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Abstract

We identify vulnerable groups through the examination of

their employment status in the face of the initial coronavi-

rus disease 2019 (COVID-19) shock through the application

of tree-based ensemble machine learning algorithms on a

sample of individuals over 50 years old. The present study

elaborates on the findings through various interpretable

machine learning techniques, namely Shapley values, indi-

vidual conditional expectations, partial dependences, and

variable importance scores. The structure of the data

obtained from the Survey of Health, Aging and Retirement

in Europe (SHARE) dataset enables us to specifically

observe the before versus the after effects of the pandemic

shock on individual job status in spatial labor markets. We

identify small but distinct subgroups that may require par-

ticular policy interventions. We find that the persons in

these groups are prone to pandemic-related job loss owing

to different sets of individual-level factors such as employ-

ment type and sector, age, education, and prepandemic

health status in addition to location-specific factors such as

drops in mobility and stringency policies affecting particular

regions or countries.
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1 | INTRODUCTION

Since the outbreak of the COVID-19 crisis, a substantial worldwide effort has been made in disentangling the effects

of this global economic disruption brought by the pandemic, in both academic and policy-related settings. These

efforts comprise not only attempts to document past and present economic tribulations, but are also various

endeavors to anticipate and counter potential impending socioeconomic challenges. A sound comprehension of how

the pandemic has been affecting industries, firms, and households is paramount for providing clues on how their

postpandemic behavior and choices may take shape in the immediate future. The pandemic may have significant dis-

tributional effects on the labor market, in particular, on different age cohorts. In this context, from a sectoral, individ-

ual, and locational perspective, the present study examines how working individuals in older-age cohorts have been

affected by the COVID-19 pandemic with respect to their job status as a result of the initial pandemic shock in

2020. By doing so, the study aims to algorithmically detect and provide an assessment of the attributes that describe

disadvantaged and vulnerable individuals.

While the economic and social upheavals caused by the COVID-19 outbreak are clearly apparent, these complex

effects are still in need of being carefully disentangled and quantified (Nijkamp & Kourtit, 2022). From an economic

perspective, del Rio-Chanona et al. (2020) accurately predicted that the pandemic would cost around 20% of the

gross domestic product in the United States. The first COVID-19 wave hit the labor markets particularly quickly and

deeply. In this regard, using a difference-in-differences approach, Bauer and Weber (2021) estimated that in

Germany the effect of the pandemic accounted for up to 60% of the increase in unemployment in April 2020. A large

part of the economic impact is directly related to a range of drastic government policies such as community lock-

downs and social distancing. Especially the former has led to significant reductions in demand; and businesses in the

catering and hospitality industry in particular were forced to shut their doors for an indefinite period (Benedetti

et al., 2020; Gursoy & Chi, 2020). Even when a relaxation of stringency policies took place in summer 2020, many

restaurants were able to offer only limited services with significantly reduced labor input, such as take-out and deliv-

ery services. Furthermore, international travels were restricted (Ito et al., 2020; Xue et al., 2021), causing the tourism

and transportation sectors to incur significant losses, resulting in increased unemployment, further contributing to

the weakening of demand and economic activity in general through a multiplier effect (Škare et al., 2021). Against

this background, Barrot et al. (2021) estimated that about half of the drop in GDP can be attributed to the implemen-

tation of social distancing measures in the United States.

Even though the aforementioned effects apply to most industries and locations around the world, the eco-

nomic impact of the pandemic is likely to be felt differently across social groups. For example, working mothers

are found to shoulder childcare and housework burdens and suffered a greater productivity loss when schools

and daycare centers were closed (Alon et al., 2020; Deryugina et al., 2021). Another similar observation on

unequal impact is made by Pereira and Patel (2021), who found that self-employed racial minorities in Brazil

experienced a greater decline in work hours and worse business-related outcomes than their white

counterparts.

While the health and financial impact of COVID on older-age individuals is well documented (see, e.g., Wong

et al., 2021), the labor market outcomes for this group remain a subject that has received relatively less attention.

The present study addresses this research gap and investigates the labor market impacts of COVID-19 in the

context of aging persons. We implement tree-based ensemble machine learning algorithms, namely random
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forest and stochastic gradient boosting, alongside the use of Shapley values, individual conditional expectations,

and partial dependences in order to increase the interpretability of these methods. As a result, by quantifying

how sectoral, personal, and location-specific effects define individual-level unemployment outcomes, our find-

ings may help with setting policy interventions and their customization for disadvantaged groups that we algo-

rithmically detect.

This study is structured as follows. Section 2 presents the theoretical mechanisms underlying the relationship

between employment outcomes and the pandemic. The data sources and the steps taken to prepare the data for the

empirical analysis are outlined in Section 3, while the descriptive statistics of the variables are presented separately

for each model in the subsequent section (Section 4), which describes the ensemble learning methods and interprets

their results. Section 5 offers a concluding discussion and provides policy recommendations.

2 | THEORETICAL FRAMEWORK

Unemployment is related to a wide variety of demographic, socioeconomic, regional, and macroeconomic factors

(Krugman, 1994; Machin & Manning, 1999; Stough et al., 2018). Despite the fact that the macroeconomic conditions

affect all economic areas, gender and age alongside level of education are often identified as critical predictors of

unemployment at the individual level (Breen, 2005; Martin et al., 1994; Mincer, 1991). This being said, the gender

unemployment gap has been narrowing in the Organisation for Economic Co-operation and Development (OECD)

countries since the early 1980s, except during recessions, when the female unemployment rate was mainly exceeded

by the male unemployment rate (Albanesi & Şahin, 2018). Additionally, it has been frequently documented that

young people are particularly affected by economic downturns (Choudhry et al., 2012; Verick, 2009). In this regard,

during the 2008–2009 global financial crisis, the youth unemployment rate for the OECD countries peaked and

reached 20.9% in 2009, compared with an average rate of 10.4% in 2005–2009 (Bell & Blanchflower, 2011). On the

other hand, the effect of recessions on unemployment among the older population is more complicated; because of

skills mismatch, longer unemployment spell, or labor market discrimination, older workers may choose to retire ear-

lier than they would normally prefer and suffer social-security-related disadvantages (Bui et al., 2020; Helppie

McFall, 2011; Liu et al., 2016; Neumark & Button, 2014). Such early retirement decisions may cause unemployment

statistics to reflect inaccurate findings that imply milder consequences on older workers, as if they are less affected

by economic adversities.

Labor market outcomes also vary by condition and type of employment. For instance, self-employed individuals

were particularly affected by the pandemic in the UK (Blundell & Machin, 2020). Individuals who manage their own

businesses had their work hours reduced by 50–75% per week, while over 60% of self-employed persons earned a

monthly income that dropped below 1,000 pounds in April 2020 (Blundell & Machin, 2020). However, self-

employment is a general category that includes persons such as entrepreneurs, partners at law firms, and workers

with alternative work arrangements, including those who work in informal or gig economies (Blundell & Machin,

2020; Boeri et al., 2020).

