theWorld Health
Organization (WHO) estimates that less than one-third of young
children (,5 yr) who had household contact with an infectious
tuberculosis (TB) case received TPT in 2020 (1). Increased TB
transmission resulting from COVID-19 health system disruption
accentuates the threat posed to vulnerable young children and people
living with HIV, who are key TPT target groups. Recently, WHO
extended TPT recommendations to HIV-uninfected older children
and adolescents (5–19 yr) who are household TB contacts, and
coverage in this group is currently estimated to be less than 5%
globally (1, 2).

Barriers to implementation of child TB contact screening and
management include the need for pragmatic screening options to
deliver community-based TPT (3). Chest radiography has a critical
role, both to support a clinical diagnosis of TB and to rule out active
disease before initiating TPT; but access to chest radiography is a
major hurdle in resource-limited settings (4). It has been
demonstrated that symptom-based TB contract screening is safe,
and that chest radiography adds little value in asymptomatic young
children who receive TPT (5–7). However, despite the available
evidence, many clinicians remain uncomfortable providing TPT
without a chest radiograph to rule out TB disease, given that chest
radiography is routinely performed before TPT commencement in
settings without resource constraints.

The value of chest radiography also requires further clarification
in older children and adolescents, since theWHO now recommends
that older child and adolescent TB contacts with evidence of infection

(or on the basis of known exposure to a bacteriologically confirmed
infectious TB case, if a test for infection is unavailable) should receive
TPT once TB disease has been excluded (2). The role of chest
radiography in this older age group requires better evidence as this is
a group that, compared with young child contacts, are more likely to
have coprevalent subclinical bacteriologically positive TB detectable
by chest radiography (8). Therefore, they are at greater risk of
suboptimal outcomes and drug resistance acquisition if not
appropriately treated.

Assessing the Value of Chest Radiograpy for
Tuberculosis Contact Screening

In this issue of the Journal, Huang and colleagues (pp. 892–900)
evaluated the diagnostic and prognostic value of chest radiography in
children exposed to TB in Peru and measured the efficacy of
isoniazid preventive therapy (IPT) in those with radiographic
abnormalities (9). They enrolled 4,468 children with household
exposure to bacteriologically confirmed TB who had symptom
assessment and chest radiography done. The majority (56%) of
contacts were 6 years of age or older, and only 0.1% were HIV
positive. Chest radiography was limited to an anteroposterior film,
and these were interpreted by experienced readers blinded to the
clinical presentation. Those without coprevalent TB (at baseline) were
followed for 1 year to assess disease progression (incident TB) risk as
well as the protective efficacy of IPT.

Asymptomatic children with abnormal chest radiographs were
found to be 25 times more likely to have coprevalent TB and 26 times
more likely to be diagnosed with incident TB during follow-up than
asymptomatic children with normal chest films (9). The authors
concluded that chest radiography is strongly supported as a routine
screening tool for the evaluation of child TB contacts, where this is
readily available, given that even atypical radiographic findings in
asymptomatic children may indicate incipient or subclinical disease.
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