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Abstract
A maximum-likelihood reconstruction technique for X-ray Talbot-Lau tomography is pre-

sented. This technique allows the iterative simultaneous reconstruction of discrete distribu-

tions of absorption coefficient, refractive index and a dark-field scattering coefficient. This

technique avoids prior phase retrieval in the tomographic projection images and thus in

principle allows reconstruction from tomographic data with less than three phase steps per

projection. A numerical phantom is defined which is used to evaluate convergence of the

technique with regard to photon statistics and with regard to the number of projection

angles and phase steps used. It is shown that the use of a random phase sampling pattern

allows the reconstruction even for the extreme case of only one single phase step per pro-

jection. The technique is successfully applied to measured tomographic data of a mouse. In

future, this reconstruction technique might also be used to implement enhanced imaging

models for X-ray Talbot-Lau tomography. These enhancements might be suited to correct

for example beam hardening and dispersion artifacts and improve overall image quality of

X-ray Talbot-Lau tomography.

Introduction

X-ray Talbot-Lau interferometry [1–3] is a viable candidate for the implementation of a phase-
contrast X-ray imaging method into laboratory environments where only low brilliance X-ray
sources, i.e. X-ray tubes, are available. This includes possible applications such as non destruc-
tive testing, small animal imaging and diagnostic use in clinical environments. The method
provides three different images, an absorption image, a differential phase image and a so-called
dark-field image. Especially the dark-field image [4–6] has shown to be a source of information
that is complementary to information that can be drawn from the absorption or differential
phase images. In recent years it has also been shown that computed tomography [7–11] for all
three images is possible, and that various reconstruction approaches known from absorption
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computed tomography can be applied to the differential phase and the dark-field image
domain.

Yet, there are drawbacks of the method that might have an influence on its success for prac-
tical applications. To obtain an artifact free reconstruction of all three projection images, sev-
eral repeated measurements, the so called phase steps, are needed for each projection. This has
an impact on the acquisition sequence and thus time needed, especially for computed tomogra-
phy. Rotation has to be stopped for each rotation angle to be able to perform all needed phase
step measurements. Alternatively, several full rotations have to be performed to have repeated
opportunities to obtain different phase-step measurements at the same rotation angle. There
are approaches [12–16] that try to solve this but such approaches come with certain limitations
or introduce errors. Another issue are redundancies within the three images, which makes it
hard to extract the superimposed complimentary information, especially within the dark-field
image.

Iterative reconstruction methods have already been applied successfully, for instance by [17,
18]. Methods developed in [14–16] try to reduce the total acquisition time by reducing the
number of rotation steps. But all these approaches rely on the usual two step process where
first projection images are reconstructed from phase stepping curves and second CT images
are reconstructed from the projection images. The reconstruction ansatz by [19] and [13] work
with a single step per projection. No phase stepping procedure is needed here. One phase step
position is sufficient because the differential phase shift induced by the object is approximated
by the linear part of a Taylor expansion of the sinoidal phase-stepping curve. Thus, the men-
tioned two-step reconstruction process is again followed here. But only objects with sufficiently
small refractive index gradients can be reconstructed correctly. For clinical applications this
restriction might be crucial.

In this work we present a reconstruction approach that simultaneously reconstructs the
absorption coefficient, the refractive index and the dark-field scattering coefficient in X-ray
Talbot-Lau tomography. The reconstruction is performed via a likelihood maximization and
avoids an intermediate or prior retrieval of projection images of absorption, differential phase
and dark-field. Thus, reconstruction is done directly from the measured phase-step projection
data. This approach in principle allows a tomographic reconstruction with one single phase
step position per rotation angle. This work is based on past work of the authors documented in
a preprint manuscript on arXiv [20]. The main differences to this preprint concerning the
method are in choosing an existing conjugate gradient implementation as maximization strat-
egy for the likelihood instead of using a self implemented gradient ascent. The method used in
this work will be described in detail in Sec. Methods of this article. Regarding the results, the
major difference is that in [20], we used tomographic data that has been simulated with the
help of our simulation framework for coherent X-ray imaging [21]. Instead, we will first use a
numerically defined phantom using the forward projecting model of the reconstruction itself
to obtain tomographic data. This allows to calculate the errors of the reconstruction and evalu-
ate convergence of the method. Additionally, we show that with this method reconstruction of
tomographic data of thorax and abdomen of a mouse obtained with an experimental apparatus
is possible.

