
MEDICAL IMAGING AND DIAGNOSTIC RADIOLOGY

Received 28 August 2016; revised 1 December 2016; accepted 10 January 2017.
Date of publication 23 February 2017; date of current version 28 March 2017.

Digital Object Identifier 10.1109/JTEHM.2017.2665496

Spatiotemporal Strategies for Joint Segmentation
and Motion Tracking From Cardiac

Image Sequences
HUAFENG LIU1, TING WANG1, LEI XU2, AND PENGCHENG SHI3
1State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
2Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China

3B. Thomas Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA

CORRESPONDING AUTHOR: H. LIU (liuhf@zju.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61525106 and Grant 61427807, in part
by the National Key Technology Research and Development Program of China under Grant 2016YFC1300302, in part by the Shenzhen

Innovation Funding under Grant SGLH20131010110119871 and Grant GJHZ20140415152115754, and in part
by the Zhejiang Province Science and Technology Projects under Grant 2015C33061.

ABSTRACT Although accurate and robust estimations of the deforming cardiac geometry and kinematics
from cine tomographic medical image sequences remain a technical challenge, they have significant clinical
value. Traditionally, boundary or volumetric segmentation and motion estimation problems are considered
as two sequential steps, even though the order of these processes can be different. In this paper, we present
an integrated, spatiotemporal strategy for the simultaneous joint recovery of these two ill-posed problems.
We use a mesh-free Galerkin formulation as the representation and computation platform, and adopt iterative
procedures to solve the governing equations. Specifically, for each nodal point, the external driving forces are
individually constructed through the integration of data-driven edginess measures, prior spatial distributions
of myocardial tissues, temporal coherence of image-derived salient features, imaging/image-derived Eulerian
velocity information, and cyclic motion model of myocardial behavior. The proposed strategy is accurate and
very promising application results are shown from synthetic data, magnetic resonance (MR) phase contrast,
tagging image sequences, and gradient echo cine MR image sequences.

INDEX TERMS Mesh-free, segmentation, cardiac motion tracking, joint estimation.

I. INTRODUCTION
Because coronary heart diseases often manifest as
abnormalities of the ventricular geometry and wall kine-
matics, noninvasive cine medical imaging techniques are
of significant clinical value, such as magnetic resonance
imaging (MRI), to provide shape and motion information of
the myocardium ([1]–[4]). In the past three decades, there
has been a large increase in the number of cardiac image
analysis methods to assess the shape and motion parameters
from image sequences that describe the functionality of the
heart. However, several challenges remain.

As the first step for motion tracking, registration, and
many other cardiac imaging analyses, segmentation is often
needed to isolate the myocardium from the background infor-
mation throughout the cardiac cycle before further process-
ing. The difficulties of this process arise from the presence

of noise, lack of edge information for the epicardium, and
intensity inhomogeneities. Accordingly, many approaches
have been developed for myocardial contour delineation
to overcome these issues, including the use of dynamic
programming ([5]), probability atlas ([6]), active shape
model (ASM) ([7], [8]), active appearance model (AAM)
([9], [10]), combination of ASM and AAM ( [11]), constr-
ained pattern matching strategy ([12]), proactive deformable
model ([13]), and motion-guided segmentation frame-
work ( [14], [15]). In addition to the continuing progress
in cardiac image segmentation, considerable efforts have
also been focused on motion and deformation recov-
ery from image sequences. Imaging-derived kinematic
constraints, such as salient point correspondence and
Eulerian velocity, provide the initial estimates of the
myocardium. Various regularization strategies, including
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mathematical smoothness ([16]–[19]), continuum mechanics
models ( [20]), and electromechanical models ( [13], [21]),
are adopted to constrain the ill-posed problem for recovering
the dense field motion and deformation parameters of the
heart. In addition, several attempts have been made to track
the motion over the entire cardiac cycle by using the explicit
temporal modeling of cyclic heart dynamics, from forward
and backward Kalman filters ([22], [23]) to Fourier harmon-
ics tracking ([24]).

Thus far, most existing efforts have not attempted to tackle
segmentation and motion problems in a joint or simultane-
ous fashion; rather, these have been treated as two sequen-
tial processes. Obviously, cardiac segmentation and motion
tracking problems are closely related, and the robustness and
effectiveness of these methods can be enhanced significantly
by coupling them. In other applications, it has been shown
that treating the spatial boundary finding and spatiotemporal
motion tracking problems as a coherent and unified process
can achieve more consistent and probably more approximate
results ( [25]–[27]). In this manner, we can use the total
available information provided by the image sequence in a
more complete manner, and reduce the possibility of error
propagation from one step to another to achieve potentially
more robust analysis results.

In this paper, a unified framework is presented that
simultaneously recovers the boundary shape and motion
information of the heart over the entire image sequence.
Our effort adopts the energy minimization formulation of
deformable models through the integration of various data-
driven image constraints and intrinsic model constraints that
guide the spatiotemporal model evolution process. Specif-
ically, gradient measures and gradient vector fields ([28])
provide edginess information; image-derived geometrical
tokens, i.e., the isointensity curvature, are used to estab-
lish the likelihood measure for shape-based correspon-
dence matching; frame-to-frame Eulerian velocity fields, i.e.,
MR phase contrast images and optical flow maps, bias the
direction and magnitude of the model movement; and the
physical model regularizes the behavior between neighboring
points. Furthermore, a temporally cyclical model of the car-
diac boundary motion is incorporated to reduce the feasible
space of the moving contour. To achieve segmentation and
motion recovery simultaneously, we use iterative procedures
to evolve the heart tissue under the external image derived
and prior model based driving forces. The work reported here
provides a detailed description of our earlier effort ([29]) with
careful validation based on synthetic data, animalmodels, and
human MR image sequences.

We realize that several efforts are of relevance to our
work ( [30], [31]). An incompressible-model-based regis-
tration method for cardiac deformation recovery from cine
MRI has been proposed ([32]). A generalized robust point
matching strategy with a boundary element method was used
for the recursive recovery of shape and motion through a
cardiac image sequence. Our work is different in that it is
constrained by biomechanically motivated system dynamics,

and it is implemented in a mesh-free framework to overcome
finite element method (FEM) limitations.

