
����������
�������

Citation: Küçükgöz, K.; Trząskowska,
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Abstract: The potential health benefits of probiotics have been illustrated by many studies. However,
most functional foods containing probiotics are from dairy sources. This review provides an overview
of potential strains and raw materials for nondairy probiotic products together with the role of its
in vitro assessment. Probiotic-containing products from raw nondairy materials are known both in
terms of quality and nutritional values. The sensory properties of raw plant-based materials are
generally improved as a result of fermentation with probiotics. Increased market shares for plant-
based probiotic products may also help to curb environmental challenges. The sustainability of this
food results from reductions in land use, greenhouse gas emissions, and water use during production.
Consuming nondairy probiotic food can be a personal step to contribute to climate change mitigation.
Since some people cannot or do not want to eat dairy products, this creates a market gap in the
supply of nutritious food. Therefore, the promotion and broader development of these foods are
needed. Expanding our knowledge on how to best produce these functional foods and increasing
our understanding of their in vivo behaviours are crucial. The latter may be efficiently achieved by
utilizing available in vitro digestion systems that reliably recapitulate the in vivo situation without
introducing any ethical concerns.
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1. Introduction

Growing consumer interest in health and wellness also affects nutritional habits and
food choices. Consumers’ nutritional understanding has changed from only meeting their
energy needs to also providing a healthy and balanced nutrition profile. Functional foods
including probiotic-containing products belong to this diet category [1]. Consumers are also
becoming more concerned about the sustainability of the food chain; thus, this encourages
manufacturers to give importance to the development of such functional foods. The key to
the successful marketing and acceptance of new foods depends on the concept of added
value based on food quality and food functions [2]. The global probiotic food market is
growing very quickly due to increasing consumer awareness about the impact of food
on health. Today, probiotic products account for 60% to 70% of the total functional food
market [3,4].

Probiotics are a common ingredient in functional foods, as they confer health benefits
when consumed in adequate amounts [5]. There are various health benefits associated
with probiotic strains, including intestinal and nonintestinal effects. Intestinal benefits
include the prevention of diarrhoea, the reduction in symptoms associated with inflam-
matory bowel disease, the prevention of gastrointestinal cancers, the alleviation of lactose
intolerance, and a reduction in Helicobacter pylori infections [6]. Moreover, probiotics may
play a role in the prevention and treatment of intestinal inflammatory disorders [7] such
as Crohn’s disease and pouchitis, and paediatric atopic disorders. The impact of using
probiotics on bacterial infections and immunological conditions such as adult asthma,
cancer, diabetes, and arthritis is unconfirmed in humans [7,8].

Nutrients 2022, 14, 753. https://doi.org/10.3390/nu14040753 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu14040753
https://doi.org/10.3390/nu14040753
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0002-8011-1928
https://orcid.org/0000-0002-9419-463X
https://doi.org/10.3390/nu14040753
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu14040753?type=check_update&version=3


Nutrients 2022, 14, 753 2 of 10

The intestinal microbiota is as a potential factor in pathophysiology and associated
metabolic disorders. Studies investigating the effect of probiotic intake on serum lipids,
cholesterol levels, and more recently on blood pressure and glucose regulation indicate
that probiotics may also benefit these factors [9].

Additionally, supplementing pregnant mothers with probiotics impacts mother and
infant metabolism and later health [10,11]. The above-mentioned advantages of probiotics
justify the indepth research of nondairy probiotic products, encompassing strain selection
and characteristics, functional food development, and health properties.

The purpose of this review is to draw attention to and provide an overview of potential
strains and raw materials for the production of nondairy probiotic products, along with
the role of in vitro evaluation of such functional foods to accelerate the research and
development of this functional food category.

2. Literature Search Methodology

For this review, a literature search was conducted in the Web of Science, PubMed,
Google Scholar, and ScienceDirect search engines with keywords “fermentation“, “func-
tional food”, “nondairy food”, “plant foods”, “probiotic”, and “in vitro digestion”. All
selected terms were used in one search.

