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Abstract

Since the combinatorial components responsible for the antihyperlipidemic activity of Citrus reticulata ‘Chachi’
(CRC) peels remains unclear, we herein developed a bioactive equivalence oriented feedback screening method to
discover the bioactive equivalent combinatorial components (BECCs) from CRC peels. Using palmitic acid (PA)-stim-
ulated hepatocyte model, a combination of 5 polymethoxyflavones (PMFs) including tangeretin, sinensetin, nobiletin,
5,7,8,4′-tetramethoxyflavone and 3,5,6,7,8,3′,4′-heptamethoxyflavone was identified to be responsible for the anti-
hyperlipidemic effect of CRC peels. Via evaluation of combination effect by combination index (CI), these 5 PMFs were
found to take effect via a synergistic mode. Our data indicated that the antihyperlipidemic mechanism of PMF com-
bination was associated with the inhibition of fatty acid and cholesterol synthesis, and inflammation. Also, the PMF
combination exhibited robust antihyperlipidemic effects in HFD-fed rats in vivo. Our study offers evidence-based data
to uncover the pharmacological effect of CRC peels.

Keywords: Antihyperlipidemic, BECCs, Citrus reticulata ‘Chachi’, Polymethoxyflavones

1. Introduction

C itrus reticulata ‘Chachi’ (CRC), one of the
varieties of Citrus reticulata Blanco, is mainly

planted in Xinhui County, Guangdong Province,
China [1]. The dried peels of CRC have been
commonly consumed in snack, functional foods,
popular tea, traditional spice and flavoring for cen-
turies [2]. Phytochemical studies demonstrated that
the major components of CRC peels are dietary fla-
vonoids, which are generally categorized into two
groups: flavanone glycosides (primarily hesperidin)
and polymethoxyflavones (PMFs, primarily nobiletin
and tangeretin) [1,3e5]. Pharmacological studies
indicated that the CRC extracts exhibited profound
effects in prevention of hyperlipidemia, obesity and
type 2 diabetes [6,7]. However, due to the complex
ingredients in CRC peels, the combinatorial compo-
nents responsible for the antihyperlipidemic activity
ofCRCpeels havenot been systematically confirmed.

Bioactive equivalent combinatorial components
(BECCs) are the combinatorial components ac-
counting for the whole efficacy of herbal medicines
[8], and the identification of BECCs acting in a
synergistic and/or additive mode is a key step to
finally uncovering the multiple-target mechanism of
herbal medicines [9,10]. The bioactive equivalence
oriented feedback screening method provides a
promising strategy for discovering BECCs from
complex medicines or foods.
The current study aims to identify the anti-

hyperlipidemic equivalent combinatorial compo-
nents from CRC peels via a bioactive equivalence
oriented feedback screening approach. The anti-
hyperlipidemic activities of BECCs identified were
evaluated in both in PA-stimulated HL7702 cells in
vitro and in HFD-fed rats in vivo. The interactive
mode of compounds in combination and the anti-
hyperlipidemic mechanism of BECCs were also
investigated. The uncovering the BECCs from CRC
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peels will provides insights to the clinical applica-
tion of citrus products.

2. Materials and methods

2.1. Reagents and materials

A Milli-Q water purification system (Millipore,
Bedford, MA, USA); Agilent 1260 Series HPLC (Agi-
lent Technologies, USA); Thermo BDS HYPERSIL
C18 column (250 � 4.6 mm, 5 mm, Thermo, USA);
Agilent 1100 Series HPLC (Agilent Technologies,
USA); YMC-Pack ODS-A semi-preparative column
(250 � 10 mm, 5 mm); nile red (Macklin, Shanghai,
China); lovastatin (LOV; Aladdin, China); BODIPY
493/503 (4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-
3a, 4adiaza-s-indacene, Molecular Probes, Invi-
trogen); 5,7,8,40-Tetramethoxyflavone (TET) (�98%,
Push bio-technology, China); narirutin (NAR), didy-
min (DID), nobiletin (NOB), sinensetin (SIN),
3,5,6,7,8,30,40-heptamethoxyflavone (HMF) and syn-
ephrine (SYN) (�98%, Biopurify Phytochemicals,
China); naringin (NAN) and hesperidin (HES)
(�98%, Must bio-technology, China); neohesperidin
(NEO), 5-hydroxy-6,7,8,30,40-Pentamethoxyflavone
and tangerine (TAN) (�98%, prepared in our labo-
ratory); TRIzol, high capacity cDNA reverse tran-
scription kit and SYBR-green (Vazyme, Nanjing,
China); quantitative PCR (Roche, Basel, Switzerland);
HL7702 (ATCC, USA); Dulbecco's modified Eagle's
medium (DMEM; Corning, USA). Fetal bovine
serum (FBS; Gibco, USA); dimethyl sulfoxide
(DMSO; Sigma, Louis, MO, USA.).