II. METHODOLOGY
Our strategy is based on a physically motivated active region
model in which each node spatiotemporally evolves under
the influences of the node-dependent imaging data, temporal
consistency models of the tissue geometry and kinematics,
and statistical priors of the myocardium spatial distributions.
First the approach is formulated as an energy minimization
problem for each image frame, then we use the mesh-free
representation and iterative procedures to solve it.

A. OVERVIEW OF FRAMEWORK
Under the influence of the image data and prior model
constraints, the heart behaves as an elastic object, which
has three integral components: (1) a topological and geo-
metric representation of the object, which is presented in
section II-B; (2) a material constitutive law that defines the
intrinsic dynamic behavior of the object, which is discussed
in detail in section II-C; and (3) the external driving forces
that move and deform the object toward equilibrium, which
is discussed in section II-D.

The unified segmentation and motion analysis framework
is posed as an energy minimization problem:

û = argmin
u

∫
�

(Einternal(u)+ Eexternal(u)) d� (1)

where:
• u is the displacement field defined over the region of
interest �;

• the internal energy function Einternal imposes regularity
constraints on the solution, and it is solely defined by the
object’s deformation and intrinsic material properties;
and

• the external energy Eexternal includes both segmentation
cues and motion tracking terms needed to deform the
current object configuration towards the new equilib-
rium state.

Using Galerkin’s principles, energy functionals are formu-
lated in terms of the nodal displacements U, and we can
express the resulting set of differential governing equations
in matrix form as

KU = F (2)

where K is the assembled global stiffness matrix which
describes the material elasticity of the object, and F is the
external driving force that tries to deform the object to adhere
to the image data and prior information. We can interpret this
equation as the model spatiotemporally evolving toward the
equilibrium state under the internal spatial constraints of K ,
which provides the relationship between nodes and the space-
time dependent external forces F . By taking finite differences
in the time domain, with time step τ , we use an explicit Euler
time integration procedure to integrate equation (2) through
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time. Specifically, the Lagrangian evolution can be presented
as

(I + τK )Ut
= (Ut−1

+ τF t−1) (3)

therefore,

Ut
= (I + τK )−1(Ut−1

+ τF t−1) (4)

where I is an identity matrix, Ut and Ut−1 are the displace-
ment at step t and t − 1, respectively, and F t−1 is the force
vector at step t−1. The evolution is stoppedwhen the external
force F diminishes and/or when the displacement difference
between iterations ‖Ut

−Ut−1
‖ is below a certain threshold.

B. GEOMETRICAL REPRESENTATION
How to represent the heart structures in a computational envi-
ronment is an important issue, because this affects the numer-
ical accuracy, computational feasibility, and implementation
difficulty. FEM has been widely used in computational car-
diology, but for cardiac image analysis, it’s probably not the
best choice. We adopt mesh-free methods in our framework.
By using the mesh-free methods, the heart is represented by a
set of nodes bounded by surfaces which represents the heart
boundaries. As no meshing is involved, the distribution of
nodes is more flexible, thus facilitating adaptive refinements
to improve the regional numerical accuracy. Furthermore, the
intrinsic h-p (spatial refinements and orders of polynomial)
adaptivity of the mesh-free methods facilitates the incorpo-
ration of high-order polynomials, and thus, the number of
nodes required is smaller than that of linear FEM for the same
accuracy.

1) FEM VS. MESH-FREE
To obtain a continuous cardiac motion field from a sparse
set of data efficiently and accurately, a proper representation
and computation strategy for the myocardium is necessary.
For the last few decades, FEM has been widely used for
motion field approximations in cardiac analysis because of
its effectiveness and general applicability. With FEM, the
complicated continuous solution domain is discretized into
much simpler sub-domains (elements) with known polyno-
mials, such as triangles in 2D and tetrahedra in 3D, to provide
relationships with the sampling nodes. With such discretiza-
tions, the complicated physical and mathematical models can
be approximated and solved by sets of governing algebraic
equations.

However, there are some inherent limitations in the
FEM representation of the myocardium. First, the FEM result
is highly related to the number of finite element meshes.
In practice, because of the heart’s motion nature, some ele-
ments of the mesh will become compressed or even skewed.
This problem could be solved by mesh refinements and
remeshing; however, the procedures are very computation-
ally expensive, especially in 3D cases. More crucially, it is
difficult to handle fiber orientation discontinuities in the FEM
representation. Themesh-free representation has the potential

to overcome these drawbacks, in which the geometry of
the heart is represented by unstructured, adaptively sampled
nodes that are bounded by the boundaries of the object. As no
mesh is required, the density of the nodes can be refined adap-
tively by simply adding or removing nodes in the problem
domain, depending on the available computational resources
and required preciseness. Furthermore, it has been shown that
the mesh-free method better handles the fiber orientations
and kinematics/material discontinuities, and it also has better
h-p adaptivity.

In this paper, the mesh-free representation of the
myocardium is used. Typically, ECG-gated MRI image
sequences are acquired over the heart cycle, which are
in 16–20 frames consisting of 10–16 slices each. The endo-
cardial and epicardial boundaries of the cardiac image in the
first frame are segmented using the existing level set frame-
work ([33]). We generate intermediate contours at the desired
distance by interpolating between contours. The endocar-
dial and epicardial surfaces are then reconstructed using
Delaunay triangulation and are smoothed using the non-
shrinking algorithm. The myocardial sample points together
with the endocardial and epicardial surfaces or boundaries
of a selected mid-ventricular slice in 2D form the mesh-
less representation of the heart. Specifically, we can attach
the local fiber orientation to each sampling node depending
on its location, thus the fiber structure can be represented
efficiently.

In the mesh-free representation of the heart, the nodes
can have adaptive and non-uniform distributions over time
and space, and are more densely distributed in areas with
large shape variation and large displacement gradient, and the
initial distribution quality should not be mainly concerned.

2) MESH-FREE REPRESENTATION OF THE MYOCARDIUM
a: SHAPE FUNCTION CONSTRUCTION: MLS
By using the finite element formulation, we use an isopara-
metric formulation defined in a natural coordinate system, in
which the same basis functions are used in the interpolations
of the element coordinates and the element displacements.
For the mesh-free particle representation, shape functions
need to be created to approximate the field function by
using their values at sampling nodes in the analysis domain.
In particular, the shape functions are constructed by using the
moving least squares (MLS) approximation.

