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Abstract: Developmental dyslexia (DD) is a multifactorial, specific learning disorder. Susceptibility
genes have been identified, but there is growing evidence that environmental factors, and especially
stress, may act as triggering factors that determine an individual’s risk of developing DD. In DD,
as in most complex phenotypes, the presence of a genetic mutation fails to explain the broad
phenotypic spectrum observed. Early life stress has been repeatedly associated with the risk of
multifactorial disorders, due to its effects on chromatin regulation, gene expression, HPA axis
function and its long-term effects on the systemic stress response. Based on recent evidence, we
discuss the potential role of stress on DD occurrence, its putative epigenetic effects on the HPA axis
of affected individuals, as well as the necessity of early and appropriate intervention, based on the
individual stress-associated (endo)phenotype.
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1. Introduction

Developmental dyslexia (DD) is a hereditary, multifactorial, specific learning disorder
characterized by difficulties to acquire the age-appropriate learning skills (reading, writing,
and spelling) [1–3]. DD affects 5–12% of individuals, resulting in unfavourable educational
and psychosocial outcomes [4,5]. It is mostly diagnosed in school age children, with normal
or above average IQ scores, without neurological or sensory conditions [6–8]. DD presents
phenotypic and genetic heterogeneity and 40–60% heritability, namely a strong genetic
component [9]. The individual’s genetic architecture, with hundreds of different variants in
interplay with different individual epigenomes, confers the complexity of DD as a hetero-
geneous disorder. Consequently, many aetiologies may confer to the DD phenotype. As it
has been already documented for other neurodevelopmental conditions, phenotypes result
from the interaction of risk genes epigenetically regulated by environmental factors, as well
as risk genes and/or environmental cues affecting brain connectivity. Variant frequency in
a population, interactions between genes and variants, and gene penetrance may further
contribute to the heterogeneity of complex phenotypes [10]. Children who develop DD
in preschool age have been reported to exhibit emotional (sadness, inadequacy, reduced
happiness and self-esteem, anxiety, shyness, suicide) and executive behavior disorders
(social isolation, disruption or aggression) in adolescence and adulthood [11]. Despite
their comorbidity with dyslexia, such phenotypes do not imply a cause-effect mechanism
for DD occurrence, but rather a putative implication of its maintenance [12,13]. In the
era of advanced technologies (imaging) and omics, research on DD unravels much more
complex aetiologies than those originally supported [14]. Such genome wide approaches
have only started to deepen our understanding on DD phenotypes, not by rejecting the
established knowledge but by adding information on complex molecular mechanisms and
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their interplay with risk genes [15,16]. DD might arise from stress response system dysreg-
ulation, due to excessive stress exposure [5,15,17]. The interaction between neural, genetic,
cognitive and environmental factors is believed to govern susceptibility, and its broad phe-
notypic spectrum may be due to the individual’s genomic architecture, plus the epigenetic
alterations [18]. Some combinations of the aforementioned factors have been proposed to
increase and others to decrease DD liability, explaining its heritability variation [5,18,19].

2. Why Gene-Only DD Models Lack Cause-Effect Specificity?

DD candidate gene-association and GWAS studies have identified susceptibility genes
and genetic risk variants [2,14,20,21]. The absence of cause-effect mutations suggests that
the presence of a genetic alteration may not sufficiently explain the phenotype or provide a
solid clue to etiopathology [21]. The presence of a mutation does not confer susceptibility to
DD per se, but depends on the environmental trigger that may change penetrance and/or
expressivity, reflecting the complex etiopathogenesis. Thus, DD is rather the result of the
combinatory effects of environmental triggers and risk genes. Interactions between genes
and environment can modulate genetic susceptibility to DD-related phenotypes [22–25].
Specifically, gene-gene (GxG/epistasis) and genotype-environment (GxE) interactions
could modify the expression of individual genes, further influencing genetic susceptibility
and broadening the DD phenotypic spectrum. The observed phenotypic heterogeneity of
DD, including its spectrum of phenotypes and endophenotypes, may be further explained
by inter-individual variation and genotype-epigenotype interactions [26–28]. Table 1 sum-
marizes literature findings that advocate the role of environment in the putative modulation
of genetic susceptibility, thus affecting the individual DD risk.

Table 1. Environmental components that may influence developmental dyslexia and sources of evidence.