The timeline for our literature survey was set from 2011 to 2021 (in January 2022). The
article titles and abstracts were reviewed, and duplicates were removed. Only studies on
probiotics and nondairy food products were considered for inclusion. The literature concern-
ing animals was excluded. Eligible sources of evidence included research articles, review
articles, short communications, and book chapters. Full articles with appropriate references
were obtained, the full text was read, and they were evaluated for final inclusion. Additional
studies with respect to our search terms were only used for limited and specific purposes.

3. Potential Strains and Raw Materials for Nondairy Probiotics
3.1. Probiotic Strains and Viability Properties

The benefits of probiotic products are related to the selection of probiotic strains
and their survival. The functionality of probiotics is generally strain-dependent. Strains
should be resistant to gastric acid and bile, and be safe for human consumption [12,13].
Furthermore, a food must contain an adequate number of viable bacteria to have probiotic
properties [14]. The stages of probiotic food production affect probiotic microorganisms’
viability and stability. Microorganisms should also survive during processing, storage,
handling, transport, and shelf life [4].

Due to these criteria and safety regulations, Lactobacillus, Streptococcus, Propionibac-
terium, Enterococcus, Pediococcus, and Saccharomyces can be used as probiotic microorganism
sources for nondairy probiotic products [15].

Fermented nondairy food products can also be a source of probiotic bacteria. For
example, bacterial strains isolated from cucumber and cabbage prepared by traditional
methods have probiotic properties. Ten different Lactobacillus strains were isolated: L. john-
snonii K4, L. rhamnosus K3, L. brevis (O22, O24), L. plantarum (O19, 020), and L. casei (O12,
013, 016, O18). Isolated strains were examined in gastrointestinal conditions to test safety
for human consumption by in vitro experiment. Most of the isolated Lactobacillus strains
could survive in gastrointestinal conditions and are safe for human consumption [12,13].

However, different raw materials play a specific role in bacterial growth, functionality,
viability, and survival with their food matrix. Therefore, well-suited strains should be
selected for each type of product [16–20]. Many studies have been conducted to incorporate
microbes into different food matrices, some of which are discussed below.

Research has been undertaken to determine the suitability of tomato juice as a raw material
for the production of probiotic juice by four lactic acid bacteria. Tomato juice was inoculated
with probiotics such as L. acidophilus, L. casei, L. delbrueckii, and L. plantarum. The bacteria isolate
fermented tomato juice from pH 4.1 to 3.5 in 72 h. They reached a viable cell population of
more than 8 log CFU/mL (of <5 log CFU/mL) after 48 h of fermentation at 30 ◦C [18]. In other
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research, L. sanfranciscensis was added to tomato juice and stored for 4 weeks at 4 ◦C. After
storage, the number of surviving bacteria was determined and there was a decrease in probiotic
viability. However, decreasing amount from 8 to 7.5 log CFU/mL was still acceptable and
showed that tomato juice is a possible carrier of probiotic L. sanfranciscensis [20].

Oats are important sources of beta-glucan, recognized as the most important functional
component in cereal fibre. In addition, beta-glucan is known as a prebiotic as it stimulates
the growth of some beneficial microorganisms in the colon [21,22]. Furthermore, beta-
glucan supports the viability of probiotic strains during cold storage [21–23]. In a study, the
effects of beta-glucan obtained from oatmeal and modified beta-glucan samples obtained
with xylanase treatment on the probiotic Bifidobacterium bifidum were investigated. While
the two components had a significant effect on the growth of Bifidobacterium bifidum, the
effect of modified beta-glucan was greater [22–24].

Beetroots have rich nutrient content and bioactive compounds [25,26]. Fermented
beetroot with Lactobacillus bacteria had good biological viability and antimutagenic activity
for up to 30 days at refrigerated storage [26]. Research about enriched ready-to-eat beetroot
products with L. plantarum showed 8–9 log probiotic cells in 100 g. In addition, probiotic
viability was greater than 7 log CFU/g after 21 days of storage at 4 ◦C; these results showed
that the beetroot food matrix is favourable for probiotic survival [27].