Let u(x) be the displacement field defined in the myocar-
dial domain �, and uh(x) be the approximation of u(x) at
point x as given by the MLS approximation:

uh(x) =
m∑
j=1

pj(x)aj(x) ≡ pT (x)a(x) (5)

where p(x) is the polynomial basis function, m is the number
of terms ofmonomials (polynomial basis), and a(x) is a vector
of unknown location-dependent coefficients. Given a set of n
nodal values at nodes x1, x2, ..., xn that are in the influence
domain, a(x) can be obtained at any point x by minimizing a
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weighted, discrete L2 norm:

J =
n∑
i=1

w(x− xi)[pT (xi)a(x)− ui]2 (6)

where n is the number of node points xi in the neighbor-
hood of x (influence domain) for which the weight function
is w(x−xi) 6= 0, and the nodal value is ui = u(xi). The shape
of the influence domain of x can be square or circular. We use
square domain in this paper.

The stationarity of J in Equation (6) with respect to a(x),
∂J
∂a = 0, leads to

a(x) = A−1(x)B(x)U (7)

where

A(x) =
n∑
i=1

w(x− xi)p(xi)pT (xi) (8)

B(x) = [B1,B2, . . . ,Bn] (9)

with Bi = w(x − xi)p(xi) and UT
= {u1, u2, ..., un}. Note

that we require n � m, which prevents the singularity of
the matrix A(x) and ensures the existence of A−1(x), and
this condition can be guaranteed by the size of the adaptively
controlled influence domain. Substituting the results into
Equation (5) gives

uh(x) =
n∑
i=1

m∑
j=1

pj(x)(A−1(x)B(x))jiui (10)

The above equation can also be written in matrix form:

uh(x) = N(x)U (11)

where the MLS-derived shape function N(x) is defined by

N(x) = pT (x)A−1(x)B(x) (12)

and N(x) = [N1(x),N2(x), ...,Nn(x)] corresponding to n
nodes in the domain.

To determine the spatial derivatives of the field variable’s
function, obtaining the derivatives of the MLS shape func-
tions is necessary. For convenience, we set

r(x) = A(x)−1p(x) (13)

then

N(x) = rT (x)B(x) (14)

Thus, we can obtain the partial derivatives of the shape func-
tion N from the partial derivatives of r(x) as follows:

N,ix (x) = r,ix (x)B(x)+ r(x)B,ix (x) (15)

N,ix iy = r,ix iyB+ r,ixB,iy + r,iyB,ix + rB,ix iy (16)

N,ix iyiz = r,ix iyizB+ r,ix iyB,iz + r,ix izB,iy
+ r,iyizB,ix + r,ixB,iyiz + r,iyB,ix iz
+ r,izB,ix iy + rB,ix iyiz (17)

where ix , iy, and iz denote the coordinates. A comma desig-
nates a partial derivative with respect to the indicated spatial
variable.

b: WEIGHT FUNCTION DESCRIPTION
From the above equations, we can see that the weighting
function w(x−xi) is important in determiningA(x) and B(x).
This weighting function should be positive (ensure a mean-
ingful presentation of the physical phenomena) and compact
(smooth and continuous over the entire domain). The contin-
uous approximation of the shape function can be achieved by
choosing appropriate weighting functions instead of using a
high-order basis p(x), which is an attractive property of the
MLS approximation. In 2D space:

pT (x) = {1, x, y, xy, x2, y2, . . . , xm, ym} (18)

In 3D space:

pT (x) = {1, x, y, z, xy, yz, zx, x2, y2, z2, . . . , xm, ym, zm}

(19)

where m has the same meaning as in equation (5).
Let r̄ = |x − xI |/dmI . Then, the weight function is given

by

w(x− xi) = w(r̄)

=


2
3
− 4r̄2 + 4r̄3 for r̄ ≤

1
2

4
3
− 4r̄ + 4r̄2 −

4
3
r̄3 for

1
2
< r̄ ≤ 1

0 for r̄ > 1
(20)

The support size dmI of the I th node is determined by dmI =
dmaxcI , where dmax is a scaling parameter, and the distance
cI is determined by searching for enough neighbor nodes to
ensure the singularity of the matrix A in Equation (8).

C. INTRINSIC MATERIAL CONSTRAINTS
To regularize our region model’s intrinsic behavior, phys-
ically more meaningful continuum mechanics models are
adopted. Althoughmodels of different complexities are avail-
able, as our goal is to study the subject-specific cardiac phys-
iology through medical images, the models chosen should
be detailed enough to include macroscopic cardiac properties
such as fiber orientations and anisotropic material properties;
however, they should not be too complicated such that many
parameters cannot be determined using the available knowl-
edge ormeasurements. Consequently, a biomechanical model
has been used.

1) BIOMECHANICAL MODEL OF THE MYOCARDIUM
The mechanical model can be defined in terms of an internal
energy function that describes the state of the material.

In our 2D implementation, we can model the myocardium
as an isotropic linear elastic material, which provides a
reasonable framework to aid the recovery of shape and
motion. Under two dimensional Cartesian coordinate system,
this is defined in terms of the linear isotropic constitutive
law:

σ = Cε (21)
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where σ is the stress vector and C is the stress-strain or
material matrix. Assuming the displacement along the x− and
y−axis to be u(x, y) and v(x, y) respectively, the infinitesimal
strain tensor ε is defined as:

ε =


∂u
∂x
∂v
∂y

∂u
∂y
+
∂v
∂x

 =
 ∂/∂x 0

0 ∂/∂y
∂/∂y ∂/∂x

[ u ]

= LU (22)

where L is a differential operator matrix which depends on
the strain types (infinitesimal or finite). Under plane strain
situations, the material matrix C is:

C =
Ey

(1+ ν)(1− 2ν)

1− ν ν 0
ν 1− ν 0

0 0
1− 2ν

2

 (23)

Here, Ey is the Young’s modulus that is measure of the stiff-
ness of the material and the Poisson’s ratio ν is the measure
of incompressibility.

Biomechanics studies have demonstrated that myocytes,
which connect to each other by collagen to form fibers,
occupy 70% of the ventricular wall volume ( [34], [35]).
It means that cardiac tissues have different properties along
and across fibers ( [35]). Thus in three dimensional cases,
it is more suitable to use a transversely elastic model to
describe the intrinsic behavior of the myocardium. This is
an extension of the isotropic linear elastic model which
allows for one of the three material axes to have a dif-
ferent stiffness from the other two. For such a material,
the stress (σ ) and strain (ε) constitutive laws still obey
Hooke’s law in a particular orientation (along or across the
myofiber).

