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Abstract: The one-step vacuum carbonization synthesis of a platinum nano-catalyst embedded in
a microporous heterocarbon (Pt@cPIM) is demonstrated. A nitrogen-rich polymer of an intrinsic
microporosity (PIM) precursor is impregnated with PtCl62− to give (after vacuum carbonization at
700 ◦C) a nitrogen-containing heterocarbon with embedded Pt nanoparticles of typically 1–4 nm
diameter (with some particles up to 20 nm diameter). The Brunauer-Emmett-Teller (BET) surface area
of this hybrid material is 518 m2 g−1 (with a cumulative pore volume of 1.1 cm3 g−1) consistent with
the surface area of the corresponding platinum-free heterocarbon. In electrochemical experiments,
the heterocarbon-embedded nano-platinum is observed as reactive towards hydrogen oxidation,
but essentially non-reactive towards bigger molecules during methanol oxidation or during oxygen
reduction. Therefore, oxygen reduction under electrochemical conditions is suggested to occur mainly
via a 2-electron pathway on the outer carbon shell to give H2O2. Kinetic selectivity is confirmed in
exploratory catalysis experiments in the presence of H2 gas (which is oxidized on Pt) and O2 gas
(which is reduced on the heterocarbon surface) to result in the direct formation of H2O2.

Keywords: heterocarbon; microporosity; voltammetry; peroxide; bifunctional catalysis

1. Introduction

Nanostructured and microporous composite materials offer new opportunities in catalysis and in
electrocatalysis [1]. Electronic effects at the nanoscale affect surface reactivity [2] and can be combined
with transport effects that occur in microporous channels and pores in host materials [3]. Recently,
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it has been shown that hydrophobic pore structures can lead to triphasic reaction conditions (for
example in polymers of intrinsic microporosity or PIMs) and that these can also affect electrocatalyst
reactivity [4]. In electrocatalysis particularly, carbon-based nano-materials are important, as illustrated
by recently developed hetero-carbon materials based on nano-dots [5] and carbon nano-wires or
tubes [6]. Access to novel carbon architectures can be achieved, for example, via microporous
polymer precursors, which allow functionality such as fluorescence to be retained in the carbon [7]
or molecular-scale microporosity to be preserved after gentle carbonization of molecularly rigid
polymer precursors [8]. Polymers of intrinsic microporosity provide such molecularly rigid and highly
temperature-stable precursor materials that retain porosity and morphology during carbonization [9].
This characteristic can be exploited in the preparation of new microporous composite materials
for catalysis.

Polymers of intrinsic microporosity (PIMs) have been developed [10,11] as a new class
of molecularly rigid materials with applications in gas capture [12] and separation [13–15],
electrochemistry [16], and in membrane technologies [17]. The rigid internal channel structure provides
control over interactions with guest molecules/particles embedded within the intrinsic micropores
with typical pore sizes in the 1–2 nm diameter range [18]. In this range of pore sizes, exclusion effects
may occur for some bigger molecules and mobility/diffusion effects may be linked to pore diameter
and structure. Higher mobility can be achieved for smaller guest molecules such as H2. Based on their
special properties, new applications of PIMs have been proposed. Recently, work has been reported
focusing in areas such as selective battery membranes [19], fuel cell catalyst corrosion protection [20],
enzymeless glucose oxidation [21], switchable membranes [22], triphasic electrocatalysis [23], and for
ionic rectification devices [24].