Research that focused on producing potentially probiotic orange juice showed that
different microorganisms have different viability. L. rhamnosus and nettle (Urtica dioica L.)
additions were used for production, while L. rhamnosus was able to remain above 6 log
CFU/mL at 4 ◦C storage for 28 days, but nettle could not improve the viability of the
product [28].

Another study reported on orange juice with Bacillus coagulans GBI-30 6086 in animal
models compared with yoghurt samples of the same probiotic. The probiotic orange juice
food matrix adversely affected the functionality of probiotics in rats. The rats that had been
fed the probiotic yoghurt group also showed higher gut bacterial diversity than that of
orange juice [29].

Some features of the raw materials can cause the loss of viability of probiotic mi-
croorganisms such as natural antimicrobial compounds, acidity, diacetyl, and hydrogen
peroxide [30].

Table 1 provides data on probiotic bacterial viability in different types of food.

3.2. Properties and Environmental Concerns of Raw Nondairy Materials for Probiotic Products

All over the world, most probiotic products are dairy-based. The increased health
awareness of consumers and some health-related issues has led to the exploration of
nondairy-based products. For example, plant-based alternative yoghurts are being devel-
oped and marketed in increasing numbers [40]. Statistical analysis shows that there are
more than 380 types of probiotic products in the world, but 80% of these products are from
dairy sources. Nondairy probiotic products with fruit and vegetable origins are very rare [5].
The lack of nondairy probiotic products means that various human groups do not benefit
from functional foods containing probiotics. However, industry and people’s interest in
nondairy probiotic products is increasing for a variety of reasons [41]. The strongest drivers
of nondairy products are vegetarianism, milk cholesterol content, lactose intolerance, and
consumer interest in shelf diversity and sensory appeal. From the industry viewpoint,
many manufacturers are seeking ways to create and increase value, which has further in-
creased the product profile. However, a more compelling reason and the stronger driver is
the emerging evidence of health benefits that can be acquired from a symbiotic relationship
between plant components and probiotics, and gut commensals [42,43]. Nondairy products
also contain more antioxidant phytochemicals such as phenolic acids, carotenoids, and
flavonoids that have positive effects on oxidative stress in the body, prevent cell damage,
and help to change the lipid metabolism and reduce obesity risk factors [43].
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Table 1. Viability of probiotic bacteria in the different types of foods.

Genus Species Product Type Viability (log CFU per mL or g) References

Lactobacillus L. rhamnosus ATCC7469 Fruit-Based Product
Dried apple slices

1.0–3.0 log in slices dried by freezing
and a combination of air drying and

vacuum drying after 120 days storage
at 25 ◦C, but higher viability of

9.3–7.8 log was found at 4 ◦C for
180 days.

[31]

L. plantarum B2, L.
fermentum PBCC11.

Fruit-Based Product
Fresh-cut cantaloupe

L. plantarum (8.1 log) and L. fermentum
(7.8 log) after 11 days of storage at 4 ◦C [32]

L. helveticus
76 (Lh76)

Fruit-Based Product
Kiwifruit juice

Above 9.0 log CFU/mL after
fermentation [33]

L.delbrueckii subsp.
bulgaricus

Legume Based
ProductSoy Protein

First day after fermentation
54 × 106 CFU/mL, after period of

15 days 43 × 107 CFU/mL
[34]

L. paracasei LBC-81 Cereal-Based Product
Maize-based substrate Viable cell count, 106 CFU/mL [35]

L. reuteri
NCIMB11951

Grain-based Product
Fermented beverage

made from oats, barley
or malt

Viability between 7.8 and 8.1 log of the
three species in fermented beverage
after 10 h of fermentation at 37 ◦C.