Let us define C0 as the material matrix with 0o

(along x-axis) fiber orientation of a point in the

myocardium:

C0 =



1
Ef

−
υf

Ecf
−
υf

Ecf
0 0 0

−
υf

Ecf

1
Ecf

−
υcf

Ecf
0 0 0

−
υf

Ecf
−
υcf

Ecf

1
Ecf

0 0 0

0 0 0
1
G

0 0

0 0 0 0
1
G

0

0 0 0 0 0
2(1+ υcf )

Ecf



−1

(24)

Here, Ef , Ecf , υf , and υcf are the Young’s moduli and Pois-
son’s ratios along and cross the fiber, respectively. G =
Ef /(2(1+ υf )) describes the shearing property. For isotropic
materials, C0 reduces to the matrix if Ef = Ecf and vf = vcf .

Since the fiber orientation varies in different regions of the
left ventricle ([34]), assuming that the local coordinate system
has θh degrees horizontal angle and φv degrees vertical angle
apart from the global coordinate system, the corresponding
material matrix at any point can be obtained using the tensor
transformation:

C = T−1C0RTR−1 (25)

T is a combination transformation matrix of Tvert and Thori:

T = TvertThori (26)

with (27), (28) as shown at the bottom of this page:
Matrix R represents the transformation between strain and

engineering strain:

R =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 (29)

Tvert =


cos2φv 0 sin2φv 0 2sinφvcosφv 0

0 1 0 0 0 0
sin2φv 0 cos2φv 0 −2sinφvcosφv 0

0 0 0 cosφv 0 sinφv
−sinφvcosφv 0 sinφvcosφv 0 cos2φ − sin2φv 0

0 0 0 −sinφv 0 cosφv

 (27)

Thori =


cos2θh sin2θh 0 2sinθhcosθh 0 0
sin2θh cos2θh 0 −2sinθhcosθh 0 0
0 0 1 0 0 0

−sinθhcosθh sinθhcosθh 0 cos2θh − sin2θh 0 0
0 0 0 0 cosθh sinθh
0 0 0 0 −sinθh cosθh

 (28)
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FIGURE 1. Left: Pathological case; part of the heart was assumed to be
infarcted (red region). Right: TTC-stained post-mortem left-ventricular
myocardium in which infarcted zone are highlighted.

2) GOVERNING EQUATIONS OF THE HEART SYSTEM
Specifically, under the assumption of Hooke’s law, the total
potential energy functional E of the system can be reached:

E =
1
2

∫
�

σ T εd�−
∫
�

f T ud� (30)

where f is the external force, which has detailed description in
the following section. By using the strain-displacement equa-
tion ε = LU and minimizing the Equation (30) with respect
to displacement, we can derive that the stiffness matrix K and
force matrix F have the following form:

KI ,J =
∫
�

SI TCSJd� (31)

FI ,J =
∫
�

NT
I fd� (32)

in the 2D case, with

NI =

[
NI 0
0 NI

]
, SI = LNI =

NI ,x 0
0 NI ,y
NI ,y NI ,x

 (33)

where NI ,x and NI ,y represent the derivatives of the MLS
shape functions with respect to x and y, respectively. With
regard to the 3D case,

NI =

 NI 0 0
0 NI 0
0 0 NI

 (34)

SI = LNI =


NI ,x 0 0
0 NI ,y 0
0 0 NI ,z
NI ,y NI ,x 0
0 NI ,z NI ,y
NI ,z 0 NI ,x

 (35)

where NI ,x ,NI ,y, and NI ,z are the derivatives of the shape
function with respect to x, y, and z, respectively.

3) EVALUATION OF SYSTEM INTEGRALS
To evaluate the entries of the system matrices, integrations
over the problem domain and both the natural and the essen-
tial boundaries need to be be performed through numerical
techniques such as the Gauss quadrature. A mesh of non-
overlapping cells, called the background mesh, is required
for the quadrature integration. In contrast to the FEM mesh
needed for field variable interpolation, the background mesh,

which needs to be properly designed to obtain an appropriate
solution of desired accuracy, is usedmerely for the integration
of the system matrices ([36]). Furthermore, the background
cells are usually totally independent of the arrangement of
nodes; in this paper, a regular-grid background mesh is used.
In the regular-grid cell structure, there may exist cells that
do not entirely belong to the analysis domain. This means
that only a portion of such a cell belongs to the domain.
A simple visibility scheme that automatically separates the
portion of the cell that lies outside the physical domain is
employed ([36]).
In the 2D case, we have used mc × mc cells in the integra-

tion, where mc =
√
nt and nt is the total number of nodes

in the domain. The number of quadrature points depends on
the number of nodes in a cell, and we have used nQ × nQ
Gauss quadrature, where nQ =

√
nnode + 2 and nnode is the

number of nodes in a cell. In the 3D case, we have used
mc × mc × mc cells, where mc =

√
nt and nt is the number

of the nodal points ([36]). In each cell, we use nc × nc × nc
Gauss quadrature.

D. EXTERNAL FORCES
Both imaging data information and prior modeling con-
straints, needed for the simultaneous recovery of the heart
shape and motion, are incorporated in the external driving
force term f , which has four primary components: (1) the
data-driven edginess measures Fedginess(x) of the myocardial
boundary and tagging points, (2) the statistical prior distri-
butions of the myocardial tissue locations Fprior (x), (3) the
temporal shape coherence measures on the image-derived
salient features Fshape(x), and (4) the motion constraints
on the myocardial behavior Ftemporal(x), including the prior
cyclic heart dynamics and the data-derived Eulerian velocity
information.

For boundary and tagging line nodes, all four components
contributes to the overall force field:

fboundary(x) = Fedginess(x) [α(x)Fprior (x)

+β(x)Fshape(x)+ γ (x)Ftemporal(x)] (36)

Here, the algorithm favors locations that are likely edge points
while maintaining the balance among the prior positional
information, temporal filtering/prediction results, and salient
shape coherence measures between frames. For all non-
boundary/non-tag nodes, there are no constraints on them
being edge points or preserving shape coherence between
image frames. Therefore, the force term is simplified to

fother (x) = α(x)Fprior (x)+ γ (x)Ftemporal(x) (37)

All these four types of force components, Fedginess(x),
Fprior (x), Fshape(x), and Ftemporal(x), are normalized to the
range of [0, 1], and the weighting constants α(x), β(x), and
γ (x) are selected to reflect the varying data and model
conditions in different parts of the heart at different time
frames.