The molecularly rigid microporous structure of PIMs causes interesting chemical behavior,
for example imparting chemical stability under high-temperature thermolysis conditions [8].
Thermolysis of metal-infused PIMs under high-temperature conditions in air has been shown to
yield for example nano-structured oxide materials [25]. Under vacuum carbonization conditions the
backbone of the PIM material is believed to stay intact (for example for the PIM-EA-TB material [9])
even under conditions of partial carbonization to electrically conducting structures. The heteroatoms
(e.g., here nitrogen) can be retained to give heterocarbon materials with high microporosity and with
electrical conductivity [8]. Many of the recent studies on applications of PIMs in electrochemistry
were based on PIM-EA-TB. The naming of PIM-EA-TB is based on the synthesis route, where an
ethanoanthracene “EA” unit is coupled via Tröger Base “TB” coupling [26]. In this report, a similar
material, PIM-EA-TB-H2, is employed in which two methyl substituents at bridgehead positions have
been replaced by hydrogen (see molecular structure in Figure 1).
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The vacuum carbonization of PIM materials has been shown to provide novel microporous
heterocarbon materials. For similar types of materials, there have already been suggestions for
applications in gas separation [27] and in water purification membranes [28]. The electrochemical
charging of the microporous carbonized structures has been shown to yield a high double layer
capacitance but also pH dependent capacitance phenomena [9]. Two previous reports have indicated
that pre-loading PIM-EA-TB with platinum [29] or with palladium [30] can lead to high surface area
embedded catalyst materials with active metal nano-particles embedded in the microporous carbon
host. A particular benefit arises from the fact that PIMs tend to not contaminate catalyst surfaces
during carbonization and therefore additional catalyst activation treatments are not essential. Interest
in novel carbon hosts [31] and porous carbon—platinum catalyst composites is strong, for example in
fuel cell catalyst development [32,33].

In this report, hexachloroplatinic acid is adsorbed into PIM-EA-TB-H2 to give a precursor material
that is then vacuum carbonized (at 700 ◦C) to a novel catalyst hybrid material based on platinum
nanoparticles in a microporous carbon. Both the degree of microporosity (controlling gas and charge
diffusion) and the electrical conductivity of the material (allowing electron flow from inside to outside
of catalyst particles) are shown to be important in the reactivity of the new host-guest catalyst.
Electrochemical characterization suggests that only molecular hydrogen (H2) diffuses fast enough to
reach the embedded catalyst to be oxidized. In exploratory catalysis experiments without external
potential control, in the presence of a mixture of hydrogen and oxygen, hydrogen is oxidized to protons
within the catalyst micropores, whereas the bulkier oxygen is reduced externally to give hydrogen
peroxide in good yield.

2. Experimental

2.1. Materials and Reagents

All solutions were prepared with deionized water of resistivity not less than 18.2 MΩ cm resistivity
taken from a Thermo Scientific water purification unit (ELGA). Methanol, isopropanol, perchloric
acid (70%), phosphoric acid (85%), Nafion 117 solution (5 wt %), sodium dihydrogen phosphate (99%)
were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used without further purification.
Hexachloroplatinic acid (39.89%) obtained from Johnson Matthey Ltd. (London, UK) was used without
purification. Laboratory grade (Pureshield) hydrogen gas and oxygen gas cylinders of were obtained
from BOC Ltd. Microporous polymer of intrinsic microporosity PIM-EA-TB-H2 was synthesized
following the literature recipe [26,34].

2.2. Instrumentation

Carbonization was performed in a quartz tube linked to a vacuum pump (oil) in a TSH12 tubular
furnace (Elite Thermal System Ltd., Market Harborough, UK). Carbonized samples were characterized
by transmission electron microscopy (TEM) on a Joel JEM-2100 Plus TEM system with PED (Preccesion
Electron Diffraction). Porosity analysis was performed with samples of 20 mg, which were degassed
for six h at 120 ◦C prior to analysis. Analysis was carried with N2 at 77 K on a Micrometrics 3Flex
with P0 measured continuously. Free space analysis with He was measured post-analysis. Recorded
80-point adsorption isotherm was analyzed with density functional theory (DFT) method (N2 at
77 K, cylindrical pore shape, NLDFT equilibrium model). Carbon monoxide (CO) chemisorption
measurements were performed using a Quantachrome ChemBET TPR/TPD chemisorption analyzer
(Quantachrome Instruments, Boynton Beach, FL, USA) fitted with a TCD and 70 µL injection loop.
Prior to chemisorption of CO, samples were pretreated (200 ◦C, 2 h) in a flow of H2 (30 mL min−1 STP).
Platinum dispersion was calculated from total CO uptake assuming a 1:1 stoichiometry of adsorbed
CO: surface Pt atoms [35]. Elemental analysis (obtained by Butterworth Laboratories Ltd., London,
UK) suggests for Pt@cPIM Pt 26% C 55.07% H 1.10% N 4.75%, which compares to the previously
reported cPIM C 83.19% H 2.46% N 5.67% [9].
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Electrochemical characterization was performed with either an Ivium Compactstat potentiostat or
a µAutolab type III potentiostat-galvanostat in a three-electrode configuration and in a conventional
glass cell. A platinum wire was used as the counter electrode, KCl-saturated calomel (saturated
calomel electrode, SCE, Radiometer) was used as the reference electrode, and a catalyst modified 3 mm
diameter glassy carbon disc electrode (GC, BASi) was used as the working electrode.