2.2. Plant materials

CRC peel samples were collected from Xinhui
County (Guangdong province, China) in December.

2.3. Sample preparation and HPLC analysis

2 g CRC peels were cut into slices and immersed
in 14 folds 70% ethanol for 90 min. The peels were
then extracted twice under reflux, each for 2 h.
After filtered, the extract was freeze-dried [11]. For
quantification of the 6 bioactive flavonoids in CRC
peels, an amount of 2.5 mg freeze-dried powder
was accurately weighed, dissolved in 1 mL meth-
anol and further analyzed using the Agilent 1260
Series HPLC. Chromatographic separation was
conducted on an Thermo BDS HYPERSIL C18
column (250 � 4.6 mm, 5 mm). The mobile phase
consisted of water with 0.1% formic acid (A) and
acetonitrile (B) using a gradient elution mode of
25%e50% B at 0e3 min, 50%e58% B at 3e7 min,

58% B at 7e11 min, 58%e90% B at 11e15 min, with
8 min post time. 6 flavonoids were monitored at
330 nm, with a sample injection volume of 10 mL.
The quantification was also carried out by inte-
gration of the peak using an external standard
method.

2.4. Trapping and preparing candidate BECCs

To obtain the combination of candidate BECCs,
we applied Agilent 1100 series HPLC system to
collect fractions. The HPLC separation was per-
formed on a YMC-Pack ODS-A semi-preparative
column (250 � 10 mm, 5 mm) with a flow rate of
2 mL/min, the BECCs and the remaining part were
collected at two different positions. The samples
were reconstituted at a concentration as in original
CRC peels for method validation and bioactivity
assay. The Agilent 1260 Series HPLC [11]. Chro-
matographic separation was conducted on an
Thermo BDS HYPERSIL C18 column (250 � 4.6 mm,
5 mm). The mobile phase consisted of water with
0.1% formic acid (A) and acetonitrile (B) using a
gradient elution mode of 25%e50% B at 0e3 min,
50%e58% B at 3e7 min, 58% B at 7e11 min, 58%e
90% B at 11e15 min, with 8 min post time.

2.5. Bioactive equivalence oriented feedback
screening method

Firstly, the candidate BECCs in CRC peels are
quantitated according to a predefined selection cri-
terion. Then, the candidate BECCs are trapped and
prepared, the remaining part is obtained simulta-
neously. Lastly, the antihyperlipidemic activity of
candidate BECCs and CRC peels were evaluated
and compared [12]. Bioactive equivalence was
evaluated by calculating 90% confidence interval of
the ratio between the efficacies of candidate BECCs
and CRC peels (two one-sided t test). If the 90%
confidence interval of relative efficacy compared to
original CRC peels fell within the range of 70%e
143%, the candidate BECCs were considered to be a
bioactive equivalent with CRC peels [13].

2.6. Cell lines

HL7702 were grown in DMEM supplemented
with 100 U/mL penicillin, 100 mg/mL streptomycin,
and 10% (v/v) FBS at 37 �C in a 5% CO2 incubator.

2.7. Cell viability assay

HL7702 cells were seeded in a 96-well plate at a
density of 2.5 � 104 cells/well. After 18 h, the cells
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were administrated with signal compound at the
concentration of 5, 10, 20, 40 and 80 mM, or CRC peel
extract (0e600 mg/mL), mixture of reference com-
pounds (MRCs), BECCs respectively for 24 h. 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-
bromide (MTT) was added for 4 h, and detected the
absorbance at 490 nm by Synergy 2 MultiFunction
Microplate Reader (Bio-Tek Instruments, Winooski,
VT, USA).

2.8. Palmitic acid (PA)-induced steatosis

HL7702 cells were seeded in 6-well plates at
2 � 105 cells per well for 18 h, then incubated with
100 mM PA in normal culture medium as the model
group together with test compounds or not for 24 h.

2.9. Nile-red staining

Cells were fixed with 4% paraformaldehyde (PFA)
for 30 min, stained with 0.5 mg/mL nile-red after
wash for 30 min at room temperature. Images were
captured with fluorescence microscopy.