Methods

X-ray Talbot-Lau interferometry

Fig 1 shows a schematic drawing of a setup for X-ray Talbot-Lau interferometry. The Talbot-
Lau interferometer, consisting of an absorbing source grating G0 and a diffraction grating G1,
is illuminated by an X-ray source. Due to sufficient conditions on spatial coherence of the

Maximum-Likelihood Reconstruction in X-Ray Talbot-Lau Tomography

PLOS ONE | DOI:10.1371/journal.pone.0163016 October 3, 2016 2 / 15

Competing Interests: The authors have declared

that no competing interests exist.



illumination provided by the source and the source grating, diffraction by G1 induces a fringe
pattern of the intensity distribution in front of the detector. Typically, the fringe pattern is not
resolvable with the detector. Thus, an absorbing analyzer grating G2, matching the spatial fre-
quency of the fringe pattern, is placed in front of the detector.

The intensity measured in a pixel of the detector depends on the offset of the analyzer grat-
ing relative to the fringe pattern perpendicular to the grating bars. Thus, a repeated measure-
ment of the detected intensity, with varying analyzer grating offset, provides a so called phase
stepping curve with intensity Ni,s for each pixel i and phase step s. The phase stepping curve is
periodic and the frequency of the first order harmonic is given by the spatial frequency of the
analyzer grating. Having at least three phase steps per pixel, it is possible to reconstruct mean
mi, amplitude ai and phase ϕi of the first order harmonic for each pixel i. If these data are
obtained for a measurement with sample, which can be placed between any two gratings, and
without sample, indicated by a superscript zero, it is possible to calculate three different images.
The absorption image which is given by the transmission

Ti ¼
mi

m0
i

; ð1Þ

which is the ratio of mean values. The differential-phase image

D�i ¼ �i � �
0

i ; ð2Þ

which is given by the difference of the phase values. And, the dark-field image

Di ¼
Vi

V0
i

; ð3Þ

which is given by the ratio of visibilities

Vi ¼
ai
mi

and V0

i ¼
a0
i

m0
i

ð4Þ

with and without sample. Usually, the valuesm, a and ϕ are retrieved from phase stepping

Fig 1. Schematic drawing of an X-ray Talbot-Lau interferometry setup. X-ray source X, source grating

G0, sample S, diffraction grating G1, intensity diffraction pattern I(x), analyzer grating G2 and pixelated X-ray

detector D. For tomography the sample is rotated around the y-axis as indicated.

doi:10.1371/journal.pone.0163016.g001
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curves, having an equidistant sampling over one analyzer grating period, by a discrete Fourier
transform.

Tomographic imaging model

In the case of tomography with a Talbot-Lau interferometer, the sample or the setup can be
rotated around an axis parallel to the fringe pattern (y-axis in Fig 1), to allow for several projec-
tion angles. In the following, the linear index i denotes a certain ray from source to certain
pixel in the set of pixels for all projection angles. A measurement with a pixelated detector at
several projection angles provides phase-step intensities Ni,s for the pixel associated with ray i
and phase steps s.