As mentioned in the introduction, although workers in all sectors were affected by the global health crisis, the

impact has been unequal across sectors. Labor-intensive service industries that require in-person interaction with their

customers were hit particularly hard by the pandemic. Such industries include businesses such as restaurants, hotels,

tourism, and entertainment establishments. More digitalized sectors such as the financial and telecommunications

industries were less affected, as remote working was relatively more common for business operations in these areas

even before the pandemic (Barrot et al., 2021). Within this framework, economic sectors can be classified into five cat-

egories, according to Fana et al. (2020), based on whether a sector provides essential goods and services to people

(e.g., food production, healthcare), whether it is active (e.g., education and public administration), and whether remote

working is possible. On the basis of a comparative analysis of six European economies, the authors found that the neg-

ative labor market effects of the pandemic have concentrated on the workers in low-productivity service industries.
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Quite expectedly, urbanization is associated with a rise in mobility and interconnectedness (Kapitsinis, 2020),

and naturally, the adverse effects of the contagious disease have been toughest among individuals living in dense

urban areas, highlighting the significance of the spatial dimension of the pandemic-related socioeconomic effects

(Sassen & Kourtit, 2021). In accordance with this fact, Chen et al. (2020) found that the economic impact of the pan-

demic is mostly captured by changes in people's mobility, through an analysis of high-frequency data from Europe

and the United States. The authors have observed that the predictive power of mobility patterns is even stronger

than other indicators that are indisputably related to the COVID-19 outbreak, such as death rates (Chen et al.,

2020). Finally, and most relevant for the study at hand, country-level heterogeneity could be explained by the indus-

trial composition of countries, such as those with direct implications for the extent and availability of jobs that can

be performed at home, alongside confinement measures (Fana et al., 2020).

Labor market outcomes are subject to highly nonlinear and interactive effects that are subject to a significant

degree of heterogeneity (see, e.g., Glaeser et al., 2020). For instance, the gender unemployment gap is not uniform,

as it heavily depends on location and the institutional settings of countries, as Azmat et al. (2006) found that the

unemployment rate is higher for females than it is for males in Mediterranean countries. Besides, Alonso-Villar and

Del Río (2008) and (Özgüzel, 2020), using data in Spain and Turkey, respectively, showed that industry agglomeration

tends to favor women in large cities. Similarly, (Celbiş, 2021c) observed that the probability of unemployment is sig-

nificantly less for women in urban centers compared with their counterparts in rural areas in Turkey. Therefore,

employment outcomes can be reasonably explained only when the complex interaction among individual characteris-

tics, employment conditions, location, industrial structure, and policy environment, among other individual and

place-based features, is taken into account. Such necessities can be met through the use of big data methods, thanks

to their explorative and nonrestrictive structures.

Machine learning models allow the algorithmic detection and modeling of complex interactions and patterns

in the data (Ge et al., 2017; Mullainathan & Spiess, 2017; Varian, 2014). This feature of machine learning models

is particularly important in the presence of a large number of relevant variables and potentially complex relation-

ships as in the research question at hand. Under such conditions, an explanatory model based on standard

econometric techniques might not be practical, and a shift to artificial-intelligence-inspired methods such as

machine learning can present many advantages (Celbiş, 2021a; Nijkamp et al., 2001). One of the main advantages

of such techniques is that they allow the inclusion of a large set of variables in conducting an in-depth analysis

without incurring bias in the selection of the explanatory variables, while allowing for the algorithmic modeling

of complex interactive and nonlinear relationships (Athey, 2018; Athey & Imbens, 2019; Imbens & Athey, 2021;

Harding & Hersh, 2018). Consequently, the models are algorithmically constructed in a data-driven manner

(Athey, 2018). Accordingly, the present study uses a range of novel machine learning approaches to analyze the

factors underlying pandemic-related unemployment among working individuals in older-age cohorts. This being

said, concerns relating to causality are not internalized into most machine learning (ML) algorithms, and research

needs to be designed by taking into account this potential drawback (Grimmer, 2015). It is therefore of substan-

tial advantage that the data used in this study permit us to explicitly address this concern in relation to causality,

as will be detailed in the next section.

3 | THE DATA

Most of the data used in this study are from the latest version of the ‘Survey of Health, Ageing and Retirement in

Europe’ (SHARE) project (Börsch-Supan, 2021a, 2021b). The last wave of the SHARE data (Wave 8) includes a

COVID-19 questionnaire that is ‘an extraordinary source of information to study health and socio-economic implica-

tions of the shock on the elderly population’ (Börsch-Supan, 2021a). The regular SHARE data collection process was

interrupted in March 2020 by the outbreak and resumed in June and July 2020 in the form of a special COVID-19

module. Therefore, most individuals who were previously asked the standard demographic and work-related
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questions (just before the pandemic hit Europe), were subsequently asked how their job status, among other things,

was affected right after the first shock, allowing us to rule out any reverse causality problem in our findings. In other

words, the clear separation between the survey stages enables us to interpret our machine learning findings as causal

effects of individual socioeconomic attributes on pandemic-related unemployment.

Based on the research question and the scope of this study, we use the ‘Employment and Pensions’ and the

COVID-19 modules of SHARE Wave 8, which encompasses a group of European countries and Israel. In addition to indi-

vidual factors, we also integrate information on stringency policies alongside country- and industry-specific mobility data.

The stringency variable is collected by (Hale et al., 2021) and made available at ‘ourworldindata.org’. The index measures

the stringency level based on spatial policies applied on workplace, school, social gathering, and public transportation

usage, among other categories. To further explore industry-related effects, we added the Google Covid Community

Mobility Reports (Google LLC, 2021) for the work-related location categories: workplaces, retail and recreation, and gro-

ceries and pharmacies, which report the day-to-day change in the number of visitors compared with the baseline activity

in those locations as observed between January 3 and February 6, 2020 (Google LLC, 2021).1 Both the stringency and

mobility values have been integrated into our data as average values over the period March to July 2020 to ensure syn-

chronization with the measurement period of our dependent variable. Even though in this initial step the data consisted

of 32,366 rows and 636 variables, most of the observations were missing values. To ensure that the research question

could be properly addressed, we dropped all individuals with missing employment values or key variables of interest

such as mobility, education, and industry. Excluding columns consisting only of missing or constant values yielded a

dataset with 1,980 observations and 493 variables. Also, variables with high correspondence to the dependent variable

(such as the change in hours worked) and other variables such as month of birth, and whether anyone in the respon-

dent's family tested negative (as questions pertaining to testing positive and COVID-related health changes already

exist), and administrative information such as whether anyone else was present during the interview were excluded.

Due to the fact that very few people per International Standard Classification of Occupations (ISCO) category

exist in the SHARE data, we used the own industrial classification of the SHARE project, which consists of 14 indus-

try classes rather than the more commonly used ISCO classification. As a result, a dataset with 1,549 rows and

417 columns was attained. However, none of the individuals in this dataset had all the 417 features recorded, and

missing values rendered the data unusable for machine learning models. In the presence of many continuous, cate-

gorical, and ordinal features, imputation of such a large number of missing values would be questionable. Therefore,

we were forced to take other steps to render the data usable, while retaining as much information as possible. We

implemented an algorithm that detects the features or sets of features that cause the highest loss of observations in

a stepwise manner, and applied a simple classification tree prediction (the classification tree algorithm is detailed in

Section 4). As a result, for each step (i.e., iteration) we were able to detect the number of variables and observations

that remain, together with the accuracy of a classification tree for each combination of data. The relationship is visu-

alized in Figure 1, where the y-axis represents the percentage of either the number of remaining variables represented

by the light-green curve, the number of persons represented by the dark-green curve, or the accuracy of the

corresponding classification tree prediction on a test data (the test data concept is covered in Section 4), where the x-

axis represents the iterations. As the accuracy of the fitted model did not significantly drop through the iterations, the

largest sample, which consists of 1,549 individuals and 47 variables, was selected. On the other hand, as is often the

case with unemployment rates, a small part of our sample consisted of individuals who lost their jobs because of the

pandemic (260 people out of the total 1,549 persons). Unbalanced classes may cloud the workings of interpretable

machine learning models, as such data will push the algorithms to make simple predictions. For instance, in the case of