2.3. Catalyst and Electrode Preparation

Powdered PIM-EA-TB-H2 (21 mg) was first impregnated with platinum by immersion into an
excess (10 mL) of 10 mM hexachloroplatinic acid solution in methanol. The sample was allowed to
soak in the solution for 24 h. The sample was then centrifuged (8000 rpm, 15 min), decanted and
washed with 10 mL of water. The washing step was repeated and then the yellow-colored polymer
sample was left to dry at ambient temperature and pressure for 24 h. Carbonization was performed at
700 ◦C for 3 h in a custom-made evacuated quartz tube heated in a tubular furnace (in an oil pump
vacuum of approximately 4 mbar). After cooling down an air-stable black powder is obtained.

Catalyst ink was prepared with 2 mg of the carbonized powder material, which was homogenized
by grinding (manually with mortar and pestle) together with 100 µL of Nafion 117 solution (5 wt %),
then dispersed in 1 mL of isopropanol and sonicated for 15 min until fully homogeneous. A small
volume (between 5–15 µL, as required) was drop-casted onto the 3 mm glassy carbon disk electrode
and allowed to ambiently dry before electrochemical analysis.

2.4. Catalyst Testing

Catalysts were tested for their direct hydrogen peroxide synthesis activity using a stainless-steel
autoclave (Parr). The 100 mL autoclave was fitted with a Teflon liner—nominal volume 66 mL. In a
typical synthesis test, the autoclave was charged with catalyst (0.01 g), water (2.9 g) and methanol
(5.6 g), then purged with 5% H2/CO2 three times before being filled with 5% H2/CO2 (29 bar) then
25% O2/CO2 (11 bar). The autoclave was chilled to 2 ◦C before stirring at 1200 rpm for 30 min.
After completion of the reaction, H2O2 formation is detected quantitatively.

3. Results and Discussion

3.1. Properties of Pt@cPIM I.: Structure and Porosity

Successful impregnation of polymer by hexachloroplatinate precursor and formation of platinum
nanoparticles during carbonization is confirmed by comparison of transmission electron microscopy
(TEM (Transmission Electron Microscopy)) images of carbonized polymer PIM-EA-TB-H2 without
platinum (see Figure 2a) and the new Pt@cPIM catalyst material (see Figure 2b). Particle size
distribution data for platinum nanoparticles (see Figure 2d) show that the majority of particles falls
into a 1–4 nm diameter size range with some bigger particles up to 20 nm. High magnification images
reveal high crystallinity of platinum nanoparticles with clear presence of crystal lattice planes (see
Figure 2c) consistent with platinum metal nanoparticles.

Electron diffraction data (Figure 2e) confirm the presence of crystalline platinum nano-particles.
Diffraction rings typical for platinum face-centered cubic phase are observed. The thermolysis of
PIM-EA-TB-H2 without metal inclusions was reported recently [9] to give a similar material, although
without platinum inclusion. Thermogravimetric data suggested that even at temperatures up to
700 ◦C the weight loss was limited to about 26%. Both Raman spectra and electrochemical properties
suggested that an electrically conducting sp2-carbon-rich material was formed. The nitrogen gas
adsorption isotherm was reported indicative of a loss of Brunauer-Emmett-Teller (BET) surface area
from 846 m2 g−1 for pure PIM-EA-TB-H2 to 425 m2 g−1 for the carbonized PIM-EA-TB-H2 (cPIM).
However, the cumulative pore volume for the range from 1 nm to 5 nm remained similar before and
after carbonization.
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Figure 2. Transmission electron microscopy images for (a) carbonized hexachloroplatinate loaded
polymer of intrinsic microporosity (PIM-EA-TB-H2), (b) carbonized PIM-EA-TB-H2 with embedded
nano-platinum, (c) high magnification micrograph showing platinum crystal lattice planes, (d) particle
size distribution analysis, and (e) electron diffractogram with characteristic hkl reflections for platinum
face-centered cubic phase.