Forward projection. In the following, we assume the sample volume being divided into
discrete rectangular volume elements, indexed by j. Each volume element j has associated a sca-
lar attenuation coefficientμj, a scalar refractive index δj and a scalar scattering coefficient σj.
Absorption ti and dark-field di values are given by

ti ¼
X

j

Mi;jmj ð5Þ

and

di ¼
X

j

Mi;jsj: ð6Þ

The differential phase is given by

Dφi ¼
X

j

DMi;jdj: ð7Þ

The coefficientMi,j is given by the length of the intersection of the ray i from source, which
is assumed to be point-like, to pixel associated with ray i with the volume element j. The ray for
projection i is defined by the position of the X-ray source and the center of pixel associated
with ray i. The coefficientΔMi,j is given by the difference

DMi;j ¼ Mþ

i;j � M
�

i;j ð8Þ

of the coefficientsMþ
i;j and M�

i;j. The coefficientsM�
i;j are given by the lengths of the intersections

of displaced rays for ray i with the volume element j. The displaced rays are defined by the posi-
tion of the X-ray source and points that are displaced by plus or minus the pitch of the pixel
associated with ray i relative to the center of this pixel. The displacement occurs within the
plane of the detector perpendicular to the direction defined by the analyzer grating bars (x-axis
in Fig 1). In this work, the coefficientsMi,j, Mþ

i;j , M
�
i;j are calculated with Siddon’s method [22].

Expectedphase sampling curve. Given the projected values ti, di and Δφi depending on μj,
σj and δj, as defined by Eqs (5)–(7), we expect a measurement given by the expected phase step-
ping curve

�Ni;s ¼
�Ni � 1þ �Vi � cos φ0

i;s þ Dφi
� �h i

ð9Þ

measured in the pixel associated with ray i and phase step s, with the expected mean

�Ni ¼ N0

i � Ti ¼ N0

i � exp ð� tiÞ ð10Þ
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and the expected visibility [23]

�Vi ¼ V0

i � Di ¼ V0

i � exp ð� diÞ: ð11Þ

N0
i is the expected mean and V0

i is the expected visibility for a measurement without sample
for ray i. The phase step position φ0

i;s describes the relative phase at which the phase step s for
ray i is taken. The valuesN0

i , V0
i , φ0

i;s can be obtained from a measurement of the phase stepping
curve without sample.

Likelihood

We assume θ = (μj, Δφj, σj) to be the vector of parameters describing the sample volume and
N = (Ni,s) to be the vector of all intensities. The likelihood [24] L(θ|N) of parameters θ given the
vector of intensities N is then expressed by

L yjNð Þ ¼
Y

i;s

P �N i;sðyÞ
Ni;s

� �
: ð12Þ

With P �N i;sðyÞ
ðNi;sÞ being the probability of obtaining the intensity Ni,s for ray i and phase step s

given that �Ni;sðyÞ is expected. The expected intensity as a function of parameters θ is given by
Eq (9). In the following, we assume that the conditional probability P �N i;sðyÞ

ðNi;sÞ is given by a
Poisson distribution

P �N i;sðyÞ
Ni;s

� �
¼

�Ni;sðyÞ
Ni;s

Ni;s!
e� �N i;s : ð13Þ

With this choice of a Poisson distribution we implicitly assume an ideal photon counting X-ray
detector that has no additional noise contributions besides the photon-number noise.

Implementation of maximum likelihood reconstruction

To reconstruct the sample volume described by θ from the given valuesN, the global maximum
of the likelihoodL(θ|N) as a function of parameters θ has to be found. It is equivalent to find
the global minimum of the the negative logarithm of the likelihood

lðyjNÞ ¼ � lnLðyjNÞ ð14Þ

as a function of θ given intensity N. Thus, with Eqs (12), (13) and (14) can be expanded to

lðyjNÞ ¼
X

i;s

� Ni;s ln �Ni;sðyÞ
� �

þ ln Ni;s!
� �

þ �Ni;s

� �
: ð15Þ

The search for the minimum of l(θ|N) is performed by using the fmin_cg Python [25] func-
tion from the scipy.optimize [26] module. It uses a conjugate gradient method [27] to find a
minimum for a given function. Thus, a function returning the negative log-likelihood l(θ|N) for
given parameters was implemented. Additionally, a function returning the gradientrθ l(θ|N) of
the negative log-likelihood with respect to the parameters θwas implemented. The gradient
function can be passed as argument to fmin_cg, as a replacement to the numerical gradient
approximation, that would be done instead. The gradient

rylðyjNÞ ¼
@

@mj
lðyjNÞ;

@

@dj
lðyjNÞ;

@

@sj
lðyjNÞ;

 !