Environmental Component References

Education The interface between genetics and psychology: lessons from
developmental dyslexia [28]

Family environment, parental education, living
environment

Personality, Behavior Characteristics, and Life Quality Impact of Children
with Dyslexia [29]

Education of the mother, family history of language or
psychiatric problems, perinatal problems and health

problems in early childhood

Environmental and genetic variables related with alterations in language
acquisition in early childhood [30]

Maternal smoking, family education, birth weight,
socioeconomic status

Genetic and environmental risk factors for developmental dyslexia in
children: systematic review of the last decade [31]

Socioeconomic status

Socioeconomic status and cognitive functioning: moving from correlation
to causation [32]

Association of Child Poverty, Brain Development and
Academic Achievement [33]

Socioeconomic status, home literacy environment,
family stresses, and child health

Child and environmental risk factors predicting readiness for learning in
children at high risk of dyslexia [34]

3. A Role for Stress in the DD Phenotype

A plethora of models have been proposed for DD etiopathology, supporting the critical
role of the environment [15,26]. Environmental triggers, such as stress, maternal diet, and
lifestyle have been proposed as modulators of genetic susceptibility via posttranslational,
epigenetic interactions [23,28–40]. Stress itself seems to be a fundamental environmen-
tal factor that could lead to DD or influence DD-related phenotypes, irrespective of the
presence or absence of genetic mutations in key risk genes. In individuals with genetic
mutations in dyslexia risk genes, stress may act epigenetically, and affect brain plasticity,
leading to more or less profound phenotypes. It is reasonable to assume that interindi-
vidual genetic and epigenetic variability could explain inter- or intra-familial differences.
Anatomical dysfunctions mainly located in the left hemisphere (temporoparietal, occipi-
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totemporal regions and frontal gyrus) have been observed in individuals with DD [6,41–44].
A recently proposed model for neurodevelopmental disorders associates the hemispheric
asymmetries, and therefore the observed atypical lateralization, with stress (chronic and
early life stress, ELS) and neurodevelopment [45]. It was proposed that the timing and
intensity of the stressor could result in hemispheric asymmetries and more or less promi-
nent phenotypes [45,46]. This model could apply and explain at least the stress related DD
endophenotype. Stress, and especially ELS during critical neurodevelopmental periods, is
known to influence neuroplasticity [47]. The influence of stress on the two hemispheres is
possibly not the same, as the two hemispheres present differences as far as it concerns their
regulatory impact on the hypothalamic-pituitary-adrenal (HPA) axis [45,48]. Thus, brain
asymmetries, like the ones observed in DD, if seen under the prism of early life recurrent
stress exposure, could be the result of the epigenetic effects on the developing brain struc-
tures and neuroplasticity itself. Therefore, a DD putative endophenotype could be solely
due to stress [49]. In such cases, an enriched or supportive environment may counteract
early life adversities, presenting favourable outcomes after early intervention [50,51].

4. Stress in Pathophysiology and Behavior

The neuroendocrine response to stress is mediated via the HPA axis and maintains the
systemic homeostasis. The cascade of interactions among HPA glands commences soon
after a stressful experience. HPA axis dysregulations lead to unsuccessful stress-coping
mechanisms and have been associated with many different pathologies [52]. It is well
established that early life stressful experiences are associated with the development of
psychopathology, due to their effects on early programming and on the function of the
HPA axis [53–57]. ELS has also been associated with learning difficulties and neurodevel-
opmental disorders [15,58–60]. Stress is a core concept in the current perspective of recent
DD approaches. In this context, children with DD, who experience chronic stress due to
constant fear, anticipation of failure, frustration, low self-esteem and loneliness in school
environments react with a positive adaptation [57,59]. The earlier in life and prolonged in
duration the feelings of failure that children with DD experience, the more their ability to
acquire specific learning or academic skills is affected [2,61,62]. These feelings potentially
lead to frustration, lack of motivation, negative self-esteem, aggressiveness and vulnerabil-
ity [63,64]. Likewise, experiences of learned helplessness in children with DD are predictive
of internalizing and externalizing problems [65]. It is reported that children ‘at risk’ of DD
face early difficulties in the school environment including language, cognitive and motor
functions, and impaired socio-emotional skills [66,67]. Apparently, children with such
traits fail to cope with frustration and stress [68,69]. It was suggested that a dysregulation
of the HPA axis may play the critical role in dyslexia, reflecting long-term adaptation
and adjustments to the “threatening” learning environment [57,70,71]. The evidence that
psychosocial support may act positively on the HPA axis function, either modifying it or
preventing possible alterations, agrees with the dynamic nature of epigenetic mechanisms
and necessitates early intervention [72]. The adaptive response of an organism when
exposed to a stressful environmental condition represents an integral part of physiologic
homeostasis and includes both behavioral and neuroendocrine adjustments [73,74]. Stress
exposure activates the HPA axis, which is essential for the neuroendocrine maintenance
of homeostasis [75–77]. Alterations in neurotransmission and synaptic plasticity were
documented in HPA axis-associated brain regions (frontal cortex, hippocampus, and amyg-
dala), in cases of chronic ELS [78–80]. Such regions, that mediate decision making in
the context of the fight-flight response, are also targets of stress hormones [81]. Initially,
deficits and abnormality in neuronal migration in the prefrontal cortex and amygdala
were proposed as causal factors for DD etiopathology. However, this opinion has recently
been questioned [16,26,60,82]. Growing evidence supports the role of epigenetic effects
of early acute or chronic stress (prenatal, perinatal and/or adult social stress) on neu-
roendocrine effectiveness, social behavior and cognitive ability [27,43,83–85]. This new
research approach could fill the gap in understanding DD etiopathogenesis, paving the
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way for appropriate intervention. Environmental and psychosocial stress during critical
developmental periods could modulate gene expression via epigenetic modifications, as
has been observed in neurodevelopmental disorders and putatively in learning deficits and
dyslexia [5,58,81,83,86]. Neuroplasticity has been considered as highly sensitive to ELS [87].
Recent research has demonstrated the epigenetic effect of stress and its dynamic, reversible
nature in a rodent model of early life adversity (maternal deprivation). As observed,
the levels of a neurotrophic factor implicated in learning, memory and neuroplasticity
(brain-derived neurotrophic factor, BDNF) appeared reduced. However, exposure to an
enriched environment has the potential to alter the BDNF molecular pattern and putatively
affect neurogenesis [49,88–91]. Recent findings associated dyslexia with stress-related
genes, changes in the HPA axis and neuroplasticity. The stressful learning process during
childhood and later life can epigenetically influence neuroplasticity, altering the expres-
sion profiles of the HPA axis- and neuroplasticity-related genes, as well as influencing
personality characteristics [15,49,57,92].