Gas adsorption and porosity characterization were performed for Pt@cPIM based on the nitrogen
adsorption isotherm at 77 K (see Figure 3a). Data indicate at least partial retention of original
microporous polymer structure in the carbonized Pt@cPIM catalyst material. This observation agrees
with previous reports regarding vacuum carbonization of PIM-EA-TB at 500 ◦C [8]. The calculated
BET (Brunauer-Emmet-Teller) surface area of 518 m2 g−1 (Figure 3b) is lower than the 846 m2 g−1

reported for the pure PIM-EA-TB-H2 polymer and relatively close to the 425 m2 g−1 reported recently
for the carbonized polymer without platinum [9]. The data imply that vacuum carbonization did
not lead to a significant loss of small micropores. Impregnation of the polymer with the platinum
precursor led to the formation of platinum nanoparticles without strongly affecting the properties of
the microporous host carbon. Data from elemental analysis for Pt@cPIM (Pt 26% C 55.07% H 1.10% N
4.75%) confirm that nitrogen has been retained to an extent similar to that for the previously reported
cPIM C 83.19% H 2.46% N 5.67% [9]. These backbone-incorporated nitrogen functionalities have been
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shown to be associated with protonation and pH-dependent variation in capacitance when immersed
in aqueous solution [9].
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Figure 3. BET (77 K) nitrogen adsorption isotherm results for platinum nano-catalyst embedded in a
microporous heterocarbon (Pt@cPIM): (a) N2 adsorption isotherm; (b) BET analysis plot; (c) cumulative
pore volume; (d) pore width distribution (NLDFT (Non-Localised Density Functional Theory))
equilibrium for cylindrical pore model).

3.2. Properties of Pt@cPIM II.: Electrochemical Characterization

Electrochemical characterization was performed with 3 mm diameter glassy carbon working
electrode, coated with a volume (typically 5–15 µL) of ink (see experimental) applied by drop-casting.
The electrochemical activity of the nano-platinum embedded in the carbonized polymer is evident
when Pt@cPIM voltammograms are compared with a voltammogram recorded in aqueous 0.1 M
HClO4 for the bare glassy carbon electrode (see Figure 4a). A substantial capacitive current component
can be attributed to the microporous carbon and the distinct proton reduction and hydrogen oxidation
response at −0.3 V vs. SCE clearly demonstrates catalytic activity.

Identification of characteristic hydrogen underpotential adsorption peaks [36] was not possible
in acidic aqueous solution due to a high charging current generated by the capacitive nature of
the cPIM-electrolyte interface. The presence of excess protons is believed to increase the double
layer capacitance [9]. Therefore, the determination of the electrochemically active surface area
for platinum (ESA) from the charge required to adsorb a hydrogen monolayer was estimated
for an electrode immersed in 10 mM phosphate buffer solution at pH 7, where the hydrogen
underpotential adsorption was more defined (Figure 4b) and the capacitive charging current was
lower. Estimation of electrochemically active surface area with ESA = QH

210 µC cm−2 (where QH is the

charge required to remove hydrogen monolayer [37]) gave a specific ESA of 5.6 m2 g−1
, which has

to be regarded as a rough estimate. Additional experiments were performed employing carbon
monoxide adsorption/desorption measurement (see experimental). In this case, a value of the platinum
surface area of 2.15 m2 g−1 was obtained in reasonable agreement with the electrochemical surface
area estimate.
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Figure 4. Cyclic voltammograms (3rd cycle, Ar saturated, scan rate 10 mV s−1) at Pt@cPIM immobilized
onto a 3 mm diameter glassy carbon electrode immersed into (a) 0.1 M HClO4 solution and (b) 10 mM
phosphate buffer pH 7 solution with highlighted hydrogen electrochemical underpotential adsorption
region (grey).

Hydrogen Oxidation Reaction (HOR). Hydrogen evolution [38–40] and hydrogen oxidation
represent an exceptionally thoroughly studied class of electrocatalytic processes [41]. New types of
catalysts are still being developed [42]. The electrocatalytic hydrogen oxidation was performed here
with use of a catalyst ink drop-casted onto the glassy carbon electrode, which is then immersed into a
hydrogen saturated 0.1 M perchloric acid solution (Figure 5a) and into 10 mM phosphate buffered
saline (PBS (Phosphate Buffered Saline), pH 7) solution (Figure 5b). The process is assumed to occur
via two-electron oxidation (Equation (1)).

