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A B S T R A C T

Plants sense their environment at the cell surface, i.e. the plasma membrane, where extracellular signals are 
perceived and transduced. Together with the cortical cytoskeleton and the cell wall, membrane lipids can in
fluence these processes by acting on protein dynamics at the plasma membrane. Among these lipids, sterols 
regulate membrane fluidity and thus, protein functions. However, plant sterols are diverse in structure and 
particularly difficult to study due to technical limitations. Nevertheless, advances in sterol imaging, sterol- 
protein interaction studies, and sterol perturbation methods have resulted in a better understanding of their 
functions in plant development and physiology. Here we summarize the current knowledge and the latest 
breakthroughs, and discuss future challenges, in the field of plant sterol biology and cell surface organization.

1. Introduction

Plant cells perceive and transduce an enormous number of external 
cues at their cell surface including hormonal signals, cell wall changes 
and mechanical stresses. In addition, vesicular trafficking events, as well 
as synthesis of cellulose and callose, occur at the plasma membrane 
(PM). The PM is a highly heterogeneous and dynamic environment, 
organized into subdomains which can act as landmarks (Jaillais and Ott, 
2020). This organization might support perception and transduction of 
external stimuli by coordinating encounters between different signaling 
pathway components, as well as the precise targeting of membrane and 
cell wall components to the cell surface.

Sterols, which collectively make up about a third of the PM lipids, are 
key to the membrane organization due to their ability to modulate 
membrane fluidity (Bahammou et al., 2024; Grosjean et al., 2015). In 
contrast to animal membranes, which only contain cholesterol, plant PM 
comprises a complex sterol composition, predominantly featuring 
β-sitosterol, stigmasterol, and campesterol (Grison et al., 2015; Kiersz
niowska et al., 2009; Spector and Yorek, 1985). As an indicator of the 
importance of sterols in cellular functions, perturbations of sterol 
biosynthesis causes various developmental defects, including impaired 
shoot and root length, vascular patterning, seed and embryo develop
ment, cell division and often result in lethality (Carland et al., 2010; 
Cheon et al., 2010; Choe et al., 2000; He et al., 2003; Kim et al., 2005; 

Schaller, 2003). While sterols are regarded as fundamental to membrane 
organization and signaling, their small size and position inside the 
membrane leaflets have challenged precise mechanistic studies. This 
review synthesizes our current understanding of plant sterols at the cell 
surface, while highlighting emerging methodological advances that 
promise to shed new light on these essential membrane components.

2. The complex sterol system in plants

Sterols are amphiphilic molecules composed of three main structural 
elements: a hydrophilic hydroxyl group, a rigid tetracyclic steroid ring 
system, and a hydrophobic alkyl side chain (Fig. 1). Unlike animals and 
fungi, which contain predominantly cholesterol and ergosterol in their 
cell membranes respectively, plants feature a diverse variety of sterol 
species (Zhang et al., 2020). This variety is largely driven by the alkyl 
side chain, which varies in structure, presence of double bonds and 
length among sterol species, resulting in different steric conformations. 
In plants, β-sitosterol, stigmasterol and campesterol are the most abun
dant sterols at the PM (Bahammou et al., 2024). Sterol variants carrying 
a 3β-hydroxyl group are referred to as free sterols (FSs). Modifications of 
that group result in so-called sterol conjugates (Fig. 1). Plants typically 
contain three classes of sterol conjugates: Steryl esters (SEs), steryl 
glycosides (SGs), and acyl steryl glycosides (ASGs) (Fig. 1). As the name 
implies, SGs are sterols that have been glycosylated, most frequently 

* Corresponding author.
E-mail address: lcn@plen.ku.dk (L.C. Noack). 

Contents lists available at ScienceDirect

The Cell Surface

journal homepage: www.sciencedirect.com/journal/the-cell-surface

https://doi.org/10.1016/j.tcsw.2025.100147
Received 3 March 2025; Received in revised form 15 May 2025; Accepted 27 May 2025  

The Cell Surface 13 (2025) 100147 

Available online 29 May 2025 
2468-2330/© 2025 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

mailto:lcn@plen.ku.dk
www.sciencedirect.com/science/journal/24682330
https://www.sciencedirect.com/journal/the-cell-surface
https://doi.org/10.1016/j.tcsw.2025.100147
https://doi.org/10.1016/j.tcsw.2025.100147
http://creativecommons.org/licenses/by-nc-nd/4.0/


glucosylated (Fig. 1). From such SGs, ASGs can be produced by a sub
sequent acylation of the sugar residue. The diversity of plant sterols has 
been hypothesized to reflect the need to withstand varying temperatures 
due to the sessile lifestyle of plants. Indeed, biological membranes 
containing phytosterols can more effectively buffer membrane fluidity 
across wide temperature ranges than cholesterol alone (Beck et al., 
2007; Dufourc, 2008; James et al., 2014; Uemura et al., 1995).

2.1. Sterol composition and characteristics of the PM

Free sterols accumulate at the PM, making up around one third of the 
PM lipids. By contrast, internal membranes contain only just over 10 % 
sterols (Bahammou et al., 2024). However, the composition of sterols 
may differ among plant species and ecotypes. For example, stigmasterol 
is the second most abundant sterol species at the PM in Arabidopsis 
thaliana Landsberg erecta (Ler) suspension cells (Grison et al., 2015), but 
recent in-depth PM lipidomic analyses of Arabidopsis Columbia (Col-0) 
suspension cells indicated that β-sitosterol and campesterol are the most 
common sterol species, with the former being the most abundant 
(Bahammou et al., 2024). Similar variations in sterol composition were 
also noted across different organs and tissues, e.g. comparing pollen and 
leaves of different plant species (Furse et al., 2023), suggesting that 
sterol composition at the PM might be finely tuned during plant 
development.

SGs and ASGs represent the major sterol conjugates at the PM, 
constituting 4 % and > 1 % of total lipid mol% respectively, although 
this can vary drastically between different plant species and tissues 
(Bahammou et al., 2024). However, the relative proportions of different 
sterol species appear to be maintained across FSs and SG/ASG forms 
(Wewer et al., 2011).

In animals, cholesterol induces a thick and stiff membrane with 
reduced fluidity, even though the specific effects may depend on other 
interacting lipids (Beck et al., 2007; Marsh, 2006; Ovečka and 

Lichtscheidl, 2005). The interaction of the rigid and planar cholesterol 
with long fatty acid chains of phospholipids promotes membrane par
titioning into more densely packed regions enriched in cholesterol 
known as “liquid-ordered phases” in contrast to “disordered-phases” 
that contain less cholesterol (Hjort Ipsen et al., 1987). In plants, the 
diverse array of sterols leads to a more complex impact on membrane 
properties and behavior. For example, campesterol mimics cholesterol’s 
strong ordering effect (higher packing and slower dynamics) on mem
branes, whereas β-sitosterol and stigmasterol have much less pro
nounced effects on membrane ordering (Beck et al., 2007; Grosjean 
et al., 2015; Rujanavech et al., 1986). The conjugated sterol species SG 
and ASG, together with FS, synergistically increase membrane ordering, 
indicating an intricate interplay between different sterols species 
(Grosjean et al., 2015). Thus, the membrane ordering may be more 
nuanced in plant cells, perhaps fine-tuned by changes in FSs and con
jugates. This complexity extends beyond the simple paradigm estab
lished in animal cells where increased cholesterol content directly 
correlates with increased membrane stiffness.

