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Circadian rhythms are involved in many physiological and pathological processes in
different tissues, including the heart. Circadian rhythms play a critical role in adverse
cardiac function with implications for heart failure and sudden cardiac death, highlighting
a significant contribution of circadian mechanisms to normal sinus rhythm in health
and disease. Cardiac arrhythmias are a leading cause of morbidity and mortality in
patients with heart failure and likely cause∼250,000 deaths annually in the United States
alone; however, the molecular mechanisms are poorly understood. This suggests the
need to improve our current understanding of the underlying molecular mechanisms
that increase vulnerability to arrhythmias. Obesity and its associated pathologies,
including diabetes, have emerged as dangerous disease conditions that predispose
to adverse cardiac electrical remodeling leading to fatal arrhythmias. The increasing
epidemic of obesity and diabetes suggests vulnerability to arrhythmias will remain
high in patients. An important objective would be to identify novel and unappreciated
cellular mechanisms or signaling pathways that modulate obesity and/or diabetes.
In this review we discuss circadian rhythms control of metabolic and environmental
cues, cardiac ion channels, and mechanisms that predispose to supraventricular and
ventricular arrhythmias including hormonal signaling and the autonomic nervous system,
and how understanding their functional interplay may help to inform the development
and optimization of effective clinical and therapeutic interventions with implications
for chronotherapy.

Keywords: circadian rhythm, metabolic disorders, autonomic regulation, ion channel remodeling, long QT
syndrome, atrial fibrillation

Abbreviations: AF, atrial fibrillation; ANS, autonomic nervous system; AP, action potential; APD, action potential duration;
BP, blood pressure; CVD, cardiovascular disease; EAD, early afterdepolarization; ECG, electrocardiogram; ERG, ether-
A-go-go-related gene; HR, heart rate; hiPSC-CM, human induced pluripotent stem cell-derived cardiomyocyte; ICa,L,
L-type calcium current; If , funny current; IK,ACh, acetylcholine-activated potassium current; IKr , rapid delayed rectifier
potassium current; IKs, slow delayed rectifier potassium current; IKur , ultra-rapid delayed rectifier potassium current; INa,
sodium current; Ito, transient outward potassium current; LQTS, long QT syndrome; SAN, sinus atrial node; SERCA,
sarcoplasmic reticulum Ca2+-ATPase; SCD, sudden cardiac death; SCN, suprachiasmatic nuclei; TRF, time-restricted feeding;
VF, ventricular fibrillation; VT, ventricular tachycardia.
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INTRODUCTION

The circadian rhythm is an oscillatory physiological process
that occurs within a 24-h period. This rhythmic behavior is
evolutionarily conserved and has an critical role in the ability
of organisms to modulate endogenous cellular and molecular
activities in response to biological cues involving day/night
and sleep/wake variations (Andreani et al., 2015). Adverse
modulation of circadian rhythms predisposes to sleep disorders
and increases risk of cardiovascular diseases and metabolic
disorders with significant implications for the quality of life and
longevity of patients (Bhupathiraju and Hu, 2016).

The circadian system is composed of a central clock located
in the suprachiasmatic nuclei (SCN) of the hypothalamus,
consisting of over 20,000 neurons, and peripheral clocks that are
present in virtually all tissues. The central clock is synchronized
with the environment through external cues, particularly by light,
and can entrain peripheral clocks via neuronal and humoral
factors (Buhr and Takahashi, 2013), such as autonomic tone and
glucocorticoid signaling. The rhythm of peripheral clocks can
also be regulated by external stimuli, that includes light, food,
temperature, physical activity, and sleep. The significance of these
distinct regulatory pathways has been extensively discussed in the
literature (Xie et al., 2019), and therefore not fully considered
in this review. The temporal patterns of food intake have also
been identified as a crucial factor that sets the timing (phase)
of peripheral clocks (Damiola et al., 2000). Furthermore, the
phase of central and peripheral clocks is controlled and/or
regulated by different physiological cues, suggesting these phase
differences can lead to pathological disease mechanisms that
underlie vulnerability to heart failure or cardiovascular diseases.