1800219 VOLUME 5, 2017
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FIGURE 2. 1st row: Tagging images at frames #1, #5, #9, and #13; 2nd row: segmentation results at frames #1, #5, #9, and #13; 3rd
row: estimated frame-to-frame displacement fields : between frames #1-2, #5-6, #9-10, and #13-14; 4th row: Strain estimates for
tagging data between end-diastole and end-systole: radial, circumferential, shear strain, and scale map
(from left to right).

1) BOUNDARY EDGINESS MEASURES
To achieve geometry recovery, the resulting boundary nodes
(and some internal nodes for MRI tagging data) should be
located at likely boundary (tagging line) locations. Earlier
works have shown that portions of the heart boundary may
have confusing gradient information caused by the partial
volume effect and intensity homogeneity, thus achieving
good segmentation results solely from gradient information is
difficult. Furthermore, as suggested by ([28]), the diffusion of
the gradient magnitude field generates a more robust gradient
vector flow (GVF) with low GVF magnitude near the object
boundary. Therefore, we construct our edginess measure to

enforce high gradient values and low GVF values:

Fedginess(x) =
|GVF(x)|

1+ | 5 I (x)|
(38)

where 5I is image gradient and |GVF |is the GVF
magnitude.

2) PRIOR SPATIAL DISTRIBUTIONS OF TISSUE ELEMENTS
To achieve more robust estimation results against imaging
noises and defects, we impose constraining spatial ranges on
the movement of the tissue elements. While these constraints
are currently only enforced on the starting boundary and tag-
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FIGURE 3. 1st and 2nd rows: Joint segmentation and motion tracking results with linear FEM framework. 3rd and 4th rows: Joint
segmentation and motion tracking results with mesh-free framework. The 1st and 3rd rows show a selected segmented volume
representation of the left and right ventricles. The 2nd row shows contours generated by a linear FEM-based method overlaid on
the corresponding intensity image slice. The 4th row shows contours generated by the mesh-free method overlaid on the
corresponding intensity image slice. The 2nd and 4th rows show how much the output of the algorithm matches the boundary in
the image.

line nodes for each frame, there is little difference if we are
considering the other nodes in the same fashion. The spatial
prior ranges of the nodes are constructed as a 2D Gaussian
distribution N̄ (x(k − 1), 6), where 6 is the variance, and the
mean x(k−1) is the nodal point at the starting position of the
current frame (result of the last frame). Therefore, the derived
prior force component becomes

Fprior (x) = 1− N̄ (x(k − 1), 6) (39)

In 3D, we have

Fprior (x) = 1− N̄ (x(k − 1), 61, 62, 63) (40)

where N̄ (x(k − 1), 61, 62, 63) is the 3D Gaussian distribu-
tion as the spatial prior range.

Obviously, we assume that every node moves away from
its starting position during a cardiac cycle. While this has
produced reasonable results in our experiments, other types
of biases can be used as long as they are meaningful to the
specific cases.

3) SHAPE COHERENCE MEASURES
Earlier efforts have demonstrated and validated the effec-
tiveness of tracking the heart boundary motion by using

geometrical shape cues ([37], [38]). Following this strategy,
we propose to use the shape coherence of the myocardial
salient landmarks, such as boundary nodes and tag-tag/tag-
boundary crossings, between image frames as an additional
guideline for constructing the force field. Based on the theo-
rem of implicit iso-intensity curve representation ([39]), the
differential curvature values of the nodes from the images can
be directly computed in the two-dimensional case:

κ(x) =
Iyy(x)I2x (x)− 2Ixy(x)Ix(x)Iy(x)+ Ixx(x)I2y (x)

(I2x (x)+ I2y (x))
3/2

where Ix and Iy are the first derivatives of the image intensity,
and Ixx , Iyy, and Ixy are the second derivatives.
In the 3D case, the Hessian matrix can be derived as

H =

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 (41)

where Ixx , Ixy, Ixz, Iyy, Iyz, and Izz are the second derivatives
of the 3D image intensity. After rotating the Hessian to align
the first axis with the gradient g = (Ix , Iy, Iz), the resulting
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FIGURE 4. A long-axis cut-away view of the heart showing strains at frame #25 with respect to the #1 frame. Top to bottom: radial strain
maps, circumferential strain, and longitudinal strain. Left to right: ground truth, FEM results, Mesh-free results, and scale map.

matrix Hr can be written as

Hr
=


Igg
. . . . . . . . . . . . .

Iuu Iuv
Iuv Ivv

 =
Igg. . . . . . . .

Ht
r

 (42)

Assuming that the eigenvalues ofHt
r are λ1 (maximum) and

λ2 (minimum), the corresponding principle curvatures can be
obtained:

κ1 =
−λ1

‖g‖
(43)

κ2 =
−λ2

‖g‖
(44)

Therefore, the mean curvature can be computed as

κ(x) =
1
2
(κ1 + κ2) (45)

Then, the basic idea is to use the minimum bending energy
criterion to guide the boundary and tag nodes moving toward
the final pixel positions, which have as close geometric prop-
erties as these nodes at the previous frame (starting nodal
positions for the current frame). Therefore, the shape force
term is defined as

Fshape(x) = |κ((x+ δx)(k + 1))− κ((x(k))| (46)

where κ((x + δx)(k + 1)) and κ((x(k)) are the iso-intensity
curvatures at frame k+1 and k , respectively, and δx indicates
that the search is conducted at a local window near the
original boundary/tag point x.

4) TEMPORAL FILTERING AND PREDICTION: EULERIAN
KINEMATICS DATA AND CYCLIC MOTION MODEL
As with most other cardiac applications, we assume that the
motion of the heart is periodic. We can expand the trajectory
of each node into sine functions ([40]). Owing to the limited
temporal resolution available, the first two terms of the expan-
sion are retained and a continuous model of the trajectory of
any mesh node is approximated by a closed ellipse in a short
time interval in a piecewise sense:

x(t) = x̄+ A sin(2πωt + ϕ) (47)

where t is the continuous time index, x is the node position,
x̄ is the mean position over the cardiac period, and A is the
amplitude of the motion. The frequency of the oscillator is
2πω = 2π/T , where T is the period of the cardiac cycle,
which is known from the imaging data.