2.2. Biosynthesis of free sterols and conjugates

The biosynthesis pathway of plant sterols has been described in 
detail in recent reviews (Bajguz et al., 2020; De Vriese et al., 2021). We 
will therefore only briefly describe the synthesis routes of the main FSs 
(Fig. 2a). Sterol biosynthesis begins in the endoplasmic reticulum (ER) 
with Acetyl-CoA as the precursor, proceeding through the mevalonate 
and squalene pathways to yield cycloartenol. From here, the sterol 
biosynthetic pathway separates into two branches: the first branch leads 
to the production of cholesterol while the second branch divides again to 
give campesterol and β-sitosterol. Finally, stigmasterol is derived from 
β-sitosterol. Sterol biosynthesis is intertwined with the biosynthesis of 
other important isoprenoid-derived compounds, including the major 
plant hormones brassinosteroids (Bajguz et al., 2020). Indeed, 

Fig. 1. General structure of the main sterol variants in plants. The tetracyclic steroid ring system forms a consistent backbone, with carbon atoms numbered ac
cording to the typical sterol numbering system (shown on backbone structure). The residue at the C3 position (red R groups) determines the type of sterol conjugate: 
Free Sterol (FS), Steryl Ester (SE), Steryl Glycoside (SG), or Acyl Steryl Glycoside (ASG). The alkyl side chain attached to C17 (green) defines the sterol species 
(β-sitosterol, stigmasterol, campesterol, or cholesterol). Key structural differences between sterol species are highlighted in blue. Adapted from (Ferrer et al., 2017). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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campesterol serves as a precursor to produce brassicasterol, which 
through multiple enzymatic steps is converted into brassinolide, the 
most bioactive brassinosteroid (Nolan et al., 2020).

While the biosynthesis of free sterols has been extensively studied, 
the formation of sterol conjugates remains less understood. Ferrer et al. 
provide a comprehensive review of our current knowledge regarding 
sterol conjugate biosynthesis (Ferrer et al., 2017). Sterol acyl
transferases catalyze an esterification reaction to attach a fatty acid 
typically with a length of C12 to C22 (palmitic, stearic, oleic, linoleic or 
linolenic acids) to the hydroxyl group of a sterol (Dyas and Goad, 1993). 
The enzymes involved appear to have some specificity in their choice of 
substrate and localize mainly to the ER (Chen et al., 2007; Lara et al., 
2018). Lipid bodies, also known as lipid droplets, emerge from 
specialized ER compartments. These droplets contain high amounts of 
sterol esters, possibly as a form of storage regulating sterol homeostasis, 
as well as an abundance of acyltransferases (Chapman et al., 2012; Lara 
et al., 2018; Shimada et al., 2019). SGs are formed by the attachment of 
sugar moiety to the hydroxyl group of sterols. These are most commonly 
glucose, but can also be xylose, galactose and mannose as well as di-, and 
triglucosides (Grille et al., 2010). These reactions are carried out by 
sterol glucosyltransferases, which despite the lack of a transmembrane 
domain can loosely associate to the PM, but are also found in the 
cytoplasm, at the ER and the tonoplast, and show some substrate spec
ificity, indicating a dynamic regulation of SGs (Ramirez-Estrada et al., 
2017; Stucky et al., 2015). Steryl glycoside acyltransferases modify SGs 
further into ASGs by esterification of various fatty acids to the sugar 
moiety (Schrick et al., 2011). So far, no genes encoding steryl glycoside 
acyltransferases have been identified, even though one study biochem
ically characterized such activity in carrots (Eichenberger and Siegrist, 
1975; Ferrer et al., 2017).

The evolutive origin of sterol biosynthesis has been debated in recent 
years and is summarized in an excellent overview by Ferreira-Guerra 
et al. (Ferreira-Guerra et al., 2025). Steranes are organic compounds 
found in sedimentary rocks that present a tetracyclic ring system fully 
saturated with hydrogen. They are hypothesized to represent “molecular 
fossils” of sterols and, as such, can be used to map the occurrence of 
different sterol species to the emergence of eukaryotic life (Brunoir 
et al., 2023). Sterols as components of cell membranes are often 
considered as an eukaryotic feature (Desmond and Gribaldo, 2009). 
However, new evidence suggests that sterol biosynthesis genes have 
evolved in bacteria before being transferred to early eukaryotic lineages 
by bacterial symbiotic partners rather than being independent eukary
otic innovations (Hoshino and Gaucher, 2021; Santana-Molina et al., 
2020). This transfer event occurred most likely before the divergence of 
eukaryotes, with the last eukaryotic common ancestor already display
ing the majority of sterol biosynthetic genes. The different sterol systems 
across kingdoms were shown to be mostly a result of gene-loss and du
plications. Thus, the group of diatoms generally displays most features 
of plant sterol biosynthesis, but the demethylation at C4 and reduction 
of the C24 double bond rely on fungal and animal enzymes (Gallo et al., 
2020). Another example are the SMT genes that were recently suggested 

to have been inherited by the last eukaryotic common ancestor and later 
on lost in many animal phylae as a result of shifting feeding strategies, 
while being retained in plants (Brunoir et al., 2023).

The ability to flexibly modulate biophysical properties of cell mem
branes via sterols could have played a distinguishing role in the success 
of eukaryotes (Du et al., 2022; Ferreira-Guerra et al., 2025). In partic
ular, plants have evolved varying sterol profiles as adaptations. In to
mato and potato a duplication of the DWF1/SSR1 gene called SSR2 
causes high levels of cholesterol, which is a precursor in glycoalkaloid 
synthesis that plays an important role in the defense against pathogens 
(Sawai et al., 2014).

2.3. Transport of free sterols from the ER to the cell surface

As indicated above, sterols are synthesized in the ER in plant cells. 
Indeed, protein extracts from ER fractionations produced sterol in
termediates from precursors (Hartmann and Benveniste, 1987), and key 
enzymes in the sterol biosynthesis pathway appear to localize to the ER 
(Silvestro et al., 2013). This is in line with the biosynthesis of cholesterol 
in animals that also takes place in the ER (Krisans, 1996; Lusa et al., 
2003). Interestingly, sterol biosynthesis enzymes have also been 
observed to localize outside the ER, e.g. at the PM, or the cell plate 
during cell division, but the cell biological relevance of such dual 
localization is not fully understood as there is so far no evidence that 
these enzymes produce sterols directly at the cell surface (Ohta et al., 
2024; Silvestro et al., 2013). The lower abundance of sterols in the ER 
membrane system compared to the high abundance in the PM suggests 
efficient secretion of the sterols. Compartmental fractionation of leek 
seedlings revealed that Brefeldin A, an inhibitor of vesicular transport, 
perturbs sterol trafficking from the ER to the PM (Moreau et al., 1998). 
This led to the hypothesis of exocytosis via the Golgi apparatus being the 
main sterol trafficking route (Ovečka and Lichtscheidl, 2005). However, 
recent findings may also indicate vesicular trafficking-independent 
pathways for sterol transport in plants (Kumar et al., 2021).