The molecular machinery of the central and peripheral
clocks can be defined by transcriptional/translational feedback
loops consisting of the two core transcriptional factors, CLOCK
and BMAL1. These transcription factors have been shown to
bind to the enhancer boxes (Ebox) in the promoter region of
the negative regulators PERIOD (PER) and CRYPTOCHROME
(CRY ; Gekakis et al., 1998). The PER and CRY proteins
accumulate in the cytoplasm, which is then followed by their
translocation to the nucleus, where they form a dimer complex
which, in turn, suppresses the innate transcriptional activity
of CLOCK and BMAL1, resulting in an oscillatory negative
feedback loop mechanism (Buhr and Takahashi, 2013). This core
loop is interconnected with a second loop of nuclear receptors,
a transcriptional activator ROR (A/B) and a transcriptional
repressor REV-ERB (A/B), both of which are activated by
the heterodimer CLOCK-BMAL1, that compete for responsive
elements in the regulatory sequences of the core clock genes
to modulate their transcriptional activities including BMAL1
(Buhr and Takahashi, 2013). More specifically, ROR (A/B)
stimulates BMAL1 transcription while REV-ERB (A/B) inhibits
it (Guillaumond et al., 2005).

Furthermore, circadian oscillations can also modulate cellular
posttranslational processes (Green, 2018), through targeted
protein phosphorylation, ubiquitination (Robles et al., 2017),
redox and metabolic modulatory pathways (Wang et al., 2012).
Approximately 10–40% of the genes expressed in specific tissues

follow a circadian pattern and these intrinsic clocks are important
for the maintenance of tissue and cellular homeostatic control
(Panda et al., 2002; Zhang et al., 2014). A peripheral clock is
also known to be present in the heart, where it plays a pivotal
role in regulating cardiac electrical excitability, metabolism, and
the biophysical properties of major cardiac ionic channels (Bray
and Young, 2008; Black et al., 2019). This further highlights a
critical role for circadian rhythms in the modulation of cellular
mechanisms that contribute to cardiac function in health and
disease (Figure 1). In this review we discuss recent studies
on circadian rhythms and the pathophysiology of cardiac ion
channels. We further discuss the contribution of circadian
rhythms in disease states that lead to altered cardiac electrical
remodeling with implications for cardiac arrhythmias and
cardiovascular disorders in general.

CIRCADIAN MODULATION OF THE
AUTONOMIC NERVOUS SYSTEM AND
ION CHANNEL REGULATION

The rhythmic control of cardiac events could be explained
by the existence of daily oscillations in several cardiovascular
parameters, including heart rate (HR; Furlan et al., 1990), heart
rate variability (HRV; Bonnemeier et al., 2003a), blood pressure
(BP; Millar-Craig et al., 1978), cardiac output (Cugini et al.,
1993) or QT interval duration (Bonnemeier et al., 2003b), and
the activity of the autonomic nervous system (ANS). Typically,
ANS activity has been indirectly evaluated by measuring HRV,
which is affected by HR, an index of sympathovagal balance
(Bootsma et al., 1994).

Furthermore, HR, BP, and cardiac output follow diurnal
patterns, defined by a morning peak (acrophase) and a nocturnal
decrease (nadir) (Degaute et al., 1991; Veerman et al., 1995) and
reinforces an important role for these cardiovascular parameters
in defining vulnerability to arrhythmogenic events. For example,
myocardial infarction, stroke, and ultimately sudden cardiac
death (SCD) show a higher prevalence during morning hours.

The slowing of the HR at night, leads to a lengthening
of the heart rate corrected QT interval (QTc) (an index of
ventricular repolarization) (Browne et al., 1983). This diurnal
variability of repolarization is consistent with the circadian profile
of catecholamine circulation (Bexton et al., 1986). In fact, the
variations that occur in HR are largely regulated by the two
branches of the ANS, the sympathetic and the parasympathetic
nervous systems through circulating neurohumoral factors
including vasoconstrictive, vasodilative, and proinflammatory
cytokines. Nadir in HR diurnal oscillation is generally associated
with increased parasympathetic activity at night, while the
acrophase is linked with changes in the sympathetic tone during
daytime (Furlan et al., 1990).