An estimation of the node x at frame k+1 can be provided
by the past positions of a given node x up to the current image
frame k and the available imaging/image-derived Eulerian
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FIGURE 5. The mean strains between the normal and the pathological
cases by using the proposed method: radial strain (top), circumferential
strain (middle), and longitudinal strain (bottom).

motion information. Typical Eulerian kinematic data include
the optical flow field calculated from image frames k and
k + 1, the instantaneous velocity provided by MR phase con-
trast images, the partial velocity information from Doppler
echocardiography, etc. A standard Kalman filter/predictor

can be used to estimate the state variables (position, displace-
ment, and velocity) at frame k + 1 as follows:

ẑ(k + 1 | k) = C̄ ẑ(k | k) (48)

with

C̄ =

 λ µ 0

1− cos(ω4t) cos(ω4t)
1
ω
sin(ω4t)

ω sin(ω4t) −ω sin(ω4t) cos(ω4t)


where z = [x̄, x, ẋ] is the state vector, ẑ(k + 1 | k) is the
Kalman filter estimated state for image frame k + 1, ẑ(k | k)
is the estimated state vector up to frame k , λ = (n − 1)/n
and µ = 1/n are constants, and n is the number of image
frames over the heart cycle. In our experiments, the velocity
term in Equation (48) adopts the available Eulerian motion
fields from the MR phase contrast velocity images or the
spatiotemporal intensity flow betweenMR image frames. For
phase velocity data, the regularization of the vector field may
be needed to remove noise.

The temporally predicted possible node position x̂ is
used to construct a rotated 2D Gaussian distribution
N̄ (x̂, 6i, 6j, θ(x̂)), where 6i and 6j are the variances in the
rotated major directions, and θ is the angle of the line formed
by x(k − 1) and x̂(k) with respect to the x−axis, with k and
k − 1 indicating image frame numbers. We can construct the
temporal filtering/prediction force as

Ftemporal(x) = 1− N̄ (x̂, 6i, 6j, θ(x̂)) (49)

In the 3D case, the temporal force could be constructed as
follows:

Ftemporal(x) = 1− N̄ (x̂, 6i, 6j, 6k , θ(x̂), φ(x̂)) (50)

N̄ (x̂, 6i, 6j, 6k , θ(x̂), φ(x̂)) is a rotated 3D Gaussian distri-
bution, where 6i, 6j, and 6k are the variances in the rotated
major directions, and θ and φ are the angles of the line formed
by x(k−1) and x̂(k) with respect to the Cartesian coordinate.

III. EXPERIMENTAL VALIDATION AND EVALUATION
With the mesh-free particle framework for the simulta-
neous recovery of the heart shape and motion, we have
performed experiments on synthetic data, MR phase con-
trast images including instantaneous velocity information
sequences, MR tagging sequences, and gradient echo cine
MR image sequences. The proposed framework can employ
the measured data extracted from images, which are either
intensity or/and velocity depending on the imaging protocol
used.

The first step of the algorithm is initialization which
includes extraction of the useful features (such as endo-
and epi- boundaries and tag-tag points) of the first frame
and allocation of the sampling nodes bounded by the initial
boundaries. A local analysis domain centered at each node
is determined. Then based on the MLS approximations, the
shape interpolation functions are constructed and the stiffness
matrix K and external force terms are formulated. Finally,
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FIGURE 6. 1st row: Selected Segmentation results for MR phase contrast image at frames #1, #3, #6, #9, #12, and #15. 2nd row: Estimation of the
displacement vector maps with respect to frame #1 for the MR phase contrast images at frames #3, #6, #9, and #12.

FIGURE 7. 1st row: Estimation results of the radial strain maps for the MR phase contrast images (w.r.t. frame #1, the end-diastolic phase) at
frames #1, #6, #8, #9, #10, #14, and #16. 2nd row: Joint estimation results of the circumferential strain maps for the MR phase contrast images
(w.r.t. frame #1, the end-diastolic phase) at frames #1, #6, #8, #9, #10, #14, and #16. 3rd row: Joint estimation results of the radial-circumferential
shear strain maps for the MR phase contrast images (w.r.t. frame #1, the end-diastolic phase) at frames #1, #6, #8, #9, #10, #14, and #16.

we estimate the dense displacement field by tracking for
minimizing the total energy between successive frames.

A. SYNTHETIC DATA
The canine heart model of the University of Auckland, which
provides both the cardiac geometry and the fiber architecture
obtained through anatomical experiments ([34]), was used to
generate the synthetic data. Young’s moduli along and across
the fiber were 75 and 25 kPa, respectively. Poisson’s ratio
was set to 0.47 to simulate incompressibility. The physiome
model was applied to the heart model to provide the ground
truth, and 50 frames of one cardiac cycle were obtained,
which were then converted into a grayscale structural image
sequence of 50 frames with image size of 75 × 75 × 16 and
spatial resolution of 1.27× 1.27× 4.86mm3. Noise with 5dB
SNR was added to the derived images data to provide noisy
measurements.

The epicardial and endocardial surfaces of the whole heart
segmented from the synthetic images in the first frame as
well as 1274 myocardial sample points formed the mesh-free
representation of the heart. For the purpose of comparisons,
we also constructed a finite element model with 2083 points
and 10824 tetrahedrons. The shape and kinematic parame-
ters of the synthetic heart were recovered by the proposed
approach with mesh-free (linear bases, without refinement)
and FEM (linear tetrahedral elements, without refinement)
representations under the same external forces. Further, the
fiber orientations were obtained by invasive procedures of
dead canine hearts ([35]). The data are in 3D and are obtained
at the most relaxed state of the heart. In the next canine
experiment, 2D mid-ventricle slice data were extracted for
our initial fiber orientations. The 2D fiber orientation data
are mapped to our myocardium geometry by using principal
warps.
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FIGURE 8. Canine data experimental results using meshfree framework. Top row: original 2D image. 2nd row: selected
volume segmentation results. 3rd row: segmentation results (blue contours) overlaid on the original image. 4th to 6th row:
A long-axis cut-away view of the LV showing radial (4th row), circumferential (5th row) and longitudinal strain (6th row) at
frames #3, #6, #11, and #13 with the same scale as shown in Fig. 4.