An alternative pathway for rapid transfer of sterols between ER and 
PM could take place at ER-PM Membrane Contact Sites (MCS). MCS can 
allow for direct lipid transfer as membranes from two distinct cellular 
compartments come into close contact (10–30 nm) (Prinz, 2007). In 
animal cells, sterol transfer proteins exchange sterols at MCSs (Luo et al., 
2019). Three distinct families of proteins can transfer lipids in animals 
and yeast (Luo et al., 2019): 

1. Oxysterol-binding protein (OSBP)-related protein (ORP) family 
members.

2. Steroidogenic acute regulatory protein (StAR)-related lipid transfer 
(START)-related domain (STARD) protein family members.

3. Lipid transfer proteins anchored at a membrane contact site (Lam) 
family members.

Members of these three protein families transfer sterols between 
specific intracellular membranes. For instance, Oxysterol-binding 

Fig. 2. Comprehensive methods for studying plant sterols. a) Sterol biosynthesis pathway highlighting key enzymes, mutants (green), and inhibitory drugs (orange). 
3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), geranyldi-phosphate (GPP), squalene epoxidase (SQE), cycloartenol synthase (CAS), STEROL METHYL
TRANSFERASE1 (SMT1), STEROL C-4 DEMETHYLASE (SC4DM), STEROL 4-ALPHA-METHYL OXIDASE1 (SMO1), CYCLOPROPYL ISOMERASE1 (CPI1), CYTO
CHROME P450 51 (CYP51), STEROL C-14 REDUCTASE (FACKEL), C-8,7 STEROL ISOMERASE (HYDRA1), STEROL 4-ALPHA-METHYL OXIDASE2 (SMO2), STEROL 
C-24 REDUCTASE/DWARF7 (STE1/DWF7), DWARF5 (DWF5), DIMINUTO/DWARF1/STEROL SIDE CHAIN REDUCTASE1 (DIM/DWF1/SSR1), and CYTOCHROME 
P450 710 A (CYP710A) b) Protein-based biosensors include Perfringolysin O Domain 4 (PFO-D4), Anthrolysin O Domain 4 (ALO-D4), and the Glycosyltransferases, 
Rab-like GTPase activators and Myotubularins (GRAM) domain. c) Environmental-sensitive probes include di-4-aminonaphthylethenylpyridinium (Di-4- 
ANEPPDHQ), push-pull pyrene (PE). Sterol binding probes shown are nitrobenzoxadiazole (NBD) and boron-dipyrromethene (BODIPY). d) Sterol binding and analog 
probes including Filipin-III, dehydroergosterol (DHE), BODIPY-cholesterol, and NBD-cholesterol for sterol visualization and tracking. e) Membrane contact sites 
(MCS) as potential mediators of sterol transport between cellular membranes and as such possibly novel targets for sterol perturbation. Depicted is the potential 
transport via the counter-transport principle utilizing OSBP (red) and VAPA (dark blue) proteins and involving PI4P (green) as described for animals. f) Artificial 
membrane systems including different classes of liposomes (SUVs, LUVs, GUVs) for studying membrane dynamics and protein localization. g) Quantification methods 
include liquid-chromatography mass spectrometry (LC-MS), gas-chromatography mass spectrometry (GS-MS), and nuclear magnetic resonance (NMR) spectroscopy. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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protein-Related Protein 1 L (ORP1L) tethers the late endosome/lyso
some membrane to the ER and promotes cholesterol transport (Zhao and 
Ridgway, 2017). Lipid transfer can be driven by a counter-transport 
principle. This mechanism was elucidated in detail for the oxysterol 
binding protein (OSBP), the original namesake for the eponymous pro
tein family. OSBP tethers Golgi membranes with the ER by binding an 
internal phospho-site to the ER-anchored vesicle-associated membrane 
protein (VAMP)-associated protein A (VAPA) while its pleckstrin ho
mology (PH) domain binds to Golgi-residing phosphatidylinositol 4- 
phosphate (PI4P). The ORD domain of OSBP subsequently transfers a 
cholesterol from the ER to the Golgi membrane, after which a PI4P is 
transported in the opposite direction and is then dephosphorylated by 
Phosphoinositide-4-phosphatase Sac1 (Mesmin et al., 2013). Conse
quently, PI4P is continuously depleted from the ER, creating a PI4P 
gradient used to drive cholesterol transport.

In yeast, Lam1/3p protein from the Lam family tethers ER mem
branes with the PM and could be one of the carriers responsible for the 
rapid transport of newly synthesized sterols to the PM (Gatta et al., 
2018). While evidence for homologous mechanisms in plants remain 
sparse, both the ORP and the STARD protein families are conserved in 
plants with 12 proteins of the ORP family found in Arabidopsis and six 
proteins with a START domain structurally similar to the mammalian 
one (Schrick et al., 2004b; Skirpan et al., 2006). In addition, the 
oxysterol-binding protein-related protein 2 A (ORP2A) localizes to 
MCSs, interacts with vesicle associated protein 27–1 (VAP27–1) and is 
proposed to act during autophagy (Ye et al., 2022). Furthermore, 
transport of diacylglycerol by Synaptotagmin 1 (SYT1) at ER-PM contact 
sites occurs in Arabidopsis (García-Hernández et al., 2024). These recent 
findings indicate that the lipid-transfer pathway at MCSs may also occur 
in plants.

2.4. Role of sterols at the plant PM

The interplay of sterols and sphingolipids, promoted through the 
interaction of the sterol hydroxyl group with the sphingolipid amide 
group, coined initially the principal of “lipid raft”, where patches of 
densely packed lipids can diffuse through less densely packed regions of 
the PM (Brockerhoff, 1974; Brown and London, 1998). The concept is 
today revised and nanodomains or “lipid rafts” are not defined anymore 
by the mere presence of sterols. Rather, nanodomain refers to any pro
tein or lipid accumulating in specific domains within the local mem
brane environment (Jaillais et al., 2024). Nevertheless, sterols can play a 
significant role in signal transduction by forming interaction platforms 
in some nano- and microdomains for membrane proteins that require 
sterol-rich regions (Sulkarnayeva et al., 2014; Tang et al., 2021). For 
instance, the membrane-bound receptor kinase FLAGELLIN SENSING 2 
(FLS2), involved in innate immunity responses, changes its PM dynamics 
upon perturbation of sterols, resulting in impaired signaling and im
mune response (Cui et al., 2024; Cui et al., 2018). The sterol content of 
the PM may also influence plant pathogen-interactions in other ways. 
Reduced sterol content at the PM increases permeability, which patho
gens exploit to induce nutrient efflux into the apoplast where they thrive 
(Sulkarnayeva et al., 2014; Wang et al., 2012). Furthermore, Solanum 
tuberosum REMORIN group 1 isoform 3 (StREM1.3) restricts the move
ment of viruses between cells by reducing the permeability of plasmo
desmata in a sterol-dependent manner, indicating a multifaceted role of 
sterols in the plant innate immunity (Gronnier et al., 2017).

As mentioned before, lipid droplets emerge from the ER and are 
important structures involved in lipid homeostasis including sterol 
conjugates homeostasis. While the exact mechanism behind lipid 
droplet formation is still not fully understood, altered sterol composition 
was shown to perturb the biogenesis of lipid droplets in seeds (Yu et al., 
2021).