[36]

L. johnsonii
Vegetable-Based Product

Traditional fermented
cabbage and cucumber

Above 9 log CFU/g [12,13]

B. bifidum
Fruit-Based Product
Blueberry and Black

Berry Juices

Increased CFU/mL and
7.3 log10 CFU/mL to

8.2 log10 CFU/mL after 48 h
fermentation,

[37]

Bifidobacterium
strains

B. lactis
Bb-12

Fruit-Based Product
Cashew apple juice

After 1 day fermentation
2.16 × 1010 CFU/L h [38]

B. longum
Bifidobacterium longum

Bb-46

Fruit-Based Product
Apricot Fruit Juice

After 24 h of fermentation were higher
than 108 CFU/mL, [38]

Saccharomyces Saccharomyces cerevisiae
CCMA 0731,

Cereal-Based Product
Maize-based substrate Viable cell counts 106 CFU/mL [35]

Streptococcus Streptococcus
thermophiles

Grain-based product
Oat Flour Viable cell counts 106 CFU/mL [39]

Considering product categories, cereal- and legume-based products increase their
nutritional quality by a fermentation process using lactic acid bacteria and probiotic mi-
croorganisms [44]. Cereals have a rich content of dietary fibre, carbohydrates, and vitamins.
Their nondigestible carbohydrate content also helps the growth of probiotic microorgan-
isms in the human colon such as Lactobacilli and Bifidobacteria. Microbial processes on
cereals such as fermentation also affect the improvement of protein digestibility and the
reduction in allergens with microbial proteases [45,46]. Moreover, water kefir increased
beneficial short-chain fatty acid production at the microbial level, reduced detrimental
proteolytic fermentation compounds, and increased Bifidobacterium genus abundance [47].
Vegetables and fruits are also used in the production of nondairy probiotic products. These
products have excellent nutritional values due to the presence of many phytochemicals,
antioxidants, zero cholesterol, vitamins, minerals, and dietary fibre [1]. Fruit and vegetable
juices can improve the viability of probiotics because additional nutrients can be obtained
from the raw material by cellular synthesis, which is similar to the processes used during
the fermentation of fruit and vegetable juice. This may make them ideal substrates for
probiotic growth. Cutting or grating vegetables and fruits also helps to release their cellular
content of vitamins, minerals, sugars, and other nutrients, and creates a good environment
for probiotic microbial growth [31,48].
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It is possible to find nondairy probiotic products in the market with different combina-
tions of food matrices [18,26,49]. Nondairy probiotic beverages, frozen desserts, spoonable
products, and probiotic vegan milk replacements are already on the market. Nondairy
probiotics and prebiotics also have a great marketing future, as recent research shows the
application of strains that are well-suited to alternative matrices [42,50,51].

In recent years, plant-based dairy alternatives have received more attention due to
consumer demands and environmental concerns [52]. The production of dairy products is
related to environmental externalities, including greenhouse gas emissions, soil degradation
from overgrazing, soil erosion, deforestation, loss of biodiversity, the contamination of
surfaces and groundwater arising from waste management, and soil salinization [53]. The
report of the Lancet Commission on Food, Planet, and Health explained that contemporary
research concluded that vegetarian and vegan diets are associated with reductions in land
use, greenhouse gas emissions, and water use [54].

There is, therefore, another motivation to develop and popularize nondairy and vegan
products that are involved in reducing climate change to encourage personal actions to
reduce individual carbon footprints by switching to a plant-based diet. This kind of diet
also helps to prevent diet-related chronic diseases and decrease expenses [45,55,56].

This growing interest in plant-based diets not only impacts sustainable consumption
behaviour, but is also being noticed by the food industry [57]. Companies in the food sector
need to create innovative products on market research while developing marketing skills
in addition to scientific and R&D capacity [2]. Reasonable prices and lactose-free content
increase the demand for these products.

Short-term marketing strategies should focus not only on vegan consumers but also
on consumers who want to reduce their consumption of animal products and are looking
for new strains of nonanimal origin.