Despite a critical role for the ANS in circadian rhythms, its
contribution to the diurnal variation in HR is not completely
clear. The majority of studies suggest that the central clock
is not involved in the control of HR by circadian rhythms,
as demonstrated in transplanted hearts (Bigger et al., 1996),
Langendorff-perfused hearts (Young et al., 2001), cultured
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FIGURE 1 | Schematic representation of the regulation of circadian rhythms of cardiovascular function. Light/dark cycle entrains the central clock in the SCN, which
in turn regulates rhythmic oscillation in peripheral tissues clocks through neurohumoral signaling. Peripheral clocks are also regulated by other stimuli including
sleep/wake, food intake, exercise, and temperature. In the heart, this regulation results in the rhythmicity of different physiological (cardiovascular parameters and ion
channel expression) and pathological processes (cardiovascular diseases and arrhythmia). Lifestyle can influence and alter the effect of some external cues (HFD,
shiftwork etc.). Metabolic diseases (e.g., obesity and diabetes) can influence the circadian rhythms in different tissues and processes, particularly in the heart, leading
to ion channel expression remodeling and increasing the risk of cardiovascular disease (CVD) and arrhythmias. HR, heart rate; HRV, heart rate variability, BP, blood
pressure; Ito, transient outward potassium current, If , funny current, IKr , rapid delayed rectifier potassium current; IKur , ultra-rapid delayed rectifier potassium current;
INa, sodium current; ICaL, L-type calcium current.

cardiomyocyte monolayers (Durgan et al., 2005), possibly due to
a lack of an intact autonomic innervation, as well as β-adrenergic
receptor deficient-mice (Kim et al., 2008; Swoap et al., 2008)
or models of autonomic blockade (Makino et al., 1997; Oosting
et al., 1997). Moreover, in pheochromocytoma patients that show
sustained and elevated levels of circulating catecholamines, the
circadian mediated decrease in BP persists (Statius van Eps et al.,
1993), suggesting a role for peripheral clocks in the regulation
of these biological parameters. However, Tong et al. (2013)
demonstrated that both SCN lesion and pharmacological ANS
blockade in mice lead to a loss of circadian rhythmicity in HR,
and that ANS seems to influence some cardiac ion channels
gene expression.

There are other systemic rhythmic factors, including
glucocorticoids (e.g., cortisol) or mineralocorticoids that may
also influence the circadian rhythms of the cardiovascular system
but with contrasting outcomes associated with diurnal patterns.
For example, Shea et al. have demonstrated that the diurnal
variation in BP is modulated or controlled by the circadian
rhythms in cortisol or catecholamines (Shea et al., 2011). By
contrast Imai and others showed that exogenous administration
of glucocorticoids changes the rhythmic pattern of BP variations,
and prevents the nocturnal-dependent decreases in BP and
further suggests an important role for the hypothalamic–
pituitary–adrenal axis in influencing the circadian rhythm of BP
(Imai et al., 1989).
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In native cardiomyocytes, mineralocorticoids, and
glucocorticoids have been shown to exert their effects
on cellular functions through the mineralocorticoid
receptor leading to distinct functional and transcriptional
outcomes (Jaisser et al., 2011; Oakley and Cidlowski,
2015). For example, glucocorticoid receptor signaling in
cardiomyocytes is critical for the normal development
and function of the heart. In contrast, mineralocorticoid
receptor signaling in cardiomyocytes participates in the
development and progression of cardiac diseases (Imai et al.,
1989; Jaisser et al., 2011).

Moreover, there is a paucity of studies that have
investigated the potential role of the aldosterone/cortisol-
mediated mineralocorticoid receptor in the regulation of
the cardiomyocyte circadian clock. However, both Tanaka
et al. (2007) and Fletcher et al. (2019), have provided strong
evidence for an important link between mineralocorticoid
receptor and circadian clock signaling, by demonstrating
that aldosterone promotes circadian rhythm dependent
functional expression of clock genes (Bmal1, Per1, Per2, and
Rev-ErbA) in rat cardiomyoblasts and mouse hearts. The
β-adrenergic receptor agonist isoproterenol has been shown
to increase the circadian rhythms of the Per2 clock gene in
ventricular mice explants (Beesley et al., 2016). This suggests that
modulation of the ANS may determine the functional outcomes
of cardiac ion channel expression possibly via synchronization
of the circadian rhythms in the peripheral cardiac clock. It
would also be interesting for future circadian rhythm and
cardiac studies to evaluate whether mineralocorticoids and
glucocorticoids can affect cardiac ion channel expression and
promote arrhythmogenesis.