ð16Þ
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that is returned by the implemented gradient function is given by

@

@mj
l ¼

X

i;s

Ni;s �
�Ni;s

� �
�Mi;j; ð17Þ

@

@dj
l ¼

X

i;s

Ni;s

�Ni;s
� 1

 !

� �Ni
�Vi � sin φ0

i;s þ Dφi
� �

� DMi;j ð18Þ

and

@

@sj
l ¼

X

i;s

Ni;s

�Ni;s
� 1

 !

� �Ni
�Vi � cos φ0

i;s þ Dφi
� �

�Mi;j ð19Þ

The implementation was done in part within pure Python and in part within an Python exten-
sion module written in C++.

Mouse sample used in tomography

In this work tomographic raw data of a mouse sample originally acquired for [28] is reused. In
the original study, the C57BL/6 adult male mouse was randomly selected from carbondioxide-
killed ex-breeding stock at the Franz-Penzold-Zentrum, Friedrich-Alexander-Universität
Erlangen-Nürnberg, animal facility for investigation. The animal was not killed specifically for
this or the original study [28]. The animal was press fit in a 50 ml conical polyethylene tube to
reduce any movement while the image acquisition was carried out. No further preparation pro-
cedures with the sample were done. An ethics approval was not required in this case and in the
case of the original study. This and the original study [28] comply to the animal welfare and
standard procedures of the Franz-Penzold-Zentrum and local legislation.

The images were taken with a Talbot-Lau set-up with a Siemens MEGALIX X-ray tube
driven at 60 kV acceleration voltage. For photon detection, the Varian PaxScan 2520D flat
panel detector with CsI as scintillation material and a pixel size of 127 x 127 μm2 was used. The
gratings G0, G1 and G2 with grating periods of 23.95 μm, 4.37 μm resp. 2.40 μm and design
energy of 25 keV were manufactured by Karlsruhe Institute of Technology (KIT) employing
the LIGA method [29]. The grating G0 had a size of 5 x 5 cm2, the gratings G1 and G2 both
had an effective area of 2 x 6 cm2 and were operated in the second fractional Talbot distance,
resulting in distances G0-G1 of 161.2 cm and G1-G2 of 15.9 cm. The mouse was placed 10 cm
in front of the phase grating G1.

Results and Discussion

Tomography of numerical phantom

For a first examination of the performance of the maximum likelihood reconstruction, a
numerical phantom was designed. A two-dimensional volume is divided into 20×20 quadratic
volume elements. Each volume element j has an edge length of 1.0 and a certain given μj, δj and
σj as described before. Fig 2 shows the phantom. If not stated otherwise all parameters are set
to zero. A 10×10 region centered within the volume is defined, where μ is set to μtruth = 0.1, δ is
set to δtruth = 0.75 and σ is set to σtruth = 0.1. The values are chosen to obtain projected values
that are on a scale that is comparable to an experimental setup.

The projection is done as described before for R rotation steps with angles equally distrib-
uted over an interval of 360°. The volume is parallel projected onto a pixel array with 29 pixels
with a pitch of 1.0. The center of the pixel array is shifted by a quarter of the pitch from the
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center of the rotation axis projected onto the pixel array. Fig 3 shows the projected values of
Δφi, which are found between -3.8 and 3.8, and the values of Ti and Di, which are found
between 0.26 and 1.0, where i denotes a certain pixel for a certain projection step. For each
pixel i, expected intensities �Ni;s are created using Eq (9), with integral s and 0� s< S. The step
phases φ0