260 individuals who lost jobs, a machine learning model that predicts everyone as not experiencing job loss will still be

1The three categories are defined as follows. Retail and recreation: concert venues, convention halls, multipurpose arenas, casinos, science centers, art

centers, museums, public libraries, community centers, restaurants, beaches, marinas, and golf courses; workplaces: accommodation, nongovernmental

organizations (NGOs) and associations, banks, educational institutions, hospitals and clinics, government offices, municipal services, dental, physiotherapy,

and immunization offices and clinics, office towers, car dealerships, for-profit businesses, homeless shelters, food banks, and child services; grocery and

pharmacy: drugstores, pharmacies, convenience stores, markets, and grocery stores (Leung et al., 2021).
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approximately 80% accurate while ensuring computational efficiency and simplicity. For this reason, we selected a ran-

dom sample of 260 individuals who did not lose their jobs, attaining a final dataset with 260 persons who lost their jobs

because of the COVID-19 pandemic versus an equal number who retained their jobs, to allow for high interpretability

of our machine learning algorithms by forcing the models to distinguish equally sized groups. Prior to this data cleaning

process, the variables measuring the education level and the type of area where the individual resides were integrated

from other modules of Wave 8.

4 | RESULTS OF THE TREE-BASED RANDOMIZED AND SEQUENTIAL
ALGORITHMS

4.1 | Recursive binary partitioning of the training data

The target feature (i.e., dependent variable) in all the below detailed models is categorical, and the ensemble models

used in this paper are based on classification trees. Prior to the prediction of employment outcomes, one-third of the

individuals in our dataset are randomly sampled and set apart as the test data, and the remaining portion of the

dataset (the training data) is used to conduct all machine learning procedures.2 The single-tree framework that

underlies the more complex algorithms employed in this study is based on the Classification and Regression Trees

(CART) model by by Breiman et al. (1984). Also referred to as binary recursive partitioning, the classification tree

algorithm is defined by Breiman et al. (1984), Friedman (2001), and James et al. (2013) as follows: each tree node

indexed by r corresponds to a data region with an impurity criterion given by the Gini index Ir :

Ir ¼
XC
c¼1

prcð1�prcÞ

where prc ¼
1
Nr

X
i � Ar

1ðyi ¼ cÞ
ð1Þ

F IGURE 1 Variable-observation trade-off

2The R packages used to run the machine learning algorithms and other supportive processes are as follows: rpart by Atkinson and Therneau (2000) for

recursive binary partitioning, randomForest by Liaw and Wiener (2002) for the random forest model and for generating the associated proximity matrix,

xgboost by Chen et al. (2015) for the extreme gradient boosting machine, rpart.plot by Milborrow (2019) for plotting the single classification, pdp by

Greenwell (2017) for the ICE plots, and SHAPforxgboost by Liu and Just (2020) for computing the Shapley values and the Shapley value diagram and

force plot.
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In Equation 1, yi is the outcome value for the i th individual ði¼1,…,NÞ,Ar and Nr represent respectively the set

and the number of individuals who fall into node r, and c is the category index. Because the response variable con-

sists of only two classes: ‘YES’ (lost job) and ‘NO’ (retained job) such that c¼1,2, then Ir can be written as

2pr1ð1�pr1Þ. The purpose of each data partitioning step is to attain nodes that are as pure (i.e., homogeneous) as

possible. In other words, the split attempt aims to distinguish on the basis of the smallest attainable Ir value in that

step by selecting a splitting variable xk from the input space (X¼ x1,…,xK and k¼1,…,K) together with its specific

split value v that solves:

min
k,v

Nr1 ðk,vÞ
N

Ir1 ðk,vÞþ
Nr2 ðk,vÞ

N
Ir2 ðk,vÞ

� �
ð2Þ

where r1 and r2 denote the nodes resulting from the binary split; in other words, they are the ‘child nodes’ of r
(Breiman et al., 1984; Friedman, 2001; James et al., 2013). In the case of a categorical xk , like the variable Industry

used in our models, the split value v simply partitions the variable into distinct classes or sets of classes when

attempting the minimization of the sum of the Gini values of the two resulting nodes. If splitting the node does not

contribute any reduction to node impurity, that is, the term in the square brackets in Equation 2 is not less than that

of the parent node (Ir ) upon minimization, then the split is not performed and r becomes a terminal node (Breiman

et al., 1984; Friedman, 2001; James et al., 2013).

An unpruned classification tree will continue applying Equation 2 as long as there remain large enough data

regions that can be split into smaller portions, leading to the generation of a very complex tree. However, this

approach will perform poorly on out-of-sample observations such as those that were previously set apart as the test

set (James et al., 2013). To prevent this overfitting issue, the complexity of the tree has to be reduced by eliminating

nodes. This ‘pruning’ procedure is done by implementing an L-fold cross-validation algorithm, and is outlined by

Friedman (2001), Sutton (2005), and James et al. (2013) as follows: a sequence of subtrees t of the highly complex

unpruned tree T is generated where each t⊆ T is indexed by the complexity parameter α≥0. After splitting the train-

ing data into L folds of equal size (l¼1,…,L), the process is repeated L times by leaving fold l out as the internal vali-

dation set in each iteration.3 For each subtree t, the complexity level α that corresponds to the minimum weighted

total misclassification error subject to a penalty term αjtj is identified, where jtj is the number of terminal nodes r:

ElðαÞ¼
Xjtj
r

er
Nr

N
þαjtj

where er ¼
1
Nr

X
i � Ar

1ðyi ≠ c ∗
r Þ

ð3Þ

where ElðαÞ is the penalty-augmented error of the subtree as a function of α generated by leaving fold l out. c ∗
r is

the majority class in terminal node r,1 is the indicator function, and r¼f1,…, jtjg. Subsequently, the errors of the

trees that correspond to each complexity level are averaged over the L folds of data that they leave out in prediction,

and the complexity parameter α ∗ that gives the minimum cross-validated error is selected:

α ∗ ¼ arg min
α

1
L

XL

l¼1

ElðαÞ
" #

ð4Þ

3The terms ‘test data’, ‘test set’, and ‘validation set’ are usually used interchangeably in machine learning. However, to prevent any confusion between the

test data (which is separated in the beginning) and the left-out folds in the cross-validation process, we refer to the latter as ‘internal validation sets’ of the
training data.
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Finally, the particular t⊆ T with α¼ α ∗ is chosen as the optimal tree Friedman (2001); James et al. (2013).4 In

addition to the identification of α ∗ , parameter tuning for determining the maximum depth and minimum size of a

tree node is made through a grid search in the range of 1 to 10 for the number of observations and 5 to 15 for tree

depth, by increments of one – similar to the application by Boehmke (2020).

The resulting classification tree is shown in Figure 2, where the values in the terminal nodes represent the share

of people who lost their jobs (YES), those who did not (NO), and the portion of the data that falls into the leaf. The

topmost partitioning is made using the variable EmpType, which sets aside the individuals who are employed in the

public sector. Unless the public sector employee did not rank her/his prepandemic health level (HealthBefore) as

worse than ‘excellent’, “good', or ‘very good’, the classification tree strongly predicts no job loss. Therefore, the clas-

sification tree identifies a small but crucially vulnerable group of public sector employees (4% of our sample) who are

predicted to experience job loss due to their less favorable initial health levels. There is a health-related inequality

among public sector employees who are generally seen as more protected, financially, from the negative effects of

the pandemic.