Apart from the normal case, a validation with a patho-
logical case was also performed. In the pathological case,
part of the heart was assumed to be infarcted (see the

left of Fig.1), where Young’s modulus was set to be three
times that in the normal case. Then, procedures similar to
those described above were used. Finally, the shape and
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FIGURE 9. Mini- porcine1 experimental results at frames #3, #6, #9, #12, and #16 using meshfree framework. Top row: selected volume
segmentation results. 2nd row: segmentation results (yellow contours) overlaid on the original image. 3rd to 5th row: A long-axis cut-away
view of the LV showing radial (3rd row), circumferential (4th row) and longitudinal strain (5th row) at corresponding 5 time points with the
same scale as shown in Fig. 4.

kinematic parameters of the synthetic heart were recov-
ered by the proposed approach with mesh-free representa-
tion under the same biomechanical model as in the normal
case.

In the third experiment, the joint method and the traditional
separated strategy ([20]) were compared using the pathologi-
cal simulation results.

B. MRI PHASE CONTRAST IMAGE SEQUENCES
A set of canine MR phase contrast image sequences has
been used in this experiment. During the animal experiment,
a proximal segment of the left anterior descending (LAD)
coronary artery of an adult mongrel dog is dissected free

to enable the production of a controlled, graded coronary
stenosis.

Sixteen canine MR phase contrast velocity and magni-
tude images are acquired over the heart cycle, with the
following imaging parameters: flip angle = 30◦, TE =
11ms, TR = 34ms, FOV = 28cm, matrix 256×128, and
venc = 15cm/s. The image resolution is 1.09mm/pixel, and
the velocity intensity ranges from −150mm/s to 150mm/s,
with the signs indicating the directions.

The histological staining of the post-mortem myocardial
tissues is shown in right of Fig. 1, and the infarct regions
is highlighted. It provides the clinical gold standard for the
assessment of the image analysis results.
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FIGURE 10. Mini- porcine2 experimental results at frames #3, #6, #9, and #12 using meshfree framework. Top row: selected volume
segmentation results. 2nd row: segmentation results (yellow contours) overlaid on the original image. 3rd to 5th row: A long-axis cut-away
view of the LV showing radial (3rd row), circumferential (4th row) and longitudinal strain (5th row) with the same scale as shown in Fig. 4.

C. MR TAGGING IMAGE SEQUENCE
Sixteen MR tagging images of a healthy mongrel dog over
the heart cycle are used in the second experiment, where
the tagging magnetic void grid is applied at the end diastole
(frame #1), shown in Fig. 2.

D. GRADIENT ECHO CINE MR IMAGE SEQUENCE
We also implemented our approach on gradient echo cineMR
image sequence, including animals and humans: 1 normal
dog, 2 mini-porcine, and 22 human volunteers. The corre-
sponding image parameters are summarized in Table. 1.
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FIGURE 11. Patient 1’s experimental results at frames #3, #6, #9, #12, and #16 by using mesh-free framework. Top row: selected volume
segmentation results. 2nd row: segmentation results (blue contours) overlaid on the original image. 3rd to 5th rows: a long-axis cut-away view of
the LV showing radial (3rd row), circumferential (4th row), and longitudinal (5th row) strains with the same scale as that used in the 1st row
of Fig. 4.

The myocardium is modeled as a transversely linear elastic
solid, as described in section 2.3. The fiber orientations are
obtained using Guccione et al.’s model ([41]).

IV. RESULTS AND DISCUSSIONS
A. QUANTITATIVE ANALYSIS OF SYNTHETIC DATA
Fig. 3 shows the results under the linear FEM framework
and those under the mesh-free framework. Table 2 shows
the quantitative assessments of the average positional errors
(Error is defined as the distance between the estimated bound-
ary point and its corresponding true one. Each datum repre-
sents the mean ± standard deviation.). Overall, the results
obtained with the mesh-free representation agree with the

ground truth. It can be seen that the segmented shape of
the whole heart with the mesh-free representation is closer
to the boundary defined in the image. In Fig. 4, for frame
#25 as an example, it can be seen that the strains estimated
using the mesh-free representation are better; the strain is
smoother, and its distribution is similar to the ground truth.
This is mainly because the mesh-free representation can han-
dle fiber discontinuities and avoid the problem caused by
tetra skewing. In the reported experiments on a 2.33 GHz
4-core computer with 8 GB memory and under the Matlab
environment, each iteration loop took 491 s for the mesh-
free method and 478 s for the FEM method. Please note
that especially for complex geometries like the heart, the
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TABLE 1. The imaging parameters used for experiments.

TABLE 2. Average positional errors over time. Each data cell represents
the mean and standard deviational errors.

TABLE 3. Mean strains in different segments. The 16 segments are sorted
by the mean of the largest principal strains in ascending order. Infarcted
regions are (1, 5, 6, 7, 12).

time required for constructing the mesh in FEM may even
be longer than that required for the analysis itself.

The strain plots in Fig. 5 show a comparison of the mean
strains between the normal and the pathological cases by
using the proposed method; this figure shows that all strain
changes in the pathological case are smaller than those in the
normal case because of the infarction. These results demon-
strate that our method can show pathological behaviors to
some extent.

In the third experiment, to perform a quantitative compar-
ison, we computed the mean strains in different segments
and sorted them in ascending order (Table 3). The strains
used were the largest principal strains. From the table, we
can see that our proposed framework gives the best per-
formance. First, almost all infarcted segments (1, 5, 6, 7,
and 12) are located at the beginning of the queue. Second,
the segments directly neighboring the infarcted ones are at the
front of the queue. This is because shape/kinematics recovery
is constrained in a unified framework, which gives a more
consistent result. More importantly, the traditional strategy

requires isolation of the myocardium from the background
information throughout the cardiac cycle before process-
ing. This segmentation step is difficult and cannot be done
automatically, and thus, the time required for segmenting
and establishing a sparse set of corresponding feature points
between boundaries may even be longer than that required for
the motion tracking itself.