i;s are given by

φ0

i;s ¼ φ0

i þ s �
2p

S
; ð20Þ

with φ0
i being the reference phase. From the expectation value �Ni;s random valuesNi,s are gen-

erated according to a poisson distribution. From this data the values mr
j , d

r
j and sr

j are simulta-
neously reconstructed using the maximum likelihood approach described in Methods. A
relative error of the reconstructed coefficients crj with c being either μ, δ or σ is given by

errc ¼
1

ctruth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

j

crj � cj
� �2

s

ð21Þ

with cj being the true values as defined above. The total error is given by

errtotal ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
err2

m
þ err2

d þ err2
s

� �
r

: ð22Þ

Fig 2. Numerical phantom. (a) Linear attenuation coefficient μ. (b) Refractive index δ. (c) Scattering coefficient σ. Values of the inner 10×10 region

are μ = 0.1, δ = 0.75 and σ = 0.1. Values outside are μ = 0, δ = 0 and σ = 0.

doi:10.1371/journal.pone.0163016.g002

Fig 3. Sinogram of parallel projection of the numerical phantom onto an array of 29 pixels of pitch 1.0 for 101 rotation steps. (a)

Transmission T. (b) Differential phase Δφ. (c) Dark-field D.

doi:10.1371/journal.pone.0163016.g003
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Convergence. In the following the iterative reconstruction is started with a volume where
all parameters are set to zero. The Poisson distributed photon intensities Ni,s are created with
N0
i ¼ 1012, V0

i ¼ 0:5, φ0
i ¼ 0, R = 101 and S = 5. The value of N0

i is chosen that photon-number
noise can initially be neglected, influence of the noise level will be discussed later.

Termination of the iteration in the fmin_cg routine is controlled by a tolerance value for the
gradient norm gtol. This value is per default set to 10−5. Fig 4 shows the negative logarithm of
the Likelihood l and the total error errtotal of the optimization result as a function of the gtol
value. In general, a lower gtol value means more iterations and thus a lower value of l. For val-
ues of gtol down to 10−3, the total error of the reconstructed values errtotal first decreases with a
slight increase near 10−3. Below 10−3 the error decreases monotonically with a steeper slope
than above 10−3, and an error in the order of 10−3 is reached for gtol = 10−5.

Fig 5 shows values of l and errtotal after a number of iterations of reconstruction with
gtol = 10−5. As has been observed before l decreases monotonically with the number of itera-
tions. The total error errtotal decreases within the first few iterations by about half an order of
magnitude and stays at this level for about 100 iterations. Afterwards the error decreases mono-
tonically to values in the order of 10−3.

Looking at Fig 5 where the errors for all three parameters are plotted, we see that the drop in
the total error for the first few iterations is due to the drop of errμ within the first few iterations.
Afterwards the total error is dominated by the errors of δ and σ. The plateau in the total error
for about 100 iterations is due to a comparable behavior of δ and σ in this region. After about

Fig 4. Convergence and termination. Negative logarithm of likelihood l and total error errtotal of the

reconstructed result as a function of the gradient tolerance gtol. l0 is the value of l for the starting volume

parameters.

doi:10.1371/journal.pone.0163016.g004

Fig 5. Convergence. Negative logarithm of likelihood l, total error errtotal and the errors of μ, δ and σ as a function of the number of iterations with

gtol = 10−5. l0 is the value of l for the starting volume parameters.

doi:10.1371/journal.pone.0163016.g005
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100 iterations all three errors decrease nearly monotonically, with errμ staying about two orders
of magnitude below the corresponding errors of δ and σ.