Turning to the persons who either work in the private sector or manage their own business, we observe a

strong prediction of job loss if mobility in the retail and recreation category (Retail_Recreat) dropped by more

than a score of 31. The tree predicts retained employment for a group of persons that are in locations where the

drop in mobility is less than 31 in the following industry categories (Industry) that appear to be more resilient

to the pandemic effect: ‘agriculture, hunting, forestry, fishing’, ‘mining, quarrying’, ‘financial intermediation’, ‘real
estate, renting and business activities’. Individuals working in the industries ‘manufacturing’, ‘electricity, gas, and
water supply’, ‘construction’, ‘wholesale and retail trade; repair of motor vehicles, motorcycles, and personal and

household goods’, ‘transport, storage, and communication’, ‘other community, social, and personal service activi-

ties’ (all industry codes and variables are defined in Table 1, and their descriptive statistics are presented in

Table 2) are predicted to become unemployed if they were born before 1962 and live in places where the work-

place mobility (Workplaces) fell less than the value 27, as opposed to locations with higher drops in mobility. As

a result, industry, mobility, and age-related inequality is more prominent in relation to the labor market outcomes

for the persons who own businesses or work in the private sector, whereas for those who work in the public

sector, health-related effects are more powerful. From this point of view, the tree identifies yet another small and

vulnerable group of individuals through the variable BirthYear: relatively older individuals (i.e., those born before

4The reason why ‘⊆ ’ is used rather than ‘�’ is because α ∗ may be equal to zero, and therefore, the penalty term αjtj in Equation 3 would also be zero,

resulting with the generation of the unrestricted classification tree T (James et al., 2013).

F IGURE 2 Sample classification tree
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1962) working in the manufacturing, energy supply, construction, transportation/communication, and community/

personal service areas are more likely to lose their jobs as a result of the drop in mobility in workplaces. Interest-

ingly, if the drop is more than the score of 27, the tree predicts that there will not be job losses, but if the mobility

drop is less, then job loss is expected. A possible explanation of this finding can be hypothesized to be based on

remote working opportunities: in workplaces where a transition to remote work is more possible, older individuals

may have been more likely to retain their jobs, whereas this group of individuals may have been the first to be laid

off in workplaces that were not able to considerably reduce their activity. Clearly, the aforementioned algorithmic

finding calls attention to the need for in-depth case studies, and points at new research avenues. The predictive

accuracy of this unitary classification tree is 69.8%. The code used to generate this single tree was programmed to

repeat by making new random splits of train versus test data until a tree with an accuracy above 50% that is not

just a stump (i.e., consisting of a single split) is generated.5

5The R code will be made available to reviewers if requested.

TABLE 1 Features Selected by the Single Classification Tree

Name Description Values

BirthYear The year of birth of the participant. Quantitative variable.

EmpType Employment category. 1 = Private sector, 2 = Public sector,

3 = Self-employed.

HealthBefore Perception of health status before the

outbreak.

A 1-to-5 scale where 1 = Excellent,

and 5 = Poor.

Industry Industry category. 1 = Agriculture, hunting, forestry, fishing, 2 =

Mining and quarrying, 3 = Manufacturing,

4 = Electricity, gas, and water supply, 5 =

Construction, 6 = Wholesale and retail

trade; repair of motor vehicles, motorcycles,

and personal and household goods,

7 = Hotels and restaurants, 8 = Transport,

storage, and communication,

9 = Financial intermediation, 10 = Real

estate, renting and business activities, 11 =

Public administration and defense;

compulsory social security, 12 = Education,

13 = Health and social work, 14 = Other

community, social, and personal service

activities.

Retail_Recreat Average change in the number of visitors and

time spent in places in the retail and

recreation category between July and

March 2020, compared with a prepandemic

baseline value. Quantitative variable.

Additive inverse is used so that higher values

indicate higher decreases in mobility.

Workplaces Average change in the number of visitors and

time spent in places in the workplaces

category between July and March 2020,

compared with a prepandemic baseline

value. Quantitative variable.

Additive inverse is used so that higher values

indicate higher decreases in mobility.
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4.2 | Random forest results

Despite the implementation of L-fold cross-validation to avoid overfitting, the unitary classification tree outlined

above lacks robustness to data replacements, and is susceptible to omitting relevant features that have high correla-

tions with other predictors (Athey & Imbens, 2019; James et al., 2013). The random forest technique Breiman (2001)

improves predictive accuracy and decreases the variance of the prediction by retaining the low bias structure of an

overfit single tree, while reducing variance thanks to averaging. Based on the bootstrap aggregation algorithm devel-

oped by Breiman (1996), a random forest model generates an ensemble of unpruned classification trees (i.e., different

versions of T) by adding randomization into feature selection (Breiman, 2001; Friedman, 2001). The ‘forest’ com-

prises jTj number of trees T, each generated by using a random sample of size N from the training set (T¼1,…, jTj).
The issue pertaining to the omission of relevant variables discussed earlier for a classification tree may persist in the

ensemble approach if all trees in the ensemble use the same predictor space, as is the case in bootstrap aggregation

models (Friedman, 2001; James et al., 2013). On the other hand, the random forest algorithm considers features Z�
X where Z is sampled randomly at each node split, with size

ffiffiffiffiffiffijXjp
(Breiman, 2001), thereby de-correlating the trees

in the forest (James et al., 2013).

Making predictions alone, regardless of how accurate they are, does not lead to useful results when it comes to

answering socioeconomic and policy-relevant questions. Since the predictions by ensemble models are made

through the contribution of a large number of trees, plotting a single tree is clearly not practical. In this regard, inter-

pretable machine learning techniques come forth as highly useful approaches for deriving valuable socioeconomic

information from predictions. These techniques involve the retrospective assessment of the prediction process by

explaining how the algorithm reached the final predictions, identifying the important variables, and showing how

these variables contributed to predictions by assessing the magnitudes and the directions of effects. Various elegant

and informative techniques exist to discover important socioeconomic and policy-relevant patterns and mechanisms.

For this purpose, we employ novel techniques such as the computation of conditional expectations, partial depen-

dences, and deriving Shapley values that are rooted in cooperative game theory.

One tool of interpreting the results of a ML model is the variable importance measure, which is used to assign a

score and rank to the inputs used in ensemble model. Variable importances are based on calculating how useful an

input was for prediction: when selected as a split variable in any given tree in the ensemble, a feature leads to a

reduction ΔI in node impurity, calculated for each split in a tree as shown in Equation 5 and averaged over all jTj
trees in the ensemble (James et al., 2013).

ΔI¼ Ir � Nr1

N
Ir1 þ

Nr2

N
Ir2

� �
ð5Þ

TABLE 2 Descriptive Statistics of the Features Selected by the Classification Tree

Variable Median or mean SD Mode Min Max

BirthYear 1960 5.15 1960 1942 1970

EmpType – – 1 1 3

HealthBefore 3 – 3 1 5

Industry – – 13 1 14

Retail_Recreat 23.02 10.46 – 3.67 49.12

Workplaces 28.13 4.78 – 20.30 37.31

Number of observations = 520 for all variables

Note: The central tendency measure is reported using the median for ordinal variables, and the mean for quantitative

variables.
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and subsequently scaled into a value between one and zero. In Equation 5, Nr1 and Ir1 denote the size and the Gini

index of the first child node resulting from the binary split respectively, while their counterparts indexed by 2 refer

to the second child node, and Ir is the Gini index of the parent node as defined in Equation 1.