Sterol composition and cell wall synthesis have some intriguing 
connections. Cellulose synthesis was first suggested to be initiated by a 
sitosteryl glucoside primer. However, this hypothesis has since then 

been ruled out as cellulose synthesis can be achieved in vitro without a 
sitosteryl glucoside primer (Cho et al., 2017; DeBolt et al., 2009; Peng 
et al., 2002; Purushotham et al., 2016). Nevertheless, sterol biosynthesis 
mutants exhibit reduced cellulose content. While some of the pheno
types observed in those mutants were rescued by addition of brassi
nosteroids, cellulose defects were not restored, suggesting that cellulose 
synthesis depends on membrane sterol composition (Schrick et al., 2012; 
Schrick et al., 2004a).

Interestingly, sterol biosynthesis enzymes can localize to the cell 
plate, providing evidence for the long-hypothesized role of sterols in 
regulating cell division and apposition of newly synthesized cell walls 
(Frescatada-Rosa et al., 2014; Ohta et al., 2024; Schrick et al., 2000). 
These results point towards a complex relationship between different 
sterols and downstream biosynthetic pathways, which might complicate 
interpretations. Current evidence points to a model where sterol-rich 
membrane domains facilitate localization and function of the Cellulose 
Synthase Complex (CSC), though the precise molecular details remain to 
be elucidated (Bessueille et al., 2009; Ohta et al., 2024). One key factor 
could represent the over 100 S-acylation sites in a single CSC, a post- 
translational modification (PTM), that is required for correct mem
brane localization of the CSC and is associated with sterol-rich regions 
(Chamberlain and Shipston, 2015; Hemsley, 2009; Kumar et al., 2016). 
It is thought that sterols might also be involved in the perception of the 
plant cell wall integrity. A possible connection lies in proteins involved 
in cell wall integrity sensing, such as the receptor-like kinase FERONIA 
(FER), that induces responses to cell wall perturbation by Ca2+ signaling 
and direct phosphorylation of COMPAGNON OF CELLULOSE SYN
THASE 1 (CC1) (Liu et al., 2024; Shih et al., 2014; Wang et al., 2022). 
The two GPI-anchored proteins LORELEI and LORELEI-like Glyco
sylphosphatidylinositol-anchored protein 1 (LLG1) potentially function 
as co-receptors and help chaperone FER during transport to the PM (Li 
et al., 2015; Liu et al., 2016). Since GPI-anchored proteins are typically 
involved in delivering proteins to sphingolipid and sterol-rich regions 
(Saha et al., 2016; Stulnig et al., 1997), the FER microdomain might 
depend on sterol dynamics. This is further supported by promotion of 
sterol-rich regions via C2 domain ABA-related (CAR) proteins upon FER 
activation (Chen et al., 2023). However, while the precise molecular 
mechanisms that would underpin such hypothesis are lacking, the strong 
connection between GPI-anchored proteins and sterols appears to link 
phytosterols cell wall integrity sensing and FERONIA. Another connec
tion between cell wall integrity and sterols was recently made in yeast, 
where the yeast cell wall integrity sensors WSC1, WSC2 and WSC3 
interacted with ergosterol to promote signaling (Bernauer et al., 2023). 
Homologs for these proteins are not present in Arabidopsis, but similar 
processes might exist.

Sterol conjugates play crucial roles in sterol homeostasis and main
taining membrane integrity, particularly during stress responses (Ferrer 
et al., 2017; Rogowska and Szakiel, 2020; Singh et al., 2018). Both SGs 
and ASGs act synergistically with FSs to markedly increase lipid order in 
biological membranes (Grosjean et al., 2015). Consequently, they can be 
seen as crucial modulators of the plant PM involved in a variety of 
processes. As such they have been hypothesized to play a role in nano- 
and microdomains (Ferrer et al., 2017). Their role is well established in 
responses to abiotic and biotic stressors. Silencing of sterol glycosyl
transferases in Withania somnifera results in reduced SG levels lead to 
higher susceptibility to heat stress, suggesting possibly a role of SGs in 
maintaining membrane integrity during temperature changes (Mishra 
et al., 2015; Saema et al., 2016; Singh et al., 2017). Furthermore, the 
overexpression of sterol glycosyltransferase enzymes conferred 
improved immunity against Alternaria brassicicola fungus as well as 
improved temperature and salt tolerance (Mishra et al., 2017; Mishra 
et al., 2013). An increase in in SGs and ASGs at the PM under hyper
gravity conditions of azuki beans, suggests a possible link between 
conjugated sterols and gravity response (Sakaki et al., 2023). A recent 
analysis in tomato revealed a possible connection between fruit devel
opment and SGs by means of silencing a sterol glycosyltransferase 
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(Chávez et al., 2023). However, single mutants in SG/ASG biosynthesis 
often show surprisingly mild phenotypes, suggesting functional redun
dancy or context-specific roles (DeBolt et al., 2009; Mishra et al., 2015; 
Stucky et al., 2015). SEs appear to serve primarily in sterol homeostasis 
rather than direct membrane function (Ferrer et al., 2017; Lara et al., 
2018). Studies on Arabidopsis mutants defective in SE formation show 
accumulation of free sterols and formation of abnormal lipid bodies, 
suggesting that SE formation is important for cells to manage excess 
sterols, potentially storing them for later use (Lara et al., 2018; Shimada 
et al., 2020; Shimada et al., 2019). While less common, modified sterols 
such as sterol esters and sterol glucosides also exist in mammals. 
Recently, cholesterol glucosides have been identified in mammalian 
cells, particularly during stress responses like heat shock, suggesting 

some conservation of these modification strategies across kingdoms 
(Grille et al., 2010; Shimamura, 2020).

3. Methods to study sterols at the PM

3.1. Studying sterols using genetics and molecular biology

Sterol biosynthesis mutants are valuable tools to elucidate the role of 
sterols in cellular processes. The severe dwarf phenotypes of some of the 
mutants were published many decades ago, long before the biosynthesis 
steps of sterol were fully resolved but provided precious clues to the 
order of the enzymatic steps (Gachotte et al., 1995; Mirza and Maher, 
1987). One major challenge when studying sterol biosynthesis mutants 

Table 1 
List of the key mutants in the sterol biosynthesis pathway of Arabidopsis thaliana.

Locus Gene Name Type of mutant Phenotype Rescued 
by BL

Reference

At5g13710 SMT1 cph-G213 EMS Embryonic patterning defects, seedling patterning defects, short 
hypocotyl and root, malformed cotyledons

No (Schrick et al., 2000)

At5g13710 SMT1 orc EMS Reduced root and shoot growth, defects in cell polarity and auxin 
transport, altered embryo and root patterning, and abnormal cotyledon 
and vascular development. It also shows reduced fertility and altered 
gravitropic responses.

No (Willemsen et al., 
2003)

At5g13710 SMT1 cph-T357 EMS Embryonic patterning defects, seedling patterning defects, short 
hypocotyl and root, malformed cotyledons

No (Schrick et al., 2002)

At5g13710 SMT1 smt1–1 Ac transposon Reduced fertility, stunted siliques, shorter petioles, smaller/rounder 
leaves, compact rosette, shorter stems, aberrant embryo development, 
conditional root growth defects on agar media

No (Diener et al., 2000)

At5g13710 SMT1 smt1–3 Ac transposon Similar to smt1–1, but with somewhat better overall growth in soil 
compared to other smt1 alleles.