Convergence at different noise levels. In Fig 6 the negative logarithm of the likelihood l
and the total error errtotal is plotted as a function of the number of iterations of the reconstruc-
tion. Random intensities Ni,s are created with V0

i ¼ 0:5, φ0
i ¼ 0, R = 101, S = 5 and three noise

levels with N0
i equal to 103, 106 and 109. The gradient tolerance gtolwas set to 10−8. From Fig 6,

it can be seen that l and errtotal at first decrease with an increasing number of iterations. At a
certain number of iterations, l and errtotal begin to converge to a certain limit. This limit is
lower for higher values of N0

i and thus for lower noise levels.
Single phase step convergence. Fig 7 again shows the negative logarithm l of the likeli-

hood and the total error errtotal as function of the number of iterations of the reconstruction.
Four cases with different settings regarding expected mean N0

i , number of phase steps S, num-
ber of rotation steps R and reference phases φ0

i ¼ 0 are compared. Case I with N0
i ¼ 1 � 106,

R = 101, S = 5 and φ0
i ¼ 0 can be seen as a reference where five phase steps per rotation angle

are used. In this case convergence is given and the minimum total error is limited by the noise
level. In case II withN0

i ¼ 5 � 106, R = 101, S = 1 and φ0
i ¼ 0 only one phase step per rotation

Fig 6. Convergence at different noise levels. (a) Negative logarithm of the Likelihood l and (b) the total error errtotal as function of the number of

iterations of the reconstruction. Evaluated for different noise levels given by the expected mean value in each pixel and projectionN0
i . l0 is the value of

l for the starting volume parameters.

doi:10.1371/journal.pone.0163016.g006

Fig 7. Single phase step convergence. Negative logarithm of the Likelihood l and the total error errtotal as function of the number of iterations of the

reconstruction. Evaluated for different settings regarding expected mean N0
i , number of phase steps S, number of rotation steps R and reference

phases φ0
i . I: N0

i ¼ 1 � 106, R = 101, S = 5 and φ0
i ¼ 0. II: N0

i ¼ 5 � 106, R = 101, S = 1 and φ0
i ¼ 0. III:N0

i ¼ 5 � 106, R = 101 and S = 1. φ0
i are constant for

all pixels of one rotation step but randomly chosen from a uniform distribution between 0 and 2π for each rotation step. IV: N0
i ¼ 1 � 106, R = 505 and

S = 1. φ0
i are constant for all pixels of one rotation step but randomly chosen from a uniform distribution between 0 and 2π for each rotation step.

Cases I to IV have the same total number of counts and thus the same total noise level. Case II has a total of 16890 iterations. Values are only shown

up to 2000 iterations, but changes in the values shown for case II are not visible for numbers of iterations above 2000.

doi:10.1371/journal.pone.0163016.g007
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angle is used. To account for the reduced number of data points the expected mean is increased
by a factor five to obtain the same total noise level as in case I before. In this case conventional
phase retrieval would be impossible due to an insufficient number of phase steps per rotation
angle. Convergence in the iterative reconstruction is not possible in this case too. To find a rea-
son for this, we look at case III withN0

i ¼ 5 � 106, R = 101 and S = 1, which is identical to case
II but the distribution of reference phases φ0

i . In this case the reference phases φ0
i are constant

for one rotation angle. But, for each rotation angle the constant reference phase φ0
i is randomly

selected from a uniform distribution from 0 to 2π. This effectively creates a kind of random
phase stepping over all rotation angles. As we see in Fig 7 convergence for this case is possible
again. Compared to case I convergence is slower and the minimal total error that is achievable
is higher. In case IV with N0

i ¼ 1 � 106, R = 505 and S = 1, the number of rotations steps is
increased by a factor of five to 505 compared to 101 for the cases I to III. To get the same noise
level compared to the cases I to III the expected mean is decreased by a factor of one fifth com-
pared to case III. Convergence in case IV is still slower compared to case I but clearly improves
compared to case III. And the minimal total error achievable in case IV is nearly the same as in
case I.

To conclude, reconstruction with the simultaneous approach using only one phase step per
rotation step seems possible if the distribution of reference phases φ0

i is not the same for alle
pixels and rotations steps. A second observation, if the reduction in the number of phase steps
is compensated by an equal increase of the rotation steps, nearly the same convergence and
total error seem to be achievable.