The variable importances computed by the random forest model are presented in the left panel of Figure 3, and

the features selected by the model that were not selected by the single tree are defined in Table 3 alongside their

descriptive statistics in Table 4. In the variable importance graphs, we present only the 20 most important features.

Results suggest that mobility (particularly in the retail and recreation category), employment type, industry, the strin-

gency level, and previous health condition are features that lead to high decreases in mean node impurity. These

findings are mostly consistent with the results of the single tree, which, however, did not identify the stringency

effects that the random forest model discerned. Education is the fourth most important individual-level feature,

prompting us to further investigate its role in the subsequent steps in the form of conditional expectation and

Shapley value analysis. As suggested by the unitary tree in Figure 2, while the prepandemic health situation of a per-

son is among the relatively more important features, other health-related individual- or household-level predictors

Died, Hospitalized, and HadTreatment have lower importance levels, but jointly suggest the relevance of per-

sonal and family health status to employment outcomes in addition to HealthBefore. Gender is also selected by

the random forest model as an important feature. Finally, we observe several country-specific effects, which we fur-

ther examine by focusing on country-specific partial dependences.

It is possible to look further into the random forest findings by visualizing the random forest proximity matrix in

the form of a two- or three-dimensional proximity plot (Breiman & Cutler, 2020; Friedman, 2001). Plotting similarity

scores among the data instances (observations) is an effective approach for detecting cluster structures (Aldrich &

Auret, 2013; Friedman, 2001). Because each tree in the random forest draws its own random sample, some observa-

tions are left out. The outcome for these out-of-bag (OOB) observations are predicted using the corresponding

unrestricted tree and recorded into an initially empty N�N proximity matrix S each time any terminal node Ar,T of

iteration T includes both OOB individuals i and j (j¼1,…N, i≠ j) such that sij is increased by 1 (Aldrich & Auret, 2013;

Breiman & Cutler, 2020; Friedman, 2001). Next, S is scaled by dividing with jTj and converted to an N�N dissimilar-

ity matrix D¼1�S (Aldrich & Auret, 2013). Finally, through multidimensional scaling, dissimilarities can be expressed

in two or three dimensions that can be represented in the random forest proximity plot (Friedman, 2001), as shown

in Figure 3. In the classification context, the proximity plots are generally star shaped, with each arm representing dif-

ferent classes. Observations in relatively pure class regions (for instance, Ar 's that contain mostly only employed indi-

viduals) fall into the extremities of an arm, whereas the center of the star consists of observations that the model

cannot distinguish sufficiently well (Aldrich & Auret, 2013; Friedman, 2001).

F IGURE 3 Variable importance and ICE plots – random forest
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The random forest proximities are visualized in two and three dimensions in Figure 4, where larger circles repre-

sent individuals in places with higher mobility drops in the retail and recreation category. Light-blue circles represent

individuals working in the private sector, dark-blue circles correspond to persons who are self-employed, and gray

circles represent individuals in the public sector. Clear employment type clusters are identified by the random forest

based on the prediction of unemployment status. A cluster of unemployed individuals is located on the far end of

the arm consisting of the self-employed and those who are working in the private industry (a web-based version of

these figures where one can hover above the dots to see the employment status and mobility score can be provided

upon request). Aside from the aforementioned cluster, we observe the self- or private employed versus the public

TABLE 3 Features Selected by the Ensemble Models

Name Description Values

Country

(Name)

Binary variables. Equals one if the country is the one specified

in the variable name, and zero otherwise.

Doctor Binary variable. Equals zero if the responded has visited a

doctor/medical facility other than hospital

since outbreak, and 1 otherwise.

Died Binary variable. Equals zero if anyone in the respondent's

household died from COVID-19, and 1

otherwise.

Gender Binary variable. Equals one if female, zero if male.

Grocery_Pharm Average change in the number of visitors and

time spent in places in the groceries and

pharmacies category between July and

March 2020, compared with a prepandemic

baseline value. Quantitative variable.

Additive inverse is used so that higher values

indicate higher decreases in mobility.

Hospitalized Binary variable. Equals zero if the respondent has been treated

in hospital since outbreak, and 1 otherwise.

Education Respondent's highest ISCED-97 level

of education

A 0-to-6 scale where 0 indicates no education,

and 6 indicates doctoral or equivalent level.

Location Size classification of the residence are

of the respondent

A 1-to-6 scale where 1 indicates ‘a big city’
and 5 indicates ‘a rural area or village’.

RegularPayNo Binary variable Equals one if the respondent does not receive

any regular payment, and zero otherwise.

Stringency The COVID-19 stringency index. Composite score derived from the strictness

of the stringency policies with regard to

school and workplace closures, cancellation

and restriction of public events, gatherings,

public transport, information campaigns,

internal and international movement, travel

controls, vaccination, and face covering

policies. A score of 100 indicates the

strictest level, whereas zero is the minimum

score.

Symptoms Binary variable. Equals zero if anyone in the respondent's

household had COVID-19 symptoms, and 1

otherwise.

6See Table 19 in the UNESCO ISCED classifications report available at https://uis.unesco.org/sites/default/files/documents/

international-standard-classification-of-education-isced-2011-en.pdf.
7See https://ourworldindata.org/grapher/covid-stringency-index?tab=table for more information on the stringency index

developed by Hale et al. (2021).
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sector employees clustered into separate arms as expected, further highlighting the role of job type in pandemic-

related employment outcomes. In conjunction with our earlier findings, we can state that there exist two distinct

subgroups (i.e., private/self-employed and public) in which there are more specific subgroups – defined by personal,

industrial, and locational attributes – that consist of vulnerable individuals who may require different sets of policy

interventions (e.g., health-related versus industry-related policy approaches).

4.3 | Gradient boosted trees

Random forests build trees independently, with the aim to de-correlate them. On the other hand, the gradient boo-

sting machine algorithm (GBM, Friedman et al., 2001; Friedman, 2002) generates sequential classification trees, each

learning from the prediction errors made by its preceding counterpart. The GBM can be extended to include

stochasticity, similar to the random forest approach, in the form of a stochastic gradient boosting machine (SGBM,

Friedman et al., 2001; Friedman, 2002), and the adoption of stochasticity can be further extended computationally

through the application of an extreme gradient boosting machine algorithm (XGBoost, Chen & Guestrin, 2016). The

steps of the GBM algorithm in a classification context established by Friedman (2001); Friedman et al. (2001), and

Friedman (2002) are adapted into our data as follows: the algorithm is initiated by a constant initial prediction ŷi,1,

which is the same for every person i, where the second subscript indexes the first of the sequential trees (i.e., a single

leaf) where t¼ð1,…,TÞ.8 This initial prediction is approximated by minimizing the expected value of the loss function,

the negative likelihood Lðyi , fðXÞÞ, with respect to fðXÞ, the predicted log odds of becoming unemployed because of

the pandemic:

ŷi,1 ¼ arg min
fðXÞ

XN
i¼1

Lðyi , fðXÞÞ ð6Þ

8While the same index t was earlier used to denote the subtrees in cross-validation, henceforth t denotes the classification trees built by the gradient

boosting algorithm.