H2 → 2H+ + 2e− (1)

Cyclic voltammograms for hydrogen and argon saturated solutions were compared. Hydrogen
oxidation is clearly observed at potential positive of approximately −0.3 V vs. SCE in aqueous 0.1 M
HClO4 (see Figure 5a) and at potentials positive of−0.5 V vs. SCE in phosphate buffer at pH 7 (note the
shift in the onset potential comparing Figures 4b and 5b probably due to some acidification within the
pores of the catalyst particles). In addition to the onset potentials for hydrogen evolution, double-peak
features are observed especially in the presence of phosphate buffer (Figure 5b, compare to Figure 4b).
These chemically reversible peaks in voltammograms occur positive of the bulk hydrogen region and
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are consistent with the under-potential deposition (UPD) hydrogen region on platinum surfaces [43].
Multi-cycle voltammograms in 0.1 M HClO4 show an initial peak followed by constant hydrogen
oxidation with about 3 to 4 A current (Figure 5a). In phosphate buffer solution (Figure 5b) the hydrogen
underpotential adsorption peaks are clearly observed and efficient hydrogen oxidation is reflected in a
relatively high hydrogen desorption current peak at approximately −0.1 V vs. SCE (Saturated Calomel
Electrode). The hydrogen oxidation current is again approximately 3 to 4 A (compare Figure 5a,b)
and therefore probably limited by the rate of hydrogen diffusion into the Pt@cPIM particles at the
electrode surface.
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From the capacitive current background response and the known amount of deposit, the specific
capacitance of the Pt@cPIM material can be estimated (employing capacitance = Icapacitance/scan rate)
as 5 Fg−1 in neutral phosphate buffer solution and 27 Fg−1 in 0.1 M perchloric acid. These values
compare well with the recently reported value of 40 Fg−1 for cPIM in 0.1 M perchloric acid [9].

Methanol Oxidation Reaction (MOR). The methanol oxidation reaction is investigated here as a
model reaction that is important in many fuel cell applications. Although various types of catalysts
systems have been studied [44,45], platinum has been shown to be an effective catalyst for methanol
fuel cells [46]. Methanol oxidation is a complex catalytic reaction with multiple reaction steps and an
overall reaction shown in Equation (2).

CH3OH + H2O→ CO2 + 6H+ + 6e− (2)
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Voltammograms for methanol oxidation recorded at 0.1 V s−1 scan rate in aqueous 0.1 M HClO4

are presented in Figure 6. Only a very minor methanol oxidation current peak is apparent at
approximately 0.7 V vs. SCE in the forward cycle. At a lower scan rate the methanol oxidation
can be identified more clearly (Figure 6b), but catalytic currents are obviously very low even for 1 M
methanol. This result suggests a restricted access of methanol molecules to the nano-platinum active
sites. This, therefore, suggests high selectivity towards the smaller hydrogen molecules.
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carbon electrode immersed into Ar saturated 0.1 M HClO4 without/with 1.0 M methanol recorded at a
scan rate of (a) 100 mV s−1 and (b) 10 mV s−1.

Oxygen Reduction Reaction (ORR). Oxygen reduction is a crucial process in many areas of
energy technology. Oxygen reduction catalysts have been developed based on noble metals, transition
metals [47,48], oxides/hydroxides [49,50], and other types of catalytic materials. The ability to
separate oxygen reduction from hydrogen oxidation is fundamental in fuel cells electrochemistry.
Therefore, here the selectivity of platinum nanoparticles embedded in carbonized microporous polymer
(Pt@cPIM) towards oxygen electro-reduction was investigated and cyclic voltammetry experiments
were performed. There are two distinct reaction products possible linked to the 4-electron reduction
(see Equation (3), predominant on platinum) and linked to the 2-electron reduction (see Equation (4),
predominant on carbon).