B. VALIDATION WITH TTC-STAINED RESULTS
The 1st row of Fig. 6 shows volumetric segmentation results
from the phase contrast data which are visually robust and
sensible. The detected boundary contours have consistent
spatial and temporal characteristics, which are much desired
for image sequence segmentation and for motion analysis.
Further, the recovered motion measures from the image
sequence are presented for displacement vector fields in the
2nd row of Fig. 6 and for cardiac-specific radial strain maps
(1st row of Fig. 7, indicator for myocardial contraction),
circumferential strain maps (2nd row of Fig. 7, indicator
for myocardial twisting), and shear strain maps (3rd row
of Fig. 7), all with respective to the end-diastolic image
frame. From the displacement vectors, it can be observed
that during the contraction phase of the cardiac cycle (i.e.,
frames #1 to #8), there is little contracting motion at the
infarct zone (lower right part) until frame #6. At the beginning
of the cardiac expansion phase (frames #9 to #10), however,
the contractingmotion of the infarcted tissues continueswhile
the expanding motion of the normal tissues just starts. The
expansion at the infarct zone does not occur until frame #14.
From the strain maps, the changes in the deformation parame-
ters (signs and magnitude) can be detected. It is quite obvious
that the infarct region has vastly different characteristics from
the normal zones: little deformation in the radial and circum-
ferential directions, and opposite changes in the shear strain
maps. These signs of dyskinesias (impairment of voluntary
movements resulting in fragmented or jerky motions) and
motion reductions at the lower-right part of the LV are clear
indications of myocardial injury, and they agree with the
histochemical result very well.

C. MR TAGGING IMAGE SEQUENCE
The volumetric segmentation results are shown in Fig. 2. The
cardiac-specific strain maps are also given in Fig. 2 between
the end- diastole (ED) and end-systole (ES) frames. Because
the tagging grid decays over time, the tag lines in the images
become very weak late in the image sequence. This hinders
the reliable segmentation and tracking of the LV boundary
and tagging points. Further efforts on constructing appropri-
ate external forces are needed and in progress, including the
modeling of the temporal intensity changes of the tag line
and the use of directional band-pass filters to enhance tag line
contrast.

D. GRADIENT ECHO CINE MR IMAGE SEQUENCE
The volumetric segmentation results, namely, the estimated
displacement vector map with respect to end-diastole are
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FIGURE 12. Patient 2’s experimental results at frames #3, #6, #9, #12, and #16 by using mesh-free framework. Top row: selected volume
segmentation results. 2nd row: segmentation results (blue contours) overlaid on the original image. 3rd to 5th rows: a long-axis cut-away view of
the LV showing radial (3rd row), circumferential (4th row), and longitudinal (5th row) strains with the same scale as that used in the 1st row
of Fig. 4.

shown in the Fig. 8-12. As expected, we see substantially
more movement by the endocardial tissue than the epicardial
tissue. To the end, we have calculated the strain tensors for
each point to depict the non-rigid deformation. The radial,
circumferential, and longitudinal strain maps are also given
in Fig. 8-12, all with respect to the end-diastolic frame.

From the strain maps, we can see that the endocardial
tissue deforms more than the epicardial tissue in the radial
and circumferential directions. Further, it is quite obvious that
during the cardiac deformation from ED to ES,the magni-
tudes of the radial, circumferential, and longitudinal strains

increase, in which the longitudinal strains are relatively small.
This indicates that the myocardium is primarily thickened
in the radial direction and shortened in the circumferential
direction.

For the human experiments, most of the trajectories
obtained using themesh-freemethod are converged. From the
segmentation result and the trajectory of the boundary points,
we can see that the mesh-free framework is more suitable for
segmentation than the FEM representation. This is because
it needs no remeshing, and a more accurate result can be
obtained only by changing the weighting function. The strain
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TABLE 4. Average and maximum distances between automatic and
manual contours (pixel).

distribution of the model recovered by the mesh-free method
agrees with the observations available from biomechanics
and cardiology literatures, and this distribution is continuous.
These promising results demonstrate that the proposed algo-
rithm can be used to perform 3D segmentation and motion
tracking simultaneously.

To validate the success of the proposed segmentation pro-
cedure, we compared the results of the human experiments
with manual segmentation from cardiac MRI images of
22 patients. Table 4 summarizes the means and standard
deviations of the position differences between the results of
the proposed algorithm and manual contours. These numbers
show that, globally, the automatic segmentations are very
close to the manual ones.

V. CONCLUSIONS AND PERSPECTIVES
We have proposed spatiotemporal strategies for the joint
segmentation and motion tracking of the heart. This unified
approach is based on the use of image analysis strategies and
mechanical modeling of the myocardium, and it is imple-
mented in a mesh-free framework for the integration of com-
plementary image sources.

This joint segmentation and motion analysis framework
estimates the optimal shape, motion, and deformation param-
eters from noisy image data. Image-derived information
serves as the external force. The application of a continuum
mechanical model of the myocardium provides physically
meaningful constraints on the dynamic behaviors of the heart
tissue.

We should note that there are several parameters (weight-
ing parameters (α, β, and γ ), variance parameters (61, 62,
and 63)) in the proposed method. The incorrect selection of
these parameters will result in large estimation errors or even
divergence. A general rule on the choice of these parame-
ters is related to the confidence measures on the available
imaging/imaging-derived measurement data. For example,
if we trust Fshape more than the Fprior , we should make
α smaller than β. This will deemphasize the importance of
Fprior relative to Fshape. An automatic procedure to determine
the algorithm parameters obtained from the local phase coher-
ence ([42]) of images is under investigation.

The algorithms in this paper only provide the quantita-
tive estimation of the possible locations and extents of the
infarcted area, but not thematerial properties, such asYoung’s
moduli of the diseased areas, that have great clinical value.
Further research could extend to joint segmentation, motion,
and a material parameters estimation framework.

Moreover, from the viewpoint of biomechanical
constraints, although we have adopted anisotropic material

models, these remain different from the extremely complex
physical properties of an actual heart. First, while most
works thus far have used linear material models of the heart
muscles under infinitesimal stain theory, we believe that
the adopted constrained biological model of the heart with
large deformation will provide more accurate estimation
results. Furthermore, integrating electrical activation into the
biomechanical model would be very useful to help esti-
mate the shape and motion parameters from cardiac image
sequences ([13]).
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