It is widely known that the functional expression of major
cardiac ionic channels is critical for normal sinus rhythm
and cardiac function. The physiological link between cardiac
action potential and its ionic channels is vital for mechanistic
insights into the clinical consequences that occur when there
are disease-induced changes in the functional properties of
these ionic channels.

A critical balance of cardiac ionic depolarizing (Na and
Ca channels), and repolarizing mechanisms (K channels),
is an important determinant of the duration of the cardiac
action potential (AP) and refractory period (Carmeliet,
2006). This means that disease processes that either increase
depolarizing currents or decrease repolarizing currents
will alter this balance and predispose to reentry and/or
induction of ectopic foci, that increases the likelihood
of developing arrhythmogenic events (Antzelevitch and
Burashnikov, 2011), and ultimately the transition to heart
failure and SCD. Research efforts that are directed toward
a comprehensive understanding of the link between the
cardiomyocyte molecular clock and electrical instability have
identified and validated novel mechanistic links associated
with oscillatory ion channel expression (summarized in
Table 1). Our hope is that these findings will trigger additional
research investigations into unappreciated but significant
pathways that are directly or indirectly linked to circadian
molecular pathways and help to provide insights that will TA
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further advance the field of chronological modulation of
cardiac function.

CIRCADIAN MODULATION OF
SUPRAVENTRICULAR AND
VENTRICULAR ARRHYTHMIAS

Supraventricular and ventricular arrhythmias display opposing
circadian patterns. Among the supraventricular arrhythmias,
atrial fibrillation (AF) is one of the most common arrhythmias
in both men and women and it is characterized by increased
morbidity and mortality. One major mechanism that underlies
the pathogenesis of AF is rapid and disorganized atrial electrical
activity that ultimately leads to loss of efficient atrial function,
and altered ventricular contraction (Nattel, 2002). This means
we need to have a good understanding of how major atrial ionic
currents may be modulated in disease states that increase AF
risk. Obesity has been shown to be an independent risk factor
for AF (Vyas and Lambiase, 2019; Javed et al., 2020), suggesting
that understanding how obesity-related mechanisms modulate
ion channel function may inform effective pharmacological and
dietary interventions in patients.

Electrical remodeling in AF includes increases in the
pacemaker current, If (Lai et al., 1999), a strong reduction of
the transient outward (Ito) and the ultra-rapid (IKur) K current
densities (Brandt et al., 2000), and a significant reduction in the
L-type Ca current, ICa,L (Christ et al., 2004), which is one of
the most consistent features. Furthermore, constitutive activation
of the acetylcholine-activated K current (IK ,Ach), is important
for the maintenance of chronic AF (Dobrev et al., 2005). AF
incidence is higher during nighttime, and this has been confirmed
in ICD data reported by Shusterman et al. (2012). This nocturnal
prevalence is consistent with a predominance of vagal activity
at night that can stimulate IK,ACh in atrial cardiomyocytes and
inhibits If and ICa,L, thus promoting a shortening of refractory
period and reentry (Chen et al., 2014). There are also more recent
reports of the contribution of altered function of the rapidly (IKr)
and slowly (IKs) activating components of the delayed rectifier K
currents (IK) in AF (Caballero et al., 2010; Gonzalez de la Fuente
et al., 2013). We have recently shown increased current density
of the delayed rectifier K current (composed of IKr and IKs) in a
high-fat diet (HFD)-induced obese guinea pig model (Martinez-
Mateu et al., 2019), with implications for an abbreviated atrial AP
duration (APD), and propensity for AF tachycardia (Martinez-
Mateu et al., 2019). There is a paucity of arrhythmia studies
that investigate the modulation, by the cardiomyocyte molecular
clock, of IK function in metabolic disorders. The important role
of delayed rectifier K currents in limiting cardiac repolarization
in health and disease suggests that future studies that investigate
their modulation by the cardiomyocyte molecular clock are
likely to reveal crucial mechanistic insights that will inform
targeted interventions with implications for precision medicine.
Alterations in tissue properties (or impaired tissue structural
integrity), and autonomic (manifested as altered sympathovagal
activity) remodeling (Nattel, 2002), also predispose to AF risk.