No (Diener et al., 2000)

At4g12110 SMO1–1 smo1–1.1 T-DNA insertion: 
SALK_021399

Single mutant shows no phenotype. 
smo1–1 smo1–2 is embryo lethal. 
smo1–1.1 smo1–3.1 has a mild phenotype with shorter siliques and 
smaller plants.

– (Song et al., 2019)

At4g22756 SMO1–2 smo1–2 T-DNA insertion: 
CSHL_GT13595

Single mutant shows no phenotype. 
smo1–1 smo1–2 is embryo lethal.

– (Song et al., 2019)

At4g22755 SMO1–3 smo1–3.1 T-DNA insertion: 
CSHL_ET12310

Single mutant shows no phenotype. 
smo1–1.1 smo1–3.1 has a mild phenotype with shorter siliques and 
smaller plants.

– (Song et al., 2019)

At5g50375 CPI cpi1–1 Ds transposon insertion 
line: GT_5_12417

Clustered small cells and stomata. No (Men et al., 2008)

At1g11680 CYP51 cyp51A2–3 T-DNA insertion Seedling lethal, pale yellow plants die at a variety of seedling stages. No (Kim et al., 2005)
At3g52940 FK/HYD fk-J3158 EMS, weak allele Clusters of small cells and stomata in leaf epidermis, defects in vascular 

patterning, root growth and embryo development
No (Qian et al., 2013)

At1g20050 HYD1 hyd1-E508 EMS Embryonic and seedling patterning defects, short hypocotyl and root No (Schrick et al., 2002)
At1g20050 HYD1 hyd1-R216 EMS Embryonic and seedling patterning defects, short hypocotyl and root No (Schrick et al., 2002)
At2g29390 SMO2–1 smo2–1.1 T-DNA insertion: 

SALK_105017
Single mutant no obvious phenotype, slightly shorter hypocotyls and 
roots. 
smo2–1 smo2–2 homozygous double mutant is embryo lethal, 
heterozygous shows severe dwarf phenotype.

– (Zhang et al., 2016)

At1g07420 SMO2–2 smo2–2 T-DNA insertion: 
SALK_030719

Single mutant no obvious phenotype, slightly shorter hypocotyls and 
roots. 
smo2–1 smo2–2 homozygous double mutant is embryo lethal, 
heterozygous shows severe dwarf phenotype.

– (Zhang et al., 2016)

At1g20330 SMT2 smt2 T-DNA insertion: 
GABI_443_F03

Normal leaf morphology, slightly irregular leaf vascular development, 
normal plant stature.

No (Nakamoto et al., 
2015)

At1g20330 SMT2 cvp1–3 EMS Round, cupped epinastic cotyledons, fragmented and less reticulated 
cotyledon vein pattern, misshapen vascular cells, serrated sepal and 
petal tips, slightly dwarf plants, reduced stature.

No (Carland et al., 2010)

At1g76090 SMT3 smt3 T-DNA insertion: 
SALK_085292

Single mutant indistinguishable from wildtype. 
cvp1–3/smt2 smt3 double mutant: Enhanced cotyledon, vein, and root 
defects compared to cvp1; dwarfism; loss of apical dominance; reduced 
fertility; abnormal floral development including organ spacing defects 
and homeotic transformations; and epidermal cell pattern defects 
similar to smt1 mutants.

No (Carland et al., 2010; 
(Nakamoto et al., 
2015)

At3g02580 DWF7 dwf7–1 T-DNA insertion Severe dwarfism compared to wild-type plants, with significantly 
slower rates of cell division in callus tissue and impaired shoot 
regeneration.

Yes (Choe et al., 1999)

At1g50430 DWF5 dwf5–7 T-DNA insertion: 
SALK_127066

Exhibits a semi-dwarf growth habit with reduced rosette width, plant 
height, silique length, and seed number compared to wild-type plants.

Yes (Du et al., 2016)

At3g19820 DWF1 dwf1 T-DNA insertion: 
SALK_006932

Dwarf plants with dark-green colour, photomorphogenesis in the dark, 
delayed senescence, reduced apical dominance and fertility. 
Homozygous dwf1 mutants are infertile. The dwarf phenotype can be 
rescued by exogenous brassinolide application.

Yes (Du, 2005)
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lies in the pathway being closely intertwined with that of brassinoste
roids (Bajguz et al., 2020). Indeed, as brassinosteroids are derived from 
the sterol biosynthetic pathway, observed phenotypes of sterol biosyn
thesis mutants may result from BR perturbation and not from pertur
bation of sterol levels. In Table 1, we listed some of the key mutants for 
sterol biosynthetic enzymes and the phenotype associated to the loss-of- 
function. As expected, many mutants present strong phenotypes, most 
notably the dwarf mutants (dwf1, dwf5 and dwf7), which affect down
stream parts of the pathway and that can be partially or fully rescued by 
the exogenous application of brassinolide (BL), the most abundant 
brassinosteroid derivative

Fig. 2, Table 1) (Carland et al., 2002). By contrast, mutations in a 
number of proteins further upstream in the pathway cannot be rescued 
with brassinolides (Table 1). While laborious, careful dissection of the 
pathway through the help of the mutants could therefore aid in deci
phering which phenotypes can be attributed to perturbations in brassi
nosteroid signaling, and which ones are due to perturbation of sterol 
composition. However, it is of course also possible that sterol compo
sition at the PM participates in the fine tuning of brassinosteroid 
signaling and vice versa.

3.2. Perturbation of sterols by pharmacological approaches

Apart of the genetic approach, several drugs are available to target 
different steps in the sterol biosynthesis pathway, representing powerful 
tools in dissecting the sterol biosynthesis pathway. Excellent reviews 
have recently described inhibitors of the sterol biosynthesis pathway 
and their targets in great detail (Bajguz et al., 2020; De Vriese et al., 
2021). In this section, we summarize the available inhibitors by 
following their action along the biosynthetic pathway. The inhibitors 
mentioned in this review are listed in Table 2.

Statins are a group of compounds originally discovered as human 
cholesterol-lowering drugs, that act by inhibiting the 3-Hydroxy-3- 
Methyl-Glutaryl-coenzyme A Reductase (HMGR), a rate-limiting step 
in the mevalonate pathway upstream of sterol biosynthesis (Chester and 
El Guindy, 2021; Endo, 2010; Endo et al., 1976a, 1976b). Among the 
HMGR inhibitors used in plant research, lovastatin has been the most 
widely employed, followed by mevastatin and atorvastatin, with their 
application consistently resulting in severe growth defects and reduced 
phytosterol levels (Boutté et al., 2011; Frescatada-Rosa et al., 2014; 
Shimada et al., 2019; Suzuki et al., 2003). Recent work resolved the 
crystal structure of AtHMG1 in complex with a statin revealing the mode 
of action of statins in detail (Haywood et al., 2022). Although statins are 
effective at reducing sterol levels in plants, it has to be noted that 
because of its central role in the synthesis of various compounds such as 
for example chlorophyll and gibberellins, inhibition of the MVA 
pathway will inevitably have pleiotropic effects (Chatterjee and Kundu, 
2015; Kasahara et al., 2002).