2.10. BODIPY (493/503) staining

Cells were fixed with 4% PFA for 30 min, stained
with BODIPY (493/503) after wash at a concentration
of 1 mg/mL at 37 �C for 15 min. Images were
captured with fluorescence microscopy.

2.11. Fluorescence quantification

For quantification of intracellular lipid abundance,
red or green pseudocolors that showed the BODIPY
(493/503) or Nile-Red signal were measured by
Image-Pro Plus 6.0 (Media Cybernetics, USA) and
calculated. The intensity of control cell was arbi-
trarily defined as 1, against which the intensities of
different treated cells were normalized.

2.12. Evaluation of combination effect by
combination index (CI)

CI was applied to investigate the multi-compo-
nent interactions among the active compounds. The
investigation of interaction in combinations involves
establishing dose-effect curves for single com-
pounds alone and multiple combinations of agents.
To calculate the CI values, the ability for inhibiting
the lipid level in PA-induced HL7702 cells of NOB,
SIN, TAN, TNT, HMF and combinations of 5 PMFs
were tested at various concentrations. Based on the
content of single PMF in combination, the effect

values of the above groups were then introduced
into CompuSyn software (ComboSyn Inc., USA)
and the CI values could be calculated. Generally,
CI values <0.9 are considered synergistic, >1.1
are antagonistic, and values 0.9 to 1.1 are nearly
additive [14].

2.13. The extraction and quantification of PMFs in
CRC peels

CRC peels were cut into slices and immersed in 14
folds 70% ethanol for 90 min, and extracted twice
under reflux, each for 2 h, then PMFs were enriched
by HPD-450, and then freeze-dried. For quantifica-
tion of 5 PMFs in PMF combination, an amount of
1 mg freeze-dried powder was accurately weighed,
dissolved in 1 mL methanol and further analyzed
using the Agilent 1260 Series HPLC [11]. Chro-
matographic separation was conducted on an
Thermo BDS HYPERSIL C18 column (250 � 4.6 mm,
5 mm). The quantification was also carried out by
integration of the peak using an external standard
method.

2.14. Real-time quantitative PCR

Total RNA was extracted and isolated using TRI-
zol and reversed transcribed by high capacity cDNA
reverse transcription kit according to the manufac-
turer's instructions. Gene expression was measured
by quantitative PCR using SYBR-green. The mRNA
expression of respective genes was normalized to
the level of 18S rRNA mRNA and quantified by the
2�DDCt method. Primers sequences were shown in
Table S1.

2.15. Immunobloting

Cells were lysed in RIPA buffer supplemented
with a protease inhibitor cocktail. Protein extracts
were separated on 8%e10% SDS-PAGE gels and
transferred onto nitrocellulose membranes. Mem-
branes were blocked by incubation for 1 h with 5%
non-fat milk, and blotted overnight with the specific
antibodies at 4 �C followed by the corresponding
secondary antibodies. Then, signals were detected
with Tanon-5200 Chemiluminescent Imaging Sys-
tem (Tanon, Shanghai, China). Band densitometry
was performed using by ImageJ 1.46r software
(National Institute of Health, USA), and relative
protein expression was determined by normalizing
to b-actin. The following antibodies were used:
SREBP-2 (#ab30682, Abcam, USA); SREBP-1 (#sc-
8984) and b-actin (#sc-81178) (Santa Cruz
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Biotechnology, USA); TNF-a (#A0277) (Abclonal,
China); anti-rabbit or mouse secondary antibodies
(ZSGB-BIO, Beijing, China).

2.16. Animals

We obtained 6-week-old SpragueeDawley rats
from Sino-British SIPPR/BK Lab Animal Ltd
(Shanghai, China), and kept them under a 12-h
light/dark circle. The rats were divided into three
groups and fed either a normal chow diet or high-fat
diet (normal chow supplemented with 13% pork oil,
7% soybean oil, 5% yolk powder, 8% sugar, 1%
cholesterol, 0.5% gall salt) for 10 weeks. Rats in
PMFs treated groups, were fed a HFD for 4 weeks,
then once daily oral gavaged with 40 mg/kg PMFs
for another 6 weeks with continuing a HFD feeding.
The PMFs were dissolved in 0.5% CMC-Na.
The procedures for experiments and animal care

were approved by the Institutional Animal Care
and Use Committee of China Pharmaceutical
University (Nanjing, China). Animal testing and
research conforms to all relevant ethical regula-
tions. All institutional and national guidelines for
the care and use of laboratory animals were
followed.

2.17. Biochemical measurements

Serum total cholesterol (TC), triglyceride (TG),
low-density lipoprotein cholesterol (LDL-c) and
high-density lipoprotein cholesterol (HDL-c) levels
weremeasured by Automatic Biochemistry Analyzer
(Roche Cobas 8000 modular analyzer Series, Roche
Diagnostics GmbH, Mannheim, Germany) accord-
ing to the manufacturer's instructions.

2.18. Histological analysis of liver and adipose

Livers, epididymal adipose tissues (WAT) and
interscapular brown adipose tissues (BAT) were
fixed in 4% PFA and embedded in paraffin wax.
Paraffin sections (5 mm) were stained with haema-
toxylin and eosin (H&E). Sections were examined
under digital pathological section scanner (Nano-
Zoomer 2.0 RS, Hamamatsu, Japan).

2.19. Statistical analysis

Statistical analysis was performed with GraphPad
Prism 7.0 software. The results are expressed as the
mean ± standard error of the mean (SEM). Data were
comparedbyone-wayANOVAfollowedbyaDunnett
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Fig. 1. Antihyperlipidemic effects of CRC peels in PA-stimulated HL7702 lipid deposition. (A) HL-7702 cells were treated with indicated
concentrations of CRC peels for 24 h. Cell viability was measured by MTT assay, n ¼ 5. (B) Measurement (left panel) and the quantification (right
panel) of lipid content by BODIPY (493/503) Staining in HL7702 cells 24 h after treatment with DMSO, PA alone, and PA together with LOV or CRC
peels, n ¼ 6. (C) Measurement (left panel) and the quantification (right panel) of lipid content by Nile Red fluorescence in HL7702 cells 24 h after
treatment either with DMSO, PA alone, and PA together with LOV or CRC peels, n ¼ 6. Error bars represent mean ± SEM. Comparisons between two
groups were analyzed by using a two-tailed Student's t test, and those among three or more groups by using one-way analysis of variance (ANOVA)
followed by Dunnett's post hoc tests. ****: p < 0.0001 vs. the PA group, ####: p < 0.0001 vs. the NC group. (NC, normal control; PA, palmitic acid;
LOV, lovastatin).
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post-hoc test. The differences were considered statis-
tically significant when p < 0.05.
For bioactive equivalence assessment, all the

bioassay results were transformed to efficacy value.
Bioactive equivalence was evaluated by calculating
90% confidence interval of the ratio between the ef-
ficacies of candidate BECCs and CRC peels. If the
90% confidence interval of relative efficacy compared
to original CRC peels fell within the range of
70e143% [12], the candidate BECCs were considered
to be a bioactive equivalent with original CRC peels.

3. Results and discussion

3.1. CRC peels alleviates PA-stimulated lipid
accumulation in hepatocytes

Chemical studies show that the CRC peels
contain abundant PMFs. The contents of nobiletin,

tangeretin and 5-hydroxy-6,7,8,30,40-pentamethoxy-
flavone were much higher in CRC peels than in
other citrus cultivars [15]. PA, a saturated fatty acid,
can cause lipid accumulation and the release of in-
flammatory extracellular vesicles in hepatocytes. To
investigate the antihyperlipidemic effects of CRC
peels, we stimulated the lipid deposition with PA in
HL7702 hepatocytes, then cells were treated with
various concentrations of extract of CRC peels. Our
data indicated that no obvious cytotoxicity was
observed until the concentration of CRC peels up to
600 mg/mL in HL-7702 cells (Fig. 1A). Both BODIPY
(493/503) Staining and Nile Red fluorescence assays
indicated that CRC peels significantly inhibited the
PA-induced lipid accumulation in a dose-dependent
manner (Fig. 1B-C). These data suggested that CRC
peels treatment could reduce lipid contents in he-
patocytes. The concentration of 400 mg/mL (peel
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extract) was applied for further identification of
BECCs in CRC peels.

3.2. In vitro assessment of bioactive equivalence
between candidate BECCs and CRC peel extract

Given that CRC peels contain complex and rela-
tively unrefined compounds [4,16], it is necessary
to investigate the antihyperlipidemic equivalent

combinatorial components fromCRCpeels. Thus, the
described bioactive equivalence oriented feedback
screening method was applied to discover BECCs
from CRC peels. Both candidate BECCs and the
remaining parts of extractwere prepared andused for
bioactivity evaluation. Since the PMFs such as NOB,
are reported to have antihyperlipidemic activity [17],
we hypothesize PMFs are the candidate BECCs in
CRC peels. To verify the hypothesis, the candidate
BECCs (the combination of 6 PMFs) and the remain-
ing part were firstly trapped, prepared and further
confirmed from CRC peels completely by employing
HPLC (Fig. 2A-C). Their antihyperlipidemic activities
were then evaluated using PA-stimulated hepato-
cytes. Both the candidate BECCs and the remaining
part showed no discernible toxicity in HL-7702 cells
(Fig. S1A-B). The candidate BECCs showed a similar
effect of decreasing the lipid content as CRC peels
(Fig. 2D), whereas the remaining part did not influ-
ence the lipid content. For the bioactive equivalence
assessment, 90% confidence interval showed that the

Table1. The content of 6 PMFs in CRC peels.

Compounds The concentrations
of compounds
in 400 mg/mL CRC
peels (mg/mL)

sinensetin 0.13
5,7,8,40-tetramethoxyflavone 0.08
nobiletin 3.09
3,5,6,7,8,30,40-heptamethoxyflavone 1.25
tangerine 1.31
5-hydroxy-6,7,8,3',4'-pentamethoxyflavone 0.18
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ratios of efficacies between CRC peels and BECCs
were within the acceptance range of 70e143% (Table
S2). Thus, the candidate BECCs could be considered
as BECCs of CRC peels.
To exclude the interference of any undetected

microconstituents in the collected BECCs, we pre-
pared a mixture of reference compounds (MRCs) by
mixing the 6 PMFs reference compounds (com-
pound 1e6 in Fig. 2A-C, Table 1) according to the
content of these compounds in CRC peels for
bioactivity validation. The results indicated that the
MRCs and CRC peels showed the similar protective
effects with no discernible toxicity (Fig. 2E and
Fig. S1C). These results indicate that PMFs are the
primary antihyperlipidemic constituents in CPC
peels, and the antihyperlipidemic effect of candidate
BECCs is comparable to that of CRC peels in vitro.

The bioactive equivalence assessment data were
also consistent with that of candidate BECCs; 90%
confidence interval of efficacies between CRC
peels and MRCs lay within 70e143% (Table S2).
Together, these results demonstrated that the anti-
hyperlipidemic effect of the MRCs was comparable
to that of CRC peels, and the PMFs combination
could be considered as BECCc of CRC peels.

3.3. Chemical family classification-based screening

To validate the antihyperlipidemic effect of PMFs, 6
PMFs including SIN, TET, NOB, TAN, HMF and 5-
hydroxy-6,7,8,30,40-Pentamethoxyflavone, together
with 5 flavanone glycosides (NAN, NAR, HES, NEO
and DID), and 1 alkaloid SYN were selected for
antihyperlipidemic evaluation using PA-stimulated
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HL7702 cells. The results indicated that all the tested
compounds showed no discernible toxicity in HL-
7702 cells except 5-hydroxy-6,7,8,30,40-Pentamethox-
yflavone (Fig. S2 and Fig. S3). As shown in Fig. 3 and
Fig. S4, all the 5 PMFs significantly reduced lipid
droplets in HL7702 hepatocytes in a concentration-
dependent manner, as measured by BODIPY (493/
503) Staining and lipid content by Nile Red fluores-
cence. The 5 flavanone glycosides including NAN,
NAR, HES, NEO and DID, and the alkaloid SYN did
not affect the lipid content (Fig. S5 and Fig. S6). These
results demonstrated that PMFs were primary
responsible for the antihyperlipidemic effects of CRC
peels.

3.4. Characterization of interactive mode among
PMFs

Next, using the PA-stimulated HL7702 cells, we
investigated the doseeeffect relationship of single
PMF and evaluated the interactive mode among
PMFs. The mixed standards of combinations of 5
PMFs (NOB, SIN, TAN, TNT and HMF) were pre-
pared, of which the concentrations were the same as
those in CRC peels. To calculate the CI values, the
lipid inhibition in PA-stimulated HL7702 cells of
NOB, SIN, TAN, TNT, HMF and combinations of 5
PMFs were tested at various concentrations. Both
BODIPY (493/503) Staining and Nile Red fluores-
cence assays indicated that all the PMFs and com-
binations of 5 PMFs decreased the lipid content in a
concentration-dependent manner (Fig. 4A-C, Fig.
S7A-C) and the compound HMF, which had an EC50

of ~22.45 mM, showed the most potent lipid-
lowering activity (Fig. 4B, Fig. S7B). Then, a CI
method was used for assessing the nature of inter-
action (synergistic, additive, or antagonistic effect).
The effect values of the above groups were intro-
duced into CompuSyn software to obtain the CI
values. As showed in Fig. 4D, Fig. S7D and Table 2,
most of the CI values located in the range of 0e0.9,
indicating a synergism effect among NOB, SIN,
TAN, TNT and HMF. Long et al., evaluated the
interactive mode of 6 compounds in combination
responsible for anti-inflammatory activity of
Cardiotonic Pill and found that these 6 compounds

take effect via an additive mode [8]. Of interest, our
results showed that the PMFs in combination exert
effect in a synergistic mode.

3.5. BECCs exerts antihyperlipidemic effects via
inhibition of inflammation, fatty acid and
cholesterol synthesis

We next preliminarily investigate the anti-
hyperlipidemic mechanism of BECCs. Sterol reg-
ulatory element-binding proteins (SREBPs) play
important roles in regulating lipid homeostasis
and are considered as targets for the treatment of
metabolic diseases [18]. Our data indicated that
BECCs treatment significantly reduced expressions
of SREBP target genes, such as cholesterol meta-
bolism genes DHCR24, PSCK9, HMGCR, and
SREBP-2, as well as fatty acid metabolism genes
SREBP-1c, FASN, ACC1, ACLY, and SCD1 (Fig. 5A-
B). However, BECCs did not affect the mRNA
expression of ABCA1, ABCG5 and CYP7A1, which
mediated the efflux and clearance of cholesterol
and fatty acid [19e21], as well as PPARa, CPT1 and
LPL, which mediated the fatty acid oxidation
[22,23] (Fig. 5C-D). Moreover, BECCs significantly
reduced the mRNA expression of tumor necrosis
factor-a (TNF-a) and interleukin-1b (IL-1b)
(Fig. 5E). BECCs treatment also decreased the
protein expression of n-SREBP-1, n-SREBP-2 and
TNF-a, but did not activate pre-SREBP-1 and pre-
SREBP-2 (Fig. 5F). We also found that different
single PMF may not affect the same molecular
mechanism, for example, HMF down-regulated the
expression of SREBP-2, HMGCS1, DHCR24, MVK,
SREBP-1C, FASN, ACC2, FADPS-2 and TNF-a, while
SIN decreased SREBP-1C, HMGCS1, DHCR24, MVK
and TNF-a mRNA levels (Fig. S8). Together, these
results indicate that BECCs ameliorate hyperlip-
idemia by inhibiting the synthesis of cholesterol
and fatty acids, as well as inflammatory.

3.6. BECCs exhibits robust antihyperlipidemic
effects in HFD-fed rats

The antihyperlipidemic activity of BECCs was
further verified in vivo. We firstly prepared the PMFs

Table 2. The interactions among 5 PMFs.

Lipid droplets Neutral lipids

EC50 (mg/mL) 95% confidence
interval

CI EC50 (mg/mL) 95% confidence
interval

CI

Combinations of 5 PMFs 12.69 9.80-16.50 0.62 12.54 9.74-16.23 0.59
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combination by microporous resin chromatography,
and the 5 major PMFs (SIN, TET, NOB, TAN and
HMF) made up the major components of purified
extracts with the purity 74.61% (w/w) (Fig. 6A-B and
Table S3). HFD-fed rats were used as the model to
address whether PMFs displays a protective effect
against hyperlipidemia in vivo. As shown in Fig. 6C,
PMFs treatment lowered lipid accumulation in liver,
reduced the cell size of white adipocyte tissue and
interscapular brown adipose tissues. Moreover, the
serum TC, TG, and LDL-c were dramatically
reduced, whereas the significant increase in HDL-c

was not observed in PMFs-treated rats (Fig. 6D-G).
These results indicate that PMFs combination ex-
hibits robust efficacy against hyperlipidemia in HFD-
fed rats. Recently, HMF was reported to prevent
obesity in high-fat diet-induced rats by regulation of
the expression of lipid metabolism-related and in-
flammatory response related genes [24]. Indeed, a
purified PMF-rich extract from CRC was shown to be
protective against high-fat feeding in a microbiota-
dependent manner, suggesting that the extract may
be a therapeutic prebiotic agent for the treatment of
metabolic disease [25].
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4. Conclusion

In the present study, based on the bioactive
equivalence oriented feedback screening method, a
combination of 5 PMFs (SIN, TET, NOB, TAN and
HMF) was identified as the antihyperlipidemic
equivalent combinatorial components from CRC