Circadian rhythms in HR is widely attributed to variations
in sympathovagal tone (Bootsma et al., 1994). Recent reports
have provided evidence that HR diurnal oscillations could also
be due to intrinsic circadian rhythms in the activity of the
pacemaker of the heart or the sinus atrial node (SAN; Wang et al.,
2016). The hyperpolarization activated cyclic nucleotide gated K
channel (HCN)4 currents have been proposed to contribute to
several functions including pacemaker activity in heart and brain,
control of resting membrane potential, and neuronal plasticity
(DiFrancesco and DiFrancesco, 2015). The hyperpolarization-
activated “funny” current (or If ), is carried by HCN channels,
which exists in native cells as heterotetramers built of four HCN
subunits (Novella Romanelli et al., 2016). The transcript and
protein expression of HCN4 in mice SAN biopsies have been
shown to exhibit circadian rhythm profiles compatible with the
oscillations of HR. The density of If was double at the start
of the awake period (higher HR) compared to the sleep period
(lower HR) (Wang et al., 2016). Moreover, an in silico analysis
of the Hcn4 promoter has revealed the presence of conserved
Ebox binding sites for the Clock-Bmal1 heterodimer (Wang et al.,
2016), suggesting that its expression may be directly under the
control of the cardiomyocyte molecular clock.

Gene transcripts, protein expression, and current densities of
the IKur channel subunit Kv1.5 and Ito subunit Kv4.2 have shown
significant circadian variations in rats. Kv1.5 is increased during
the dark period, while Kv4.2 displayed a completely reverse
pattern, with an increase during the light period (Yamashita et al.,
2003). Moreover, the reversal of light stimulation for 2-weeks
attenuated and reversed the circadian pattern of these channel
transcripts, while β-adrenergic stimulation solely influenced
oscillation in Kv1.5, suggesting that rhythmicity of both channels
could be the result of multiple factors (internal cardiomyocyte
clock, light/dark cycle, ANS activity, etc.) (Yamashita et al., 2003).

In contrast to AF, ventricular arrhythmias, including
ventricular tachycardia (VT) and ventricular fibrillation
(VF), are prevalent during morning hours (Siegel et al.,
1992; Englund et al., 1999). One potential mechanism is
possibly through increases in sympathetic activity after
awakening, with β-adrenergic stimulation promoting Ca
overload, afterdepolarizations, and reentry mechanisms, and
therefore acting as substrates for pro-arrhythmic triggers
(Gardner et al., 2016).

These observations emphasize a role for the involvement
of sympathetic stimulatory pathways in the propensity and
prevalence of SCD in the mornings and reinforces the importance
of targeted clinical interventions that utilize β-blockers to limit
the morning peaks in SCD especially after myocardial infarction
(Peters et al., 1989). Furthermore, circadian variation studies
(based on 24-h ECG monitoring), have also been described
for distinct ventricular arrhythmias. For example, long QT
Syndrome Type 1 (LQT1) and long QT Syndrome Type 2
(LQT2), display a morning prevalence, while LQT Type 3
and Brugada Syndrome, have been shown to display increased
incidence at night (Stramba-Badiale et al., 2000; van den Berg
et al., 2006; Takigawa et al., 2012).

Long QT Syndrome Type 2 is caused by mutations in the
KCNH2 gene leading to a loss of function of the Kv11.1 (hERG)
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channel, and pathological decreases in the repolarizing IKr
current (Curran et al., 1995; Puckerin et al., 2016). Two different
variants of the ERG subunit, ERG 1a and ERG 1b, are expressed
in human ventricle (Jones et al., 2004) and functional IKr is
likely to consist of a combination of both variants (hERG 1a/1b)
(London et al., 1997). Interestingly, compared with homomeric
hERG 1a currents, hERG 1a/1b currents exhibit a twofold
increase in density, rate of activation, recovery from inactivation,
and deactivation (Sale et al., 2008; Aromolaran et al., 2016;
Puckerin et al., 2016; Martinez-Mateu et al., 2019). It has been
demonstrated that reducing hERG 1b subunit levels alters IKr
kinetics and leads to cellular manifestations of pro-arrhythmia,
such as APD prolongation and early afterdepolarizations (EADs),
in human induced pluripotent stem cell-derived ventricular
cardiomyocytes (hiPSC-CMs; Jones et al., 2014). The expression
of hERG channels have been reported to follow a circadian
variation, and its diurnal pattern is disrupted after cardiac-
specific Bmal1 knockout, suggesting that its control is under
the cardiomyocyte molecular clock (Schroder et al., 2015).
Compatible with a decrease in gene expression, IKr density in
the Bmal1 cardiac knockout was 50% smaller than in control
ventricular myocytes, with no differences in gating properties
(Schroder et al., 2015). In this study, the specific contribution of
the distinct hERG variants to this outcome was not examined.
Thus, it would be of particular interest to evaluate if the subunits
are under differential circadian control, particularly considering
the differences in biophysical properties of channel function, and
the implication in a variety of cardiovascular disease conditions.