3.3. Sensory Properties

Acceptable sensory properties are most important in probiotic food production, and
are directly related to product quality, consumer acceptability, and processing character-
istics [18,46]. Sensory changes can occur while producing probiotic products after the
probiotic bacteria had been added to raw materials. Probiotic microorganisms produce
different metabolic compounds such as lactic acid during storage and fermentation. Probi-
otic microorganisms also ferment the raw materials’ carbohydrate content, and increase
alcohol content and production gases. This also affects the consumer acceptance of the
product [58]. The development of nondairy probiotic products with vegetables and fruits
can be undertaken in three different ways, namely, the fermentation, nonfermentation, and
minimal processing of raw materials. Probiotic cultures and fermentation can also affect
sensory aspects. For instance, lactic acid fermentation of fruits and vegetables enhances
sensory and nutritional quality, and retains nutrients and coloured pigments [31,59]. Pro-
biotic blackcurrant juice prepared with L. plantarum strains and blackcurrant juice have
more acceptable sensory properties to consumers, such as flavour, appearance, aroma,
and texture [58]. Another study regarding the fermentation of grape juice found that the
sensory properties of a probiotic product prepared with Lactobacillus rhamnosus strains were
highly regarded by the consumers [60].

Raw cereal grains do not have enough active organoleptic compounds with their
taste and texture. This situation also affects the preferences of consumers. Fermentation
can lead to reducing flavouring additives to cereals. In particular, lactic acid bacteria’s
enzymatic activity on cereals contributes to the taste changes, such as the sweet and sour
taste generated from nonvolatile and volatile compounds [60].

Plant-based milk is one of the most common materials used to produce probiotic
beverages. It has a similar appearance to animal milk but offers different sensory properties,
kinetic stability, and nutrient composition. In general, plant-based milk substitutes can be
defined as homogenised extracts of vegetable matrices such as cereals, vegetables, and nuts.
The nutritional profile of plant-based milk alternatives is usually unbalanced, and their
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flavour profiles limit their acceptance. Probiotic fermentation was shown in several studies
to improve sensory acceptability compared with unfermented alternatives [61–63].

Many researchers proved and studied that probiotic cultures did not affect the overall
acceptability of the products, but these products are yet to come to the market [61,63].

4. In Vitro Assessment of Probiotic Product by Artificial Gastrointestinal Tract

The health-promoting effects of probiotics often depend on their survival during
transit through the gastrointestinal tract. To show health benefits, probiotic microorgan-
isms should be resistant to digestion conditions and colonise in adequate amounts in the
host [64,65]. Their survival rate depends on some factors such as galenic form, food matrix,
and dosage. To prove and understand the beneficial effects and the survival of probi-
otic microorganisms in the host, the passage of these microorganisms must be observed
throughout the gastrointestinal transit [66]. However, it is difficult to investigate this phe-
nomenon with in vivo study. Research shows that in vitro models of the upper and lower
gastrointestinal tract can provide significant insight into the behaviour of probiotic strains
during digestion in humans. They are particularly relevant for screening purposes, such
as for studying the effects of biopharmaceutical factors (such as dosage form, food matrix,
and dose regimen) on the viability of probiotic strains throughout the human digestive
tract [67].

In addition, in vivo studies can be complex and expensive to investigate microor-
ganisms. On the other hand, in vivo probiotic research generally focuses on the recovery
of beneficial microorganisms from faeces, which makes it difficult to observe probiotics’
behaviour on the gastrointestinal transit. All these reasons show the importance of in vitro
research in probiotic studies. Artificial digestion models are also quicker, less difficult to
undertake, and have fewer ethical concerns. Research tools of artificial digestion tracts help
in understanding chemical and structural changes of food components in the digestion
tract parts and the gut microbiome [67].

Two different in vitro digestion models are developed, namely, static and dynamic
digestion models, and they are used for research purposes. Generally, protocols for static
digestion systems describe food in bioreactors where enzymatic, physical, and chemical
conditions of each digestive part are recreated. However, these digestive models have limi-
tations because digestion is a dynamic procedure. In these systems, there is no possibility
to replace food between the different digestive parts, and environmental conditions such
as enzymes, bile concentrations, and pH are stable [68].