TABLE 4 Descriptive Statistics of the Features Selected by the Classification Tree

Variable Median or mean SD Mode Min Max

Doctor 0.69 – – 0 1

Died 0.98 – – 0 1

Gender 0.62 – – 0 1

Grocery_Pharm 4.78 8.31 – -9.5 24.6

Hospitalized 0.93 – – 0 1

Education 3 – 3 0 6

Location 4 – 5 1 5

RegularPayNo 0.96 – – 0 1

Stringency 56.8 5.8 48.7 72.6

Symptoms 0.85 – – 0 1

Number of observations = 520 for all variables

Note: The central tendency measure is reported using the median for ordinal variables, and the mean for quantitative and

binary variables.
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The GBM improves on the errors made by the preceding trees. To carry out this sequential improvement

in the predictions, GBM computes the pseudo-residuals εit for each individual i resulting from the predictions

made by the preceding tree t�1 as the negative of the derivative of the loss function with respect to the predicted

log odds:

F IGURE 4 Job type clusters based on mobility – random forest
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εit ¼� ∂Lðyi, fðXiÞÞ
∂fðXiÞ

� �
f¼ft�1

for i¼1,…,N ð7Þ

Next, a regression tree is used to predict the targets εit.
9 The regression tree yields terminal nodes r that consist

of the set of residuals corresponding to all i observations Xi �Ar (similar to the notation used in the earlier outline of

a single-tree framework, a tree t in a GBM iteration has jtj number of terminal nodes r). The output value εrt for node

r is computed by minimizing the loss function including the correction term ε (Friedman, 2001; Friedman et al.,

2001):

εrt ¼ arg min
ε

X
xi � Art

Lðyi, ft�1ðXiÞþεÞ ð8Þ

Finally, the prediction for person i's employment status is updated such that the new tree fractionally learns from

the preceding tree's predictions ft�1:

ŷit ¼ ft�1ðXiÞþδεrt1ðXi �ArtÞ ð9Þ

where δ is the ‘learning rate’ (0 < δ<1), 1 is the indicator function, and δεmt is the step size taken to improve predic-

tions (Friedman, 2001; Friedman et al., 2001). In other words, each tree ‘corrects’ the errors made by the preceding

tree by revising the prediction for i based on the magnitude of the error, but with some doubt, as ‘corrections’ them-

selves may be wrong, leading to new errors that need to be handled by new trees. The ‘doubt’ is reflected by a learn-

ing rate less than 1, and it has been shown that small δ values and a large T (often decided by an early-stopping rule)

lead to significant improvements in prediction (Friedman, 2001; Friedman et al., 2001). In addition to the above

framework, we apply the stochastic GBM by (Friedman, 2002) through the use of the extreme gradient boosting

(XGBoost) machine. This framework allows the introduction of stochasticity in two ways; firstly, by selecting a new

random subsample of the training data at each iteration; and secondly, by sampling a subset of features Z�X at each

node of each tree as in the random forest model. XGBoost algorithm by Chen and Guestrin (2016) is a popular com-

putational extension used in the implementation of GBM, as it allows one to control further parameters for regulari-

zation (i.e., tree pruning as discussed in the context of a single tree), and implements the earlier-discussed tenfold

cross-validation process, leading to greater generalization capability in addition to improving computational

efficiency.10

The XGBoost algorithm encodes all categorical features into binary values prior to making predictions, allowing

specific feature classes to be scored separately on the basis of their importance, as can be seen in the right panel of

Figure 3. The stochastic gradient boosting model outlined above is applied using the following parameter values that

result from a grid search that yields the parameter values that correspond to the minimum test error estimate:

δ¼0:3, a maximum depth ¼15, a variable subsample ratio of 0.5 at each split, a minimum node size of 5, and a num-

ber of trees of 9. While the grid search did not suggest subsetting observations at each iteration, the second-lowest

test error was only 0.003 higher than the first (0.645 and 0.648, respectively), we use the parameter values

corresponding to the former for higher computational speed.

In line with the findings of the random forest model and the single classification tree, the SGBM results show

that being a public sector employee (EmpType2) – as opposed to being self-employed or working in the private sec-

tor – being in a country experiencing large decreases in mobility, age, working in industry 7 (hotels and restaurants),

9A regression tree, which also is a part of the CART framework of Breiman et al. (1984), partitions the data on the basis of a squared error loss function as

opposed to a classification tree, which uses node impurity. As a regression tree is essentially the continuous dependent variable version of a classification

tree, the details of the former are not covered in this study.
10Chen and He (2015) and Adam-Bourdarios et al. (2015) demonstrated how XGBoost can be used for discovering the Higgs boson on the basis of data

generated by the the Large Hadron Collider.
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stringency policy level, prepandemic health status, education, and gender rank among the variables with the highest

importance. Furthermore, additional health- and industry-related factors are also selected. The main difference of

the SGBM results from the random forest findings is that the former finds age as an important determinant of

pandemic-related unemployment status, prompting us to investigate the role of this feature – which was also

highlighted by the single tree model earlier – in the following stages of our empirical analysis. The SGBM results are

also in accordance with the random forest findings in relation to the importances of health-related outcomes despite

selecting different health variables. Finally, the SGBM attributes some importance, albeit negligibly low, to the loca-

tion type where the individual resides.

4.4 | Applications of interpretable ML tools

4.4.1 | Partial dependences and individual conditional expectations

The variable importance plots presented in Figure 3 are useful for detecting the factors that lead to different employ-

ment outcomes. They also serve as a starting point to decide on the factors for which it is worthy to delve in further.

We elaborate on the association between unemployment status and the remaining variables in our dataset using

three interpretation tools: individual conditional expectations, partial dependences, and Shapley values, outlined

below. The partial dependence approach introduced by Friedman (2001) allows a plotting of the predicted outcome

for the values of a specific predictor variable xk averaged over all individuals i in the training data. If we set apart a

group of variables of interest Xs (usually one or two due to limitations relating to visualization and computation) from

the predictor space X¼ðx1,…,xKÞ versus the remaining input features XC , then the partial dependence of the

predicted outcome on Xs can be represented according to Friedman (2001) and Aldrich and Auret (2013):

fSðXSÞ¼ 1
N

XN
i¼1

fðXS,Xi,CÞ ð10Þ

where the Xi,C are actual values of features C for individuals in the training data that are ‘held constant’, while pre-

dictions for each value of XS are remade for each individual and subsequently averaged. This approach is conceptu-

ally, but not technically, analogous to ‘ceteris paribus’ effects in economics. Partial dependences may lead to

unrealistic conclusions for a given feature in XS that has a high degree of correlation with a feature or a number of

features in XC (Friedman, 2001; Molnar, 2019). Furthermore, heterogeneous effects are not represented in partial

dependence values (Molnar, 2019). A useful approach to cope with these disadvantages is constructing individual

conditional expectation (ICE) plots, as formulated by Goldstein et al. (2015). An ICE representation disaggregates the

global partial dependence of the response feature on XC , and plots the conditional expectation curves for each indi-

vidual (Goldstein et al., 2015; Molnar, 2019). However, when individual curves are plotted in this fashion, the out-

come will be stacked curves with different intercepts because predictions for the first values of the variables of

interest will differ (Goldstein et al., 2015; Molnar, 2019). By anchoring curves fi,S at a specific value of the variable of

interest, it is possible to conveniently represent the heterogeneity by plotting the ICE curves fcenteredi,S that share the

same intercept. In other words, the the differences in levels due to different Xi,C 's are removed by using an anchor

point x ∗ (Goldstein et al., 2015):

fcenteredi,S ¼ fi,S� fðx ∗ ,Xi,CÞ ð11Þ

The ICE plots for the three mobility categories alongside the policy stringency variable are shown in Figure 5, 6

where the random forest and SGBM results are shown in the left and right panels, respectively. The SGBM plots dis-

play a larger number of overlapping curves compared with the random forest ICE diagrams, due to the fact that the
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latter method, as outlined earlier, generates unpruned trees. The ICE plots in the first row of Figure 5 suggest that,

while larger drops in mobility in the retail and recreation category lead to higher probabilities of job loss, the effect is

heterogeneous. The heterogeneity is also observable in the SGBM counterpart of the plot at the right-hand side. In

general, the ICE plots hint that individuals who are subject to scores higher than about 30 are particularly more likely

to experience pandemic-related job loss. While a similar outcome is observed for the drop in mobility in workplaces,

the SGBM results for mobility in the grocery and pharmacy category do not suggest a clear pattern, consistent with

the fact that the SGBM ranked the aforesaid category at a lower importance level. Finally, the ICE plots for policy

stringency for both models suggest that higher stringency levels are associated with higher probabilities of job loss,

while highlighting that some individuals are less affected by stringency policies.