In a recent retrospective study in heart failure patients,
an increase in QT and QTc diurnality (QTd and QTc,d),
representing the amplitude of their diurnal variation, has been
associated with ventricular arrhythmias (Du Pre et al., 2017).
The QTd and QTc,d have also been shown to be increased
in both congenital (LQT2) or drug-induced (Sotalol) ERG
channel dysfunction (Du Pre et al., 2017), supporting the
hypothesis that loss of circadian control of ion channel functional
expression leads to adverse cardiovascular parameters and
increased incidence of arrhythmias.

In human ventricular myocytes IKr and IKs, together with
ICa,L, are important determinants of APD. This dynamic
ion channel relationship underscores the relevance of cardiac
repolarization reserve, which would be expected to limit
vulnerability to arrhythmia risk by maintaining normal cardiac
repolarization (Carmeliet, 2006). A novel clock-dependent
oscillator, Kruppel-like factor 15 (Klf15) has been identified as
a rhythmic regulator of repolarization. It has been shown to
target the rhythmic expression of the α-subunit (Kv4.2) and
the regulatory β-subunit (KChiP2), of the Ito current (Jeyaraj
et al., 2012). Both Klf15 deletion and overexpression in mice
led to modification of Ito density and APD with corresponding
alterations in the QT interval length, resulting in increased
susceptibility to arrhythmias. This is supported by the evidence
that an ECG pattern (ST-segment changes), similar to that found
in Brugada syndrome, has been observed after deletion of Klf15
in mice (Jeyaraj et al., 2012).

Expression levels of several other K channels without a
circadian pattern were lower in Bmal1 mice knockout hearts

compared to control, suggesting that cardiomyocyte clock
signaling might indirectly contribute to the expression of non-
circadian K+ channels genes (Schroder et al., 2015). Furthermore,
in the Bmal1 mice model, the authors demonstrated a loss of
rhythmic expression of SCN5A, which encodes for the cardiac
voltage-gated Na channel, with a reduction of the corresponding
current INa (50%), a slowed HR and an increased incidence of
arrhythmias in mice and rat ventricular myocytes (Schroder et al.,
2013). It would be of particular interest to evaluate whether
oscillations in Na channels are altered in LQT3 patients.

In guinea pig ventricular myocytes, Clock-Bmal1
heterodimers have been shown to regulate the circadian
expression and function of L-type Ca channels, and this occurs
through the PI3K-Akt signaling pathway, with corresponding
oscillations in APD (Chen et al., 2016). We and others have
shown that IKs and IKr contribute prominently to cardiac
repolarization in guinea pig ventricular myocytes (Sanguinetti
and Jurkiewicz, 1990; Bryant et al., 1998; Aromolaran et al.,
2014, 2018). To our knowledge, there have been no reports of
diurnal variations in IKs and IKr functional expression in guinea
pig ventricular myocytes. Pathological decreases in IKs either
due to congenital or inherited mutations in KCNQ1 channel
subunits (Aromolaran et al., 2014; Puckerin et al., 2016), or
acquired in disease states delay cardiac repolarization leading to
prolongation of the QT interval (or LQT1), a disease mechanism
that increases vulnerability to fatal arrhythmias such as Torsades
des Pointes (Khan, 2002; El-Sherif and Turitto, 2003). Therefore,
it is important to determine whether these ion channels may be
regulated by circadian regulation. This premise is underscored
by a previous report by Schroder and others (Schroder et al.,
2015) showing that the molecular clock in the heart regulates
the circadian expression of KCNH2 (which encodes the hERG
channel) and modifies channel gene expression. The authors
suggested that a disruption of cardiomyocyte circadian clock
mechanisms likely unmasks the diurnal changes in ventricular
action potential repolarization and predispose to an increased
risk of fatal arrhythmias that underlie SCD. It will be important
to determine whether similar mechanisms control cardiac
KCNQ1-IKs channel functional expression.