Terbinafine belongs to the allylamines, a class of fungicides inhib
iting ergosterol synthesis, and blocks the activity of Squalene Epoxidase 
(SQE) in both fungi and plants (Laranjeira et al., 2015; Ryder, 1992). 
Squalestatins (also called zaragozic acids) are potent inhibitors of 
squalene synthase (SQS) in mammals, though their phenotypic effects in 
plants are less well characterized, although it is known that treatment 
causes infertility in Arabidopsis (Baxter et al., 1992; Hartmann et al., 
2000; Wentzinger et al., 2002). Ro 48–8071 is another drug originally 
developed for lowering human cholesterol levels, but targeting the 
cyclization step yielding lanosterol and cycloartenol in animals and in 
plants, respectively (Morand et al., 1997). The crystal structure of a 
prokaryotic squalene cyclase has been resolved in complex with Ro 
48–8071 (Lenhart et al., 2002). Interestingly, while Ro 48–8071 effec
tively inhibits Cycloartenol Synthase (CAS) in Arabidopsis, it also lowers 
the expression of SMT2 resulting in a disproportional reduction of 
phytosterols, providing an interesting opportunity to selectively inhibit 
membrane sterols with smaller effects on brassinosteroid biosynthesis 
(Gas-Pascual et al., 2015).

A recent study by Wang et al. (2024) systematically evaluated 
mammalian cholesterol biosynthesis inhibitors for their potential to 
target analogous steps in plant sterol synthesis (Wang et al., 2024). 
Bifonazole, clotrimazole, and econazole were identified as potent in
hibitors of CYP51G1 (14α-demethylase) in Arabidopsis, causing growth 

Table 2 
List of drugs used to study sterol and brassinosteroid biosynthesis. EA.: Enzy
matic assay, PA.: Phenotypic analysis and comparison to mutants, MS.: Analysis 
of accumulation of precursor compounds using MS, CS.: Crystallographic anal
ysis of mechanism.

Compound Description Target validation References

Mevastatin HMG CoA reductase 
(HMGR) inhibitor

EA, PA, MS, CS 
(AtHMGR with 
different statin)

(Kasahara et al., 
2002)

Atorvastatin HMG CoA reductase 
(HMGR) inhibitor

EA, PA, MS, CS 
(AtHMGR with 
Atorvastatin 
superimposed)

(Haywood et al., 
2022)

Lovastatin HMG CoA reductase 
(HMGR) inhibitor

EA, PA, MS, CS 
(AtHMGR with 
different statin)

(Suzuki et al., 
2003)

Squalestatin Squalene Synthase 
(SQS) inhibitor

EA, PA, MS (Baxter et al., 
1992; Hartmann 
et al., 2000; 
Wentzinger 
et al., 2002)

Terbinafine Squalene epoxidase 
(SQE) inhibitor

EA, PA, MS (Laranjeira et al., 
2015; Ryder, 
1992)

Ro 48–8071 Inhibits Cycloartenol 
synthase (CAS) 
inhibitor

EA, PA, MS, CS (Gas-Pascual 
et al., 2015; 
Lenhart et al., 
2002; Morand 
et al., 1997)

Clomiphene CPI1 PA, MS (Wang et al., 
2024)

Clotrimazole Cytochrome P450 
inhibitor

EA, PA, MS (Sohrabi et al., 
2015; Wang 
et al., 2024)

Bifonazole C-14 demethylase 
(CYP51) inhibitor

PA, MS Wang et al., 
2024)

Econazole C-14 demethylase 
(CYP51) inhibitor

PA, MS Wang et al., 
2024)

Voriconazole C-14 demethylase 
(CYP51) inhibitor

PA, MS (Rozhon et al., 
2013)

Fenpropimorph C-14 reductase 
inhibitor (FACKEL)

EA, PA, MS (He et al., 2003; 
Taton et al., 
1989; Schaller 
et al., 1992)

15-azasterol C-14 reductase 
inhibitor (FACKEL)

EA, PA, MS (Schrick et al., 
2002; Schmitt 
et al., 1980; 
Taton et al., 
1989)

Azosterols Sterol 
Methyltransferase 
(SMT) inhibitors

PA, MS (Darnet et al., 
2020)

S15, S16, 
S17

SMT2/SMT3 PA, MS (Darnet et al., 
2020)

S11, S12 SMT1 and SMT2/ 
SMT3

PA, MS (Darnet et al., 
2020)

S13, S14 SMT1 PA, MS (Darnet et al., 
2020)

Spironolactone Inhibits 
brassinosteroids, 
downstream of 
campesterol

– (Asami et al., 
2004)

Triadimefon Inhibits DWF4 
downstream of 
Campesterol

– (Asami et al., 
2003)

Brassinoazole Inhibits Brassinolide 
synthesis

– (Asami et al., 
2000)

Brassinolide To complement 
brassinosteroid 
related phenotypes

– (Tang et al., 
2020)
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inhibition leading to accumulation of 14α-methyl sterol intermediates. 
Direct binding of clotrimazole to CYP51G1 was confirmed through drug 
affinity-responsive target stability assays, and this compound also 
inhibited CYP710A sterol C22-desaturase based on altered β-sitosterol/ 
stigmasterol ratios. Notably, the selective estrogen receptor modulator 
clomiphene was found to have an unexpected target in plants, inhibiting 
CPI1 (cyclopropyl-cycloisomerase) as evidenced by accumulation of 
cycloeucalenol and other 9β,19-cyclopropylsterols.

The most widely used sterol inhibitor is Fenpropimorph that inhibits 
the C-14 reductase FACKEL (FK)(Grandmougin et al., 1989; He et al., 
2003; Laloi et al., 2007; Qian et al., 2013; Schrick et al., 2004a; Wang 
et al., 2021). Plants treated with fenpropimorph exhibit, phenotypically 
similar to the fk mutants, reduced length of shoot, petiole and roots that 
cannot be rescued by application of brassinolide. Furthermore, com
pounds upstream of the C-14 reduction step accumulate, while phytos
terols and brassinosteroids are severely decreased (He et al., 2003). An 
alternative C-14 reductase inhibitor represents 15-azasterol, that was 
proposed to be more specific and act at lower concentrations, although 
much less characterized (Schrick et al., 2002; Schmitt et al., 1980; Taton 
et al., 1989).

Independent of enzymatic activity, sterols can be depleted from the 
PM by short treatment with sterol-binding compounds such as methyl- 
β-cyclodextrin (MβCD). MβCD forms a cyclic glucose oligomer and can 
bind to endogenous sterols (Furt et al., 2010; Kierszniowska et al., 2009; 
Valitova et al., 2014). This approach avoids perturbing other biosyn
thetic pathways and reduces the risk of indirect effects due to the short 
treatment time.

3.3. Quantification of sterols

Plant sterol quantification requires complementary analytical ap
proaches to capture both total sterol content and conjugated forms. Gas 
chromatography-mass spectrometry (GC–MS) following acid meth
anolysis and derivatization provides accurate quantification of total 
sterols using internal standards but hydrolyzes conjugates, thus losing 
information about their original forms. Therefore, parallel liquid 
chromatography-mass spectrometry (LC-MS) analysis of non- 
hydrolyzed samples is necessary to profile intact sterol esters, glyco
sides, and other conjugates (Bahammou et al., 2024; Child and Kuksis, 
1983; Jouhet et al., 2017; Khoury et al., 2018; Wewer et al., 2011; Zhang 
et al., 2005).