Industry-based heterogeneity may be addressed through the use of two-way partial dependence plots (PDP).

While the usefulness of ICE plots is due to their ability to display individual curves, the advantage of two-way PDPs

is the possibility to view how two features affect the predictions jointly. Each individual is represented by a pixel in

F IGURE 5 Individual conditional expectation plots – mobility

F IGURE 6 Individual conditional expectation plots – stringency

CELBIŞ ET AL. 17



the two-way PDPs shown in Figure 7, where lighter-colored pixels correspond to individuals with higher probability

of experiencing unemployment due to the pandemic as predicted by the random forest model. Each row in the plot

in panel A of Figure 7 represents the industries as defined in Table 1 in succession, the x-axis represents the strin-

gency level, and the legend on the left presents the color scale corresponding to probability predictions. The seventh

row from the bottom that corresponds to the ‘hotels and restaurants’ industry (industry 7) mostly consisted of ligh-

ter pixels compared with those that represent the other industry categories. In other words, regardless of the strin-

gency level, individuals in this industry have higher probability of losing their jobs because of the COVID-19

pandemic. Above a stringency score of about 55, individuals working in most other industries are also more likely to

lose their jobs except for those who work in mines, quarries, and in the public administration sectors, which are quite

resilient to stringency-related measures. The aforementioned finding regarding the vulnerability of the individuals

working in the ‘hotels and restaurants’ category, and the resilience of those who work in mines, quarries, and public

administration, persists in all the other PDP diagrams except for panel B of Figure 8. More specifically, in panels B, C,

and D of Figure 7, which plot the industry categories against the decrease in mobility in the ‘retail and recreation’,
‘workplaces’, and ‘grocery and pharmacy’ categories, respectively, all highlight the same aforementioned industries

as either highly vulnerable or highly resilient. In panel A of Figure 8, we observe that older individuals, particularly

those born before around 1955, are predicted to have higher probability of job loss. In line with earlier findings, the

persons in the public administration sector, alongside those in the mining and quarry industries, are almost unaf-

fected, while the effect is more pronounced for those who work in hotels and restaurants.

The heterogeneity that may be due to education levels is visualized in panel B of Figure 8. We observe that peo-

ple born before around 1955 with relatively lower education levels constitute the group with the highest unemploy-

ment probability. On the other hand, people in this age group with at least an upper secondary education level

degree are found to be more likely to retain their jobs. This finding becomes even more relevant when the unequal

impacts of the pandemic on access to education are considered: a lack of education due to the pandemic may lead

to further disadvantages in similar future crises (Türk, 2021).

The industry-specific predictions are shown in Figure 9, where the height and the value on top of each bar is the

probability prediction. Consistent with our earlier findings, the ‘hotels and restaurants’ category has the highest

value, followed by ‘other community, social and personal service activities’, while the most resilient industries are

‘mining and quarrying’, ‘public administration and defense, compulsory social security’, ‘financial intermediation’,
and ‘agriculture, hunting, forestry, fishing’.

F IGURE 7 Industry, mobility, and stringency – random forest
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A similar categorical visualization is shown for the countries in the sample in Figure 10 where darker-colored

bars indicate countries with higher probabilities of pandemic-related unemployment (also numerically shown at the

top of the bars), and higher bars represent higher stringency levels. While countries with both high stringency and

high job loss probabilities seem to cluster together, there also exist countries with higher job loss probabilities

despite lower stringency levels. It should be noted that the probabilities are based on partial dependences, and while

numerically they are very similar in terms of country averages, the effects can be more pronounced for certain indi-

viduals, as hinted by the earlier-discussed ICE plots, further underlying the benefits of employing tree-based ensem-

ble methods for prediction in the presence of heterogeneous and nonlinear relationships.

4.4.2 | Shapley value explanations

In addition to variable importances, partial dependences, and individual conditional expectations, extracting further

explanatory information from the ensemble models can be carried out by calculating the Shapley values, which is an

explanatory method introduced in cooperative game theory by Shapley (1953). Following the study by Lundberg and

Lee (2017), the use of Shapley values recently became a popular approach in machine learning for the purpose of

better understanding how each feature contributes to individual predictions (Sundararajan & Najmi, 2020).

For the purpose of avoiding the overuse of the term ‘value’, we henceforth use the terms ‘Shapley value’ and
‘Shapley score’ interchangeably in this study. The Shapley score ϕh for a specific feature value h of variable xk for a

given data instance (i.e., observation/person) i is presented in Equation 12 (Lundberg & Lee, 2017; Molnar, 2019):

F IGURE 8 Industry, age, and education – random forest

F IGURE 9 Industry partial dependences – random forest
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ϕh ¼
X

S ⊆ X ∖ fhg

jSj!ðjXj� jSj�1Þ!
jXj! gðS[fhgÞ�gðSÞ½ � ð12Þ

where S is a subset of feature values, and g is the expected value of multiple predictions by the GBM using randomly

drawn values for features not in a given subset S minus the average prediction for all observations (as shown in

Equation 13 below).11 In sum, the Shapley method replaces the features of a given observation with those of a ran-

domly sampled observation from the data, except for a randomly defined subset of the feature values of the obser-

vation, and subsequently computes the difference in the deviations in predictions from the average prediction when

the feature value equals h versus when it does not – as shown in the last term of Equation 12 (Lundberg & Lee,

2017; Molnar, 2019). When h is excluded, the corresponding feature value from the randomly selected observation

is included instead. Therefore, the contribution of the specific feature value h to prediction is averaged over all possi-

ble combinations of the subsets S⊆X ∖ fhg (Lundberg & Lee, 2017; Molnar, 2019).12 As mentioned above, for each

possible subset S, the feature values of random observations from the data are used as replacements for the

remaining features and the contribution of h is calculated multiple times and integrated, and the resulting deviation

from the average prediction is (Molnar, 2019):

gðSÞ¼
ð
fðXÞdPx =2 S�EðfðXÞÞ ð13Þ

However, evaluating Shapley values for all possible subsets with versus without h has an exponential computa-

tional time complexity (Molnar, 2019; Štrumbelj & Kononenko, 2013). Štrumbelj and Kononenko (2013) present the

following approximation:

ϕh ¼
1
M

XM
m¼1

f ∗ ðŷðiÞmþhÞ� f ∗ ðŷðiÞm�hÞ
� � ð14Þ

where f ∗ ðŷðiÞmþhÞ and f ∗ ðŷðiÞm�hÞ are the GBM predictions for individual i made by replacing a random number of fea-

ture values with those of a randomly selected individual j from the training data. In f ∗ ðŷðiÞm�hÞ, the feature value of

interest h is also taken from j. The calculation is done in M iterations (m¼1,…,M) and ϕh is the mean value of all

11In fact, the cardinality of X as written in Equation 13 is equal to K based on our earlier definition of X such that jXj ¼K.
12An alternative expression of the Shapley value is ϕh ¼ 1

jXj!
P

S ⊆ X ∖ fhg
P

λ fðSλ [fhgÞ� fðSλÞ½ �, where λ indexes the order that the feature value of interest h

can be included in the calculation Vedder (2020).