Together, it is intriguing to speculate that modulation by
circadian rhythms of ion channel functional expression and ANS
activity may underlie alterations in the day/night pattern of
arrhythmias and SCD.

TIME RESTRICTED FEEDING,
METABOLIC DISORDERS, ION
CHANNEL BIOPHYSICS AND
CIRCADIAN RHYTHM PATHWAYS

Changes in the intracellular concentration of several metabolites
(e.g., heme, NAD/NADH, CO, glucose, AMP/ATP, etc.) can
influence the activity of the clock machinery by regulating histone
modifications, DNA interactions or protein modifications
(Panda, 2016). Extracellular factors, including hormones and
temperature that regulate the peripheral clocks permit their
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alignment with the central clock. These rhythmic patterns enable
a temporal separation of distinct biochemical pathways in a more
energy-efficient fashion (Panda, 2016), such that misalignment
of central and peripheral clock phases may promote the
development of metabolic diseases. Additionally, dietary habits
associated with excessive feeding can affect circadian rhythms in
distinct organs leading to a higher likelihood of developing the
metabolic syndrome (Pickel and Sung, 2020; Figure 1).

Daily eating patterns (feeding-fasting cycle and day vs night
meals), and time-restricted feeding (TRF) can affect peripheral
circadian rhythms. For example, experiments conducted in
mice fed ad libitum or exposed to TRF have shown how
quantity, quality and timing of food intake can alter circadian
rhythm physiology. Mice exposed to HFD ad libitum (used
to induce obesity) have altered diurnal oscillations in hepatic
transcriptome, compared to mice fed a standard diet (Eckel-
Mahan et al., 2013). Moreover, TRF of HFD improves molecular
oscillations (similar to mice fed a standard diet) (Hatori et al.,
2012), and therefore suggests its potential ability to attenuate
the adverse metabolic consequences of diet-induced pathologies.
This suggestion is further reinforced by the demonstration
that TRF is able to reduce age-dependent or HFD-dependent
deterioration of cardiac function in insects (Gill et al., 2015), and
that implementation of a 10-hour TRF may promote weight loss
and improve sleep in humans (Gill and Panda, 2015). Moreover,
changes in metabolism, as seen after TRF, can lead to an
uncoupling of peripheral oscillators from the central clock, with
consequent alterations of the phase of circadian gene expression
in different tissues, including the heart, while not affecting the
SCN clock genes (Damiola et al., 2000).

Obesity and diabetes are functionally related to alterations in
circadian rhythms with an impact on cardiac function. Studies on
the effect of obesity on circadian rhythmicity of cardiometabolic
functions are limited, but obesity has been associated with
a decrease in HRV and with a shift in its circadian pattern
(Rodriguez-Colon et al., 2014). Notably, polymorphisms in the
CLOCK gene have been associated with a differential incidence
of obesity in humans, further supporting the idea that circadian
rhythms have a pivotal role in the development of metabolic
syndrome (Scott et al., 2008).

Diabetes leads to alterations in circadian rhythms and
adversely affects cardiac function. This functional remodeling
process is exemplified by circadian rhythm studies in a rat
model of streptozotocin-induced diabetes (Young et al., 2002).
The authors demonstrated that diabetes-induced alteration
of circulating humoral factors, leads to a loss of normal
synchronization of the peripheral heart clock (Young et al.,
2002). This observation is further supported by pathological
diurnal variations in diabetes biomarkers (including insulin,
leptin, glucocorticoids, growth hormone, glucose, and circulating
of free-fatty acids) (Ortiz-Caro et al., 1984; Velasco et al., 1988;
Havel et al., 1998), and ANS activity (Bernardi et al., 1992).
Moreover, two different BMAL1 SNP haplotypes have been
shown to be associated with type 2 diabetes and hypertension
in patients, suggesting an important contribution of BMAL1
variants to the pathogenesis of these disease mechanisms
(Woon et al., 2007).