Tomography of ex-vivo mouse Thorax and Abdomen

So far, the performance of our iterative reconstruction method has been demonstrated with the
simulated phantom only. In order to check the applicability of the method for real objects
imaged with a real Talbot-Lau system we investigated data from a tomographic acquisition of
the thoracic and abdominal region of a mouse [28]. For tomography, the mouse was rotated
around the longitudinal axis in 601 steps distributed equally over 360°. For each rotation step
eight phase steps, distributed equally over an interval with a width of 2π, were acquired. Refer-
ence projections, where the mouse sample is temporarily removed from the field of view, were
acquired at the beginning and repeatedly after 15 subsequent rotation steps. The original data-
set from [28] was taken and the detector resolution was reduced by summing repeatedly 15×15
pixels (rows and columns) in the field of view of the detector without overlap. The resulting
field of view contains 20 pixels in longitudinal direction and 67 pixels perpendicular. For the
reference projections, phase retrieval has been done via a fast Fourier transform. The resulting
meanm0

i , phase φ0
i and visibilityV0

i are then interpolated to obtain reference values for each
ray i.

Filtered back projection. For comparison, tomographic cross sections are reconstructed
with a filtered back projection (FBP). For a filtered back projection the mean mi, phase φi and
visibilityVi values are retrieved for each ray i, again via a fast Fourier transform. From these
and the reference values the negative logarithm of the transmission

t ¼ � log
m
m0

� �
; ð23Þ

the differential Phase

Dφi ¼ φi � φ
0

i ð24Þ
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and the negative logarithm of the dark-field

d ¼ � log
V
V0

� �

ð25Þ

are calculated. The negative logarithm of transmission and dark-field are then back projected
using a ramp filter, differential phase values are back projected using a Hilbert filter. Fig 8A–8C
show the reconstructed μ, δ and σ values for one transverse plane with 51×51 volume elements.
The transverse plane lies in the center of the longitudinal field of view of the detector.

Maximum likelihoodreconstruction. For the simultaneous maximum likelihood recon-
struction ML a preceding phase retrieval for each rotation step is not needed. Only the interpo-
lated reference mean, phase and visibility values are used in the iterative reconstruction
approach. Fig 8D–8F show μ, δ and σ values for one transverse plane with 51×51 volume ele-
ments, that are directly reconstructed from all available phase step data with the iterative
method. Volume elements which are located outside a radius of 26 voxel from the center of the
plane are assumed to be zero at all times. The iteration starts with all coefficients of all volume
elements set to zero.

By qualitatively comparing the achieved reconstructed images we come to the following
observations: The iterative reconstruction based on the same data as the filtered back projec-
tion (Fig 8D–8F) is able to converge to results that are comparable with the results provided by
the filtered back projection (Fig 8A–8C). Differences in the noise and signal behavior can be
observed but these might be optimized for example with additional regularization within the
iterative approach. Especially, the image of the linear attenuation coefficient provided by the
iterative reconstruction, shows a regular artifact pattern. This might be removed with regulari-
zation and optimized projection coefficients. For the iterative reconstruction approach a very
basic algorithm is used here which offers room for improvement, nevertheless the approach in
its early stage is applicable to a relevant biological sample and produces results that are compa-
rable to those of a filtered back projection.

Considering the ingredients of the two reconstruction methods we expect that on the one
hand the two-step reconstruction with phase retrieval followed by filtered back projection
should provide less noise because the reconstruction of the projection images is decoupled
from the CT reconstruction of the volume images. On the other hand, mechanisms like beam
hardening lead to artifacts which result in correlations in the three images. A comprehensive
ansatz like our iterative reconstruction addressing all three image informations simultaneously
should in principle be able to better correct for such artifacts. We do not address further noise
analysis here, because the trade-off between statistical and systematic image errors is a question
of weighting the image information. We will cover this topic in another publication.