F IGURE 10 Country partial dependences and stringency levels – random forest
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iteration results (Molnar, 2019; Štrumbelj & Kononenko, 2013). We execute our Shapley value analysis using the

SHAPforxgboost algorithm by Liu and Just (2020), which allows reporting of Shapley values globally – for each

variable for every individual – as presented in Figure 11. In the Shapley value diagram in Figure 11, each variable is

ordered on basis of its Shapley importance level, which is the sum of the absolute values of its Shapley scores over

each individual i (Molnar, 2019):

Φh ¼
Xn
i¼1

jϕi,hj ð15Þ

for the i th person in the training data (i¼1,…,N). On the other hand, the Shapley force plot shown in Figure 12 visu-

alizes the ϕh values for each i in a stacked manner.

The feature effect sizes and directions are represented in the Shapley value diagram in Figure 11, where each

dot represents an individual, and darker colors indicate higher feature values. The features on the x-axis are ordered

in a descending manner based on their Shapley importance scores as given by Equation 15, and the Shapley scores

for specific feature values can be traced to the x-axis. It follows that binary features are represented in two colors

rather than a spectrum. The Shapley value diagram shows that not being in the public sector is associated with higher

contributions to predictions of higher unemployment probabilities. Higher decreases in mobility in workplaces, retail

and recreation, and grocery and pharmacy categories are also associated with higher probabilities of pandemic-

related job loss. For workplaces, discussed earlier in particular in the context of a single tree, there are individuals

subject to high but not severe drops in mobility who are predicted to keep their jobs, an observation that may be

related to the fact that remote working is common in offices, banks, and similar locations that are in the workplaces

category. High-stringency policy values, earlier birth years, being female, and working in industry 7 (hotels and res-

taurants) contribute to individual-specific predictions of unemployment. While having a postsecondary, nontertiary

education is found to increase the chances of job retention, individuals with lower secondary level of education are

somewhat more vulnerable to pandemic-related job loss. Regarding health variables, having worse health status prior

to the pandemic, having visited a doctor, and having experienced COVID-19 symptoms are associated with higher

chances of unemployment. Finally, the Shapley value results also find a very small association between working in

the ‘health and social work’ category and unemployment.

A final visualization of the Shapley results is presented by the Shapley force plot in Figure 12, where a certain

cluster is magnified in the lower panel as an example. The variables with the ten highest Shapley importance values

are represented in the diagram, where darker colors represent higher Shapley scores. The rest of the variables are

grouped into the ‘rest variables’ category marked in yellow. Each bar in the Shapley force plot represents a person in

the training data; higher bars indicate higher unemployment probabilities predicted for those individuals as opposed

to lower (or negative) values. As a result, the force plot displays how each feature contributed to person-specific

F IGURE 11 Shapley values
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predictions. The low area covered in yellow for most individuals suggests that the SGBM-based Shapley procedure

has been able to explain most of the reasons behind prediction outcomes using a set of variables similar to those

found important by the random forest and the single-classification tree models.

The above detailed series of tree-based models, and the interpretable machine learning techniques used to elab-

orate on their findings, have allowed us to gain new insights from the SHARE dataset, which would not be possible

to derive using conventional statistical methods. The variables were selected in an algorithmic manner, and subse-

quently ranked, scored, and assessed using repeated predictions with iterative procedures. The results for the indus-

try, employment type, mobility, and stringency variables are consequently robust to the inclusion of a large set of

features, interactions, and nonlinear relationships. Furthermore, through the utility of Shapley values, we have been

able to evaluate the magnitudes and directions of the effects of specific feature values on the prediction of employ-

ment status.

5 | CONCLUDING REMARKS AND POLICY IMPLICATIONS

In this study, we observed how the COVID-19 pandemic, in its initial stage, has affected the individuals in older-age

cohorts unequally in terms of their job status in labor markets in Europe. We have identified vulnerable subgroups,

that is, those who are less likely to retain their jobs in the face of pandemic-related effects, and uncovered the

personal-, industrial-, and country-level conditions that distinguish these groups. Our findings add to the pool of evi-

dence showing that the pandemic impacts have not been uniform across different groups. This finding is not new in

human history. For instance, the first bubonic plague pandemic (AD 541–549), also referred to as ‘the plague of

Justinian’ after the Eastern Roman emperor who contracted and survived the disease, hit the poorer persons the

hardest (Shrewsbury, 2005). In fact, Shrewsbury (2005) argues that the bubonic plague was ‘chiefly a disease of the

poor’ in the British Isles, spread by the rats and fleas that nest in wattle-and-daub hovels in which the poor live as

opposed to manors and castles made of stone and wood. The Black Death (AD 1346–1353) caused significant popu-

lation decrease in Europe, and in its aftermath population growth shifted power to the landowners in labor and land

F IGURE 12 Shapley force plot
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markets, who bought peasant property, which in turn led to increased land rents and decreased wages despite the

efforts by the rulers to alleviate these harsh conditions (Findlay & Lundahl, 2020). The more recent pandemics, the

Spanish Flu (1918–1920) and the Swine Flu (2009–2010) breakouts have particularly affected the socioeconomically

disadvantaged groups such as young widows with many children, eventually leading to new pension schemes in

South Africa (Mamelund, 2017). The effects of the Spanish Flu have even been observed in the long term, as in the

United States individuals born from pregnancies during the height of the pandemic experienced significantly higher

unemployment and school dropout rates and disabilities (Mamelund, 2017). In Oslo, mortality rates were negatively

correlated with income and quality of residence (Mamelund, 2017).

There is clearly a wealth of anecdotal findings on pandemic-related effects. The present research also presents

contributions to the historical evidence on unequal pandemic effects. Our tree-based machine learning models,

thanks to being rooted in recursive binary partitioning techniques, have been instrumental for extracting novel infor-

mation from the data by permitting all possible interactions and nonlinearities, leading to a segmentation of small but

highly vulnerable subgroups within a sample of working individuals over 50 years of age. For instance, we discovered

that, despite being known as working in professions with relatively high job security, public sector employees with

lower prepandemic health levels have been prone to job loss. On the other hand, while we observed that initial

health status is also important in the private sector, there have been distinct attributes related to age, industry, and

mobility/stringency effects – particularly in the retail and recreation category – that had even stronger effects on

employment outcomes. Such stringency policies may lead to long-term impacts for the individuals in the self-

employed group as trust in governments and institutions are crucial factors that support entrepreneurial behavior

(Celbiş, 2021b). Education alongside health are found to be important determinants for persons born before 1955. It

seems also plausible that a lower labor mobility of older-age cohorts makes these groups more vulnerable in cases of

a shock like the COVID-19 pandemic. The existence of such distinct groups calls for in-depth case studies for the

purpose of designing special sets of policy interventions based on distinct target groups. Against this background,

our findings can open new avenues for policy-relevant explorations. The discoveries made by the machine learning

methods can be complemented by qualitative and quantitative follow-up studies to better understand the socioeco-

nomic and spatial labor market mechanism of the identified subgroups and their special needs together with the poli-

cies that can meet those needs. Finally, the results of the present study may also hint at changes in future job

preferences based on industry resilience in the postpandemic world.
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