O2 + 4H+ + 4e− → 2H2O (3)

O2 + 2H+ + 2e− → H2O2 (4)

The catalyst ink material was drop-casted onto a 3 mm diameter glassy carbon disk electrode and
immersed in oxygen saturated 10 mM phosphate buffer solution at pH 7 (see Figure 7a,b). The oxygen
reduction peak can be identified at approximately −0.4 V vs. SCE and its magnitude suggests effective
reduction. At a slightly higher potential scan rate (Figure 7a) a smaller peak at −0.2 V vs. SCE is
observed, but probably not associated with oxygen reduction. The reduction of oxygen at −0.4 V
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vs. SCE occurs at very negative potential more typical for that of the 2-electron reduction on carbon
materials [4]. This result is striking in that there is very little catalytic ability of the platinum towards
oxygen reduction under these conditions. High selectivity towards hydrogen oxidation is again
achieved and oxygen reduction is suppressed probably due to pore size effects. Further effects could be
associated with the pH inside of the Pt@cPIM carbon particles, with hydrogen oxidation causing acidic
conditions and protonation of nitrogen groups in Pt@cPIM in contrast to oxygen reduction causing
alkaline conditions and a change in the pore properties. The reduction of oxygen on carbon shell (and
on the glassy carbon support) is likely to produce hydrogen peroxide (H2O2) instead of water.
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10 mM phosphate buffer solution pH 7 purged with either Ar or air.

3.3. Properties of Pt@cPIM III.: Catalysis and Hydrogen Peroxide Formation

Although direct electrochemical methods for hydrogen peroxide production are possible (e.g., based
on driven fuel cells [51]), here the reactivity of the Pt@cPIM material is investigated for the direct
non-electrochemical catalytic conversion of hydrogen and oxygen to H2O2. This homogeneous-catalytic
conversion of hydrogen and oxygen directly to hydrogen peroxide is of considerable interest and novel
alloy catalyst systems have been reported previously [52]. Figure 8 depicts the schematic reaction as
a process, in which molecular hydrogen is able to penetrate into the catalyst particles and react at the
surface of the platinum particles. As a result, electrons are suggested to be generated internally and
conducted to the surface of the Pt@cPIM catalyst particle. The oxygen reduction is believed to then
occur only at the surface to give mainly H2O2. When evaluated for the direct synthesis reaction under
standard catalytic reaction conditions, an activity of 14 molH2O2 kgcat

−1 h−1 was achieved. This result
is considerably higher than that observed for a 5 wt % Pt/TiO2 prepared by impregnation [53] and is
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comparable to the activity of some mono-metallic Pd catalysts, which tend to be most active for the direct
synthesis reaction. Further work will be required to better compare and improve the performance of the
novel Pt@cPIM catalyst materials.

O2 + H2 → H2O2 (5)
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4. Conclusions

A novel composite catalyst has been prepared based on platinum nanoparticles embedded into
a microporous heterocarbon. A one-step synthesis is employed based on the carbonization of a
hexachloroplatinate loaded polymer of intrinsic microporosity (PIM-EA-TB-H2), which at 700 ◦C
give the microporous catalyst with bi-functional reactivity and molecular size selectivity. The special
nature of PIM materials with (A) molecular rigidity contributing to high temperature stability and
with (B) molecular backbone and porosity being maintained provide a way of preparing embedded
platinum catalysts in nano-size and without significant surface contamination. The catalysts are ready
to use without further activation treatments. In electrochemical measurements it was revealed that
hydrogen oxidation occurs as expected for a platinum catalyst, but oxygen reduction and methanol
oxidation are suppressed due to the microporosity of the heterocarbon environment. Protonation of
the nitrogen functionalities in the porous carbon during hydrogen oxidation may also contribute to the
observed selectivity.

The testing of catalytic activity (in particular for H2 + O2 reactivity) is preliminary in nature and
optimization of the catalyst performance based on Pt loading, carbonization temperature, particle
shape and size etc. is likely to be possible. Instead of a powder, the catalyst could be applied as a thin
film on an inert substrate to be re-used or as part of a continuous reactor system. Further work will be
needed to investigate the catalyst after use in catalysis (to confirm the nature of the catalyst) and to
develop catalyst re-cycling procedures.

Generally, more study will be needed to further develop the field of PIM precursors for
heterocarbon and catalyst materials. The intrinsic microporosity and thermal stability of PIMs allows
highly interesting microporous hybrid materials to be obtained in a single step without activation
and with embedded catalyst particles in an active state (the surface not blocked by the carbonization
process). Catalysts could be developed for a wider range of applications.
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