While most studies quantify total sterols in whole-plant or specific 
tissues without fractionation (Aboobucker et al., 2021; Carland et al., 
2010; Diener et al., 2000; Wewer et al., 2011), this approach does not 
reveal the actual stoichiometry of sterols at the PM, as demonstrated by 
a recent comprehensive analysis of (Bahammou et al., 2024). To draw 
accurate conclusions about membrane composition and function, it is 
essential to employ subcellular fractionation coupled with targeted lipid 
analysis, as changes in total lipid content may not reflect changes in 
specific cellular compartments.

3.4. Sterol-protein associations

The detergent-resistant membrane (DRM) approach has been used 
extensively to decipher which part of the membrane proteome associ
ates with sterol-enriched membrane. DRM involves treating cell mem
branes with non-ionic detergents like Triton X-100 at 4 ◦C, where some 
membrane components resist solubilization and can be isolated by 
centrifugation (Brown and Rose, 1992). These DRMs are typically 
enriched in sterols, sphingolipids, and certain proteins, leading re
searchers to interpret DRM association as evidence for proteins residing 
in sterol/sphingolipid-rich “lipid rafts” (Borner et al., 2005; Brown and 
London, 1998; Kierszniowska et al., 2009). While this method is widely 
used to study sterol-protein interactions, concerns have been raised of 
how to interpret DRMs and how well the approach reflects pre-existing 
membrane organization (Brown, 2006; Lichtenberg et al., 2005). 

Consequently, DRMs should be interpreted cautiously and validated 
with complementary, detergent-free approaches that can study mem
brane organization under more physiological conditions. Styrene Maleic 
Acid Lipid Particle (SMALP) can solubilize proteins in a close to native 
lipid environment and has been proposed as an alternative to traditional 
DRM methods (Teo et al., 2019).

3.5. Visualization of sterol dynamics

Another approach to determine if a protein of interest is associated 
with membrane-based sterols consists in using sterol probes or bio
sensors to colocalize sterols with the fluorescent signal of the protein of 
interest. These probes may also give some insight on the sterol dynamics 
at the PM. Sterol probes are molecules that bind sterols or probes that 
change behavior depending on the physical properties of the membrane. 
In plants, the most widely used molecule is Filipin-III, a naturally fluo
rescent polyene macrolide antibiotic. Upon binding to the free hydroxyl 
group of sterols, Filipin-III exhibits a shift in its excitation spectrum 
towards lower wavelengths, which can be used to visualize filipin-sterol 
fluorescence as depicted in Fig. 3a (Boutté et al., 2011; Castanho et al., 
1992). However, its photosensitivity resulting in rapid bleaching can be 
challenging during imaging experiments. Filipin-III is also highly cyto
toxic and has been shown to disintegrate membranes (Robinson and 
Karnovsky, 1980). For these reasons, it is unclear how accurately sterol 
dynamics observed using filipin-III relate to native dynamics.

Phase-sensing probes like Di-4-ANEPPDHQ, which change their 
emission spectrum based on the lipid environment and membrane 
fluidity, have emerged as useful sterol markers. They can be used to 
assess sterol-rich regions and have been successfully employed in plants 
(Xu et al., 2020; Zhao et al., 2015). By imaging the sample in two 
channels, a ratio can be calculated through generalized polarization that 
indicates the degree of membrane order (Fig. 3c). When using these 
probes, one must consider that there is no direct interaction with sterols, 
which could lead to unwanted artifacts such as differences in membrane 
fluidity due to temperature changes rather than sterol content. Although 
Di-4-ANEPPDHQ is less toxic to cells than Filipin-III, it is not taken up as 
easily, which can cause problems when imaging cells that are buried 
deep in tissues (Zhao et al., 2015).

Laurdan functions similarly to Di-4-ANEPPDHQ but has less sensi
tivity to sterol content in the membrane and has been less used in plant 
research (Amaro et al., 2017). Recently, a novel probe called push-pull 
pyrene (PA) was developed. This probe acts like Laurdan, but is pro
posed to have several key advantages (Niko et al., 2016) including 
increased brightness, better photostability and better uptake due to the 
smaller size, and has been used in Arabidopsis (Tang et al., 2021). A 
related group of probes are mechanoprobes that can measure the vis
cosity of membranes and thus indirectly sterol dynamics, as they typi
cally are associated with higher viscosity. A set of four probes that target 
vacuole, cytosol, PM, and cell wall has been used successfully in Ara
bidopsis (Michels et al., 2020).

In animal research, fluorescent cholesterol analogs are heavily used 
for sterol visualization. Popular compounds include dehydroergosterol 
(DHE), NBD-cholesterol, and BODIPY-cholesterol (Barrantes, 2022). 
However, how closely cholesterol analogs can resemble native choles
terol dynamics is not certain. In plants, this question mark is even more 
pronounced due to the high variety of sterol species and low abundance 
of cholesterol. However, some attempts in plants have been made and, if 
meticulously designed, such experiments may certainly yield valuable 
data (Kumar et al., 2021; Michels et al., 2020).

Protein-based biosensors that utilize Cholesterol binding Domain 4 
of Perfringolysin O (PFO-D4), Anthrolysin O Domain 4 (ALO-D4) or the 
Glycosyltransferases, Rab-like GTPase activators and Myotubularins 
(GRAM) domain of GRAMD1s/Asters were developed in mammalian 
cells. Those domains bind accessible cholesterol, a small fraction of 
membrane sterols that are not tightly bound to other membrane lipids 
(Koh et al., 2023). In an attempt to adapt the system for phytosterols, the 
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D4 domain was mutated to facilitate binding to campesterol and sitos
terol and successfully used to visualize sterol dynamics in Arabidopsis as 
depicted in Fig. 3b (Ukawa et al., 2022). These novel sterol probes may 
advance sterol research through their ability to be genetically encoded. 
Compared to traditional methods using Filipin-III or other probe-based 
approaches, they could also offer a less invasive alternative.

3.6. Sterol dynamics in model membranes

Model membranes have been long in use, and provide powerful tools 
to understand the biophysical properties of membrane lipids (Reeves 
and Dowben, 1969). Unlike the complex and dynamic environment of 
native cellular membranes, artificial model membranes allow precise 
control over lipid composition and environmental conditions (Rumiana 
and Carlos, 2022). These systems are classified primarily by size and 