Fig 8G–8I, show the results of a reconstruction with the iterative method from data, where
one out of the eight phase steps was randomly selected for each rotation step. This implies that
the radiation dose applied is a factor of eight lower than for the images in the first and second
row of Fig 8. Thus, the noise level is increased but still reasonable results can be obtained. More
importantly, while one phase step does not allow to reconstruct a phase stepping curve and
thus does not allow an image reconstruction for standard reconstruction methods our iterative
reconstruction is still able to do so. There are approaches [12, 13] to circumvent the problem of
insufficient phase step number in doing phase retrieval from phase steps of different projec-
tions. But, such approaches necessarily come with inconsistencies which the simultaneous iter-
ative approach should be able to avoid.
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Fig 8. Tomographic reconstruction of a transverse plane in the region between thorax and abdomen of a mouse. 601 rotation steps around

the longitudinal axis distributed over 360˚ with each having eight phase steps distributed over 2π have been acquired. (a), (d), (g): Linear attenuation

coefficient μ, (b), (e), (h): Refractive index δ, (c), (f), (i): Dark-field scattering coefficient σ. The first row (a)–(c) shows results of a reconstruction with a

filtered back projection (FBP) using a ramp filter for μ and σ and a Hilbert filter for δ reconstruction. The second row (d)–(f) shows results of a

reconstruction with the simultaneous maximum likelihood iterative reconstruction ML. The results in the first and second row (a)–(f) are obtained from

all available phase steps and projections. The third row (g)–(i) shows results obtained with the iterative approach using only 1/8 of the data, i.e. using

only one phase step per rotation step (ML(1)). The phase step has been selected randomly from the available eight steps for each rotation step.

doi:10.1371/journal.pone.0163016.g008
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Conclusions

An analytic forward projecting model for X-ray Talbot-Lau interferometry is presented. This
model calculates the expected intensities for all phase steps and projection rays for given dis-
crete volume distributions of attenuation coefficient, refractive index and dark-field scattering
coefficient. A Poisson distribution based likelihood is introduced, which quantifies the proba-
bility of the projected expectation phase-step values fitting a given measurement. In this work
the likelihood is maximized using an implementation of the conjugate gradient method pro-
vided by the scipy Python package.

Using a numerical phantom we show that it is possible to simultaneously reconstruct the
three volume distributions of attenuation coefficient, refractive index and dark-field scattering
coefficient with the method described above, although convergence is slow and might not be
guaranteed. The total error of the reconstruction depends on the noise level of the input data.
Furthermore, we show that reconstruction with only one phase step per rotation step is possi-
ble if the distribution of reference phases is arranged in a suitable manner. If the reduction in
the number of phase steps is compensated by an increase of the number of rotation steps con-
vergence and achievable total error seem to be nearly equal.

Additionally, we show the tomography of a transverse plane in a region between thorax and
abdomen of a mouse. Using all available phase steps we show that the reconstruction with the
presented method is possible and provides results that are comparable with reconstruction
results obtained via filtered back projection. Furthermore, we show that reconstruction is still
possible if only one phase step per rotation step is randomly selected from the experimental
data.

With the presented method reconstruction is possible for data containing only one phase
step per rotation step under certain conditions. Further evaluation on the conditions for single
phase step reconstruction are of interest. Additionally, the simultaneous iterative reconstruc-
tion approach might be a valuable framework for testing and improving imaging models for
X-ray Talbot-Lau interferometry. Besides this aspect of modeling the physical imaging pro-
cess, there is also room for improvement in numerical aspects. Different optimization strate-
gies and last but not least regularization, which has been neglected so far, might further
improve convergence and image quality. Thus, we expect advancements in quality and signifi-
cance of tomographic images provided by this method in future. This might result in a more
clear separation of the complementary image content among the different reconstructed
images. Finally, we present a unique new and working approach for simultaneous reconstruc-
tion of attenuation coefficient, refractive index and dark-field scattering coefficient in X-ray
Talbot-Lau interferometry.
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