Dynamic digestion models have better simulation advantages, such as physical condi-
tions with constant biological and chemical changes. Generally, dynamic digestion models
mimic all sections of the gastrointestinal tract for complete simulation. The main difference
between dynamic digestion systems is configuration. Currently, the TNO artificial gastroin-
testinal model with specific variations (TIM-agc, tinyTIM, TIM-1, TIM2) is used [62]. The
mainly used generic platform is TIM-1, which includes the stomach, duodenum, jejunum,
and ileum. These four compartments are connected with peristaltic valve pumps. This
configuration has several variants for animals and humans for different kinds of meals.
TinyTIM does not include separate intestinal steps and is a more basic version of TIM.
TIM-agc is a more qualified version of TIM systems and it helps to compare the compounds
of digestion under controlled conditions. As it is possible to observe the movement of foods
and drugs, the design of this version enables a more accurate assessment of the behaviour
of the stomach [57].

Another currently used dynamic digestive system is the Simulator of Human Intestinal
Microbial Ecosystem (SHIME®) model, which is a computer-controlled gastrointestinal
simulation device. It is possible to examine the microbial ecology and physiology of the
gastrointestinal system. The model allows for simulating various age groups and some
diseases. The simulator consists of five different reactors that help to see parts of the
gastrointestinal system, the stomach, the ileum, and three parts of the colon (ascendant,
transversal, and descendent). First, reactors allow for simulating steps of food intake
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and digestion with fill and drawing reactor. The peristaltic pumps, SHIME® nutritional
medium, pancreatic enzymes, and bile liquid set off physiological conditions in the large
intestine [69,70]. The model also maintains microbiota stability for a determined time and
helps to observe the adaptation of microbiota. The different subjects can also be examined
at the same time and the subject’s microbiome can be stored to set up unique features.
The Mucus SHIME® is the specific variation of the SHIME® model. The model is used for
the investigation of the adhesion ability of bacteria and changes in the microbiome in the
mucosal parts of the gastrointestinal system [71].

For instance, the following studies were conducted on in vitro digestion models.
Lactobacillus crispatus strain, added to cheese as a probiotic culture and isolated from a
healthy human vaginal environment, was tested for its digestion system process using
SHIME®. Results showed that the survival of L. cripatus BC4 was not affected by gastric
digestion, but was significantly affected by bile salts and pancreatic juice. During colon
simulation, L. cripatus BC4 was able to grow under sterile colon conditions and survive
in the presence of a complex microbiota [72]. Another study also investigated soybean
polysaccharides’ bioavailability and the metabolites on the gut microbiota by using SHIME.
Results showed that soybean polysaccharides were only partially decreased in the oral,
gastric, and small intestine parts of SHIME [73].

Increasing our understanding of probiotic behaviours in the product and during
gastrointestinal passage is crucial in the development of nondairy probiotic food. This
may be efficiently achieved by utilising available in vitro digestion systems that reliably
recapitulate the in vivo situation without introducing any ethical concerns.

5. Conclusions

The potential health benefits of probiotics have been illustrated by many studies. Most
of the functional foods containing those beneficial microorganisms are from dairy sources.
However, the high fat, cholesterol, lactose, or allergen content of dairy products may induce
health problems and cause the exclusion of valuable functional foods from the diet. One
of the solutions to this problem may be products containing probiotics produced from
nondairy raw materials. The value and benefit of the probiotics themselves, combined with
raw plant materials, give rise to unique advantages, for example, additional content of fibre
or phytochemicals with quality sensory properties.

There is a market gap in the supply of the discussed nutritious food, especially for
people who are unable or unwilling to eat dairy products. To address this issue, there
is a need to intensify the indepth research and development of nondairy probiotic foods.
In particular, advances in product evaluation through in vitro digestion models lead to
faster and more accurate data on the health value of the product. In vitro artificial digestion
systems are reliable, and this research methodology has no ethical concerns.

In addition, paying attention to nondairy and vegan foods benefits the environment
by reducing land use, greenhouse gas emissions, and water consumption compared to the
production of raw dairy materials.
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