Fig. 3. Microscopic visualization of sterols in Arabidopsis. a) Filipin-III staining of the Arabidopsis root tip. Epidermal and cortical cells are labeled upon filipin-III 
staining when excited at 364 nm, visualizing 3-β-hydroxysterols in complex with filipin-III (left panel). Untreated cell show no fluorescence signal when imaged with 
the same settings (right panel). Adapted from (Boutté et al., 2011). b) The protein-based biosensor SP-sfGFP-D4L localizes to potential sterol-rich punctae in Ara
bidopsis cotyledons. The cholesterol-binding domain 4 (D4) of perfringolysin O (PFO) from Clostridium perfringens with a D44L mutation was fused to a secretion 
peptide (SP) and a superfolder green fluorescent protein (sfGFP) yielding a potential sterol biosensor: SP-sfGFP-D4L. Expressed in 8-day old Arabidopsis cotyledons 
results in localization of the biosensor to punctae that could resemble sterol-rich nanodomains (upper panel). Treatment with the sterol-depleting drug methyl- 
β-cyclodextrin (MβCD) causes punctae to diffuse. Adapted from (Ukawa et al., 2022). c) Quantitative visualization of membrane order using the environment- 
sensitive probe di-4-ANEPPDHQ in Arabidopsis root hair. Using excitation at 488 nm, emissions in two channels were recorded with windows of 500–580 nm 
and 620–750 nm (first and second panel from the left). The merged image of the two emission channels does not give immediate inside in the distribution of lipid 
order (third panel from the left). To spatially visualize the degree of membrane order, generalized polarization (GP) processing was performed to quantitatively infer 
the degree of membrane order from the ratio of the two emission channels. GP values are indicated by Hue-Saturation-Brightness (HSB) with values ranging from −
0.69 (lower order, blue) to 0.92 (higher order, pink) showing higher lipid order at the root tip (last three images on the right). Adapted from (Zhao et al., 2015). Scale 
bar = 10 μm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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lamellarity. Each liposome class offers distinct advantages for sterol 
research: Small Unilamellar Vesicles (SUVs, 20–100 nm) are useful for 
studying sterol distribution in high curvature membranes, trans
membrane movement and vesicle fusion (Backer and Dawidowicz, 
1979; Chappa et al., 2021; Compassi et al., 1997; Salman et al., 1991; 
Schroeder et al., 1987; Wei et al., 2022); Large Unilamellar Vesicles 
(LUVs, 100–1000 nm) provide a more physiologically relevant system 
for studying sterol-induced membrane ordering and domain formation, 
being particularly useful for fluorescence spectroscopy (Coste et al., 
2006; Grosjean et al., 2015; Kaiser et al., 2009; Ragaller et al., 2024); 
Giant Unilamellar Vesicles (GUVs, >1 μm) allow direct visualization of 
sterol-rich domains and phase separation through confocal microscopy 
and precise stochiometric ratios, often in the form of a ternary mix 
comprised of lipids, sterols and sphingolipids (Ariola et al., 2009; Bacia 
et al., 2005; Grosjean et al., 2015; Ragaller et al., 2024; Rumiana and 
Carlos, 2022). The distribution and behavior of sterols can here be 
monitored using a range of different probes like environment-sensitive 
fluorescent probes such as Di-4-ANEPPDHQ or Laurdan, or fluorescent 
lipid analog labeled with e.g. BODIPY (Ariola et al., 2009; Leonard et al., 
2015). Recently published work on push-pull probes employed fluo
rescence lifetime imaging (FLIM) to conduct membrane fluidity mea
surements in GUVs (Ragaller et al., 2024). More advanced protocols 
allow for studying of protein-lipid interactions by fusing living cells and 
cell-derived membrane vesicles with artificial vesicles (Bahadori et al., 
2018; Biner et al., 2016; Moreno-Pescador et al., 2023). This could 
potentially be used in plant biology to study membrane proteins in 
controlled lipid environments by fusing e.g. suspension cell culture cells 
or protoplast with GUVs. Bending rigidity and other mechanical prop
erties of lipid membranes can be measured using GUV-based techniques 
such as fluctuation spectroscopy, micro-aspiration and optical manipu
lation (Dimova, 2019; Dimova, 2014; Garten et al., 2017; Prévost et al., 
2017; Solmaz et al., 2012; Yamada et al., 2014).

Multilamellar vesicles (MLVs), as used by Beck et al., are particularly 
valuable for Solid-state deuterium NMR spectroscopy (2H NMR) studies 
of sterol-membrane interactions because their multiple bilayers provide 
a high lipid concentration needed for good signal-to-noise ratio (Beck 
et al., 2007). 2H NMR provides unique insights into sterol-membrane 
dynamics by measuring order parameters and molecular motions in 
model membrane systems (Léonard and Dufourc, 1991).

Supported lipid bilayers (SLBs), where a lipid bilayer is deposited 
onto a solid support, represent another valuable model membrane sys
tem for sterol research (Castellana and Cremer, 2006). Unlike freely 
suspended vesicles, SLBs enable the use of surface-sensitive analytical 
techniques such as atomic force microscopy, quartz crystal microbal
ance with dissipation monitoring, and various spectroscopic methods 
(Bar et al., 2023; Lee and Bain, 2005; Lv et al., 2018). Recent advances in 
SLB fabrication methods, particularly the solvent-assisted lipid bilayer 
(SALB) technique, have enabled the creation of sterol-rich bilayers 
containing up to ~60 mol% sterol content - far exceeding what is 
possible with traditional vesicle fusion approaches (Jackman and Cho, 
2020). This allows SLBs to more accurately mimic the sterol-enriched 
domains found in biological membranes while maintaining the ability 
to precisely control composition. The planar geometry and stability of 
SLBs also make them particularly well-suited for studying how sterols 
influence membrane organization, protein-lipid interactions, and the 
formation of ordered membrane domains under carefully controlled 
conditions (Legrand et al., 2023).

4. Future perspectives in the field of membrane sterols

While sterols are major constituents of the cell surface, the extent of 
their influence on cellular processes remains largely unknown. Recent 
advances in imaging and lipid quantification could bring a fresh 
perspective. We think that some of the main future research directions in 
plant sterol biology could include: 

1. The role of membrane sterol in plant development and physiology:

Clarifying the interconnection between the BR and sterols biosyn
thetic pathways would help better manipulate membrane sterol 
composition and thus understand its importance for plant development. 
Furthermore, a comprehensive analysis of sterol composition and dy
namics in different plant tissues and developmental stages, using 
advanced mass spectrometry techniques coupled with subcellular frac
tionation would help elucidating the exact PM sterol composition during 
cell division, growth and differentiation. Moreover, the development of 
more specific and less disruptive probes for visualizing sterol dynamics 
in plant membranes would allow us to understand the role of sterol 
during cell differentiation events that require membrane partitioning 
(root hair growth, pollen tube growth, xylem formation etc.), or during 
responses to developmental signal or environmental cues. 

2. The mechanisms of sterol-enriched nanodomain formation:

Investigating the influence of sterol composition on the biophysical 
properties of plant membrane will be primordial to further understand 
the mechanism behind sterol-enriched nanodomain formation. In 
addition, further investigation into the subcellular localization of sterol 
biosynthesis enzymes, particularly during cell division, is needed to 
elucidate if those enzymes directly participate to regulation of the 
spatial distribution of sterol at the plasma membrane. 

3. The importance of sterol-enriched nanodomain for cell signaling:

Mechanistic studies to understand how sterol membrane organiza
tion is coordinated to cytoskeleton organization and cell wall synthesis 
will help elucidating the regulation of plasma membrane protein diffu
sion and subsequent signaling, including the potential role of membrane 
sterol on BR signaling.

In conclusion, while significant progress has been made in under
standing plant sterols, many challenges and open questions remain. The 
continued development of new tools and techniques, combined with 
interdisciplinary approaches, will be crucial for advancing the knowl
edge of these essential membrane components and their diverse roles in 
plant biology.
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