The circadian rhythm distribution of the onset of
cardiovascular events is also altered in diabetes. For example,
compared to non-diabetic patients the peak in acute myocardial
infarction is lower in the morning, and this is followed by
a second peak in the evening, with the risk of developing
myocardial infarction higher during the nighttime (Hjalmarson
et al., 1989). This chronological-dependent susceptibility to
myocardial infarction can be explained by alterations in the
circadian patterns associated with sympathovagal balance in
diabetic patients that display a range of autonomic abnormalities
(Bernardi et al., 1992).

There is also evidence of lower parasympathetic activity
during the night, and a marked dominance in sympathetic tone
in diabetic patients during both day and night (Bernardi et al.,
1992). Furthermore, diabetic patients, particularly those with
autonomic neuropathy, showed no decrease in BP during the
night when compared to non-diabetic patients. This disruption
of the circadian rhythm dependent modulation of BP is
frequently associated with a poor prognosis (Felici et al., 1991).
Therefore, prolonged sympathetic activity in diabetic patients
may counteract the protective effect of parasympathetic tone
on the cardiovascular system, which normally would then be
manifested by a lower incidence of cardiac events during the
nighttime (Bernardi et al., 1992). Diurnal differences in the ECG
have been observed during hypoglycemia and this is generally
manifested as a larger prolongation in QTc interval throughout
the daytime, suggesting a higher vulnerability to arrhythmias;
while the incidence of bradycardia episodes was found to be
increased during the sleep cycle (Andersen et al., 2020).

FUTURE DIRECTIONS AND
CONCLUSIONS

There is increasing evidence that cardiac diseases can be
influenced by circadian rhythms, and peripheral clocks can be
altered in the setting of different pathologies, including diabetes,
obesity, and hypertension (Maury et al., 2010). There is a lack of
progress in the knowledge of arrhythmia mechanisms. However,
in recent years there has been a great deal of effort to understand
the molecular mechanisms of circadian rhythms that regulate
cellular mechanisms in health and disease. For example, hiPSC-
CMs have been widely used as disease models for arrhythmias
(including LQT) (van Mil et al., 2018) and have been validated
as reliable sources for drug safety studies and the assessment of
a new drugs pro-arrhythmic risk with translational implications
in patients. The evidence that differentiated hiPSCs acquire and
exhibit circadian variation in clock genes (Umemura et al.,
2019; Kaneko et al., 2020), provides the rationale for the use
of these cells in circadian rhythms studies that could provide
relevant mechanism-based insights that may be better predictive
of disease penetrance with significant implications in patients.

The existence of circadian variations in the manifestation
of cardiac events and arrhythmogenesis highlights the critical
link between chronotherapy and cardiovascular disorders,
particularly arrhythmias. This suggests that the timing of
dietary or therapeutic interventions may be key to limiting
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the incidence of disease mechanisms that impact the quality
of life of patients. Several clinical trials have demonstrated
a better tolerability and increased efficacy for chronotherapy
compared to non-time-based treatment for different pathologies
(Levi et al., 1985; Giacchetti et al., 2006; Buttgereit et al.,
2008), while some other trials have failed to establish a similar
and positive outcome (Levi and Okyar, 2011). This could be
attributed to inter-individual circadian differences that can result
from sex, age, lifestyle, genetic or disease profile. Therefore, a
further understanding of the mechanisms involved in circadian
regulation of biological processes is required to further improve
the rigor of these approaches.

Existing molecular mechanisms of how circadian rhythms
may modulate cardiovascular function are obtained in rodent
models including mice and rats, that unlike humans, are
nocturnal. Therefore, future studies that incorporate mechanisms
in larger animal models are more likely to be rewarded with
additional and/or novel mechanism-based insights that could be
better translated into therapeutic and clinical significance.

There is also the added complexity of species differences
associated with rational development of targeted therapeutics
in patients with cardiovascular diseases. This is also because
most of the current knowledge about the regulation of
genes (ion channels and metabolic factors) targeted by the
molecular clock, have been obtained in animal models of clock

component manipulation, mainly Bmal1 and Clock. Therefore,
we need to exercise caution in the interpretation of outcomes
in future studies due to an indirect effect of clock gene
modulation, in models where these modulations may not be
tissue specific. Therefore, a further analysis of clock genes and
associated upstream and downstream molecular pathways could
inform or potentially shift current paradigm of the circadian
rhythms-dependent regulation of the cardiovascular system,
and more specifically arrhythmia substrates that promote ion
channel dysfunction.
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