5. Is It Time to Include Epigenetics in the Diagnosis of Complex Phenotypes?

Individuals with the same genotype may respond differently to alternate environmen-
tal cues, and this GxE interplay may give rise to different phenotypes deriving from the
same genotype. Epigenetic mechanisms, such as the well-studied methylation, histone
modifications and non-coding regulatory RNAs (miRNA, lncRNAs), are involved in epige-
netic programming [93,94]. Exposure to environmental stressors during critical stages of
fetal development or during neonatal or early childhood might be a predisposing factor
for disease later in life, and epigenetic mechanisms are proposed to be the mediators [95].
DD individual risk is influenced by the developmental stage of the stress exposure, the
intensity and duration of the stressor, regardless of the presence of genetic mutations.
DD risk genes may be stress-regulated or not. Stress-regulated DD risk genes might be
especially prone to contribute to a DD endophenotype. In the case of DD individuals with
such risk genes, an interaction of the genetic background with environmental stressors
(represented by epigenetic tags) affects neuroplasticity (GxE interaction model) [25]. Early
intervention could be especially beneficial to such an endophenotype, regarding the dy-
namic and reversible nature of epigenetic modifications. The presence of a stress-only
induced and epigenetically regulated DD endophenotype is in agreement with the “context
sensitivity hypothesis” [57,96,97]. According to this hypothesis, children with dyslexia
develop an adaptive response to stress, namely “a careless” attitude [57,96]. Constant stress
exposure and chronic exposure to glucocorticoids results in altered circulating cortisol
levels and HPA axis hyperfunction [57,96]. This contributes to cortisol resistance, leading to
the adaptation and lowering of baseline reactions to stress due to the recurrent expectation
of stressful learning difficulties. This chronic exposure to glucocorticoids affects brain
structure development and could explain this “careless” behavioral outcome [49,57,97–99].

6. Conclusions

Complex, heterogeneous, environment-dependent phenotypes require a multidisci-
plinary approach to investigation. Neuroendocrine, physiological, genetic and epigenetic
data collection and analysis is important for a better understanding of the multiple DD ae-
tiologies and the application of the most effective intervention method [25,49]. Only a few
studies about DD have so far examined parameters regarding environmental conditions
(preconceptual, in utero and postnatal), familial acceptance and milieu, socioeconomic
status of the family, lifestyle and upbringing conditions [25]. It is time to elucidate and
include the role of stress in DD diagnosis, while assessing both the aforementioned factors
and psychosocial stressors (e.g., peer-acceptance, bullying in the school environment). Such
information may help identify phenotype-specific, stress-related biomarkers, and pave
the way to a multifaceted diagnostic procedure. An in-depth study and understanding of
biological and psychosocial factors will establish a new approach on early diagnosis and
intervention procedures, positively influencing the life of children with DD [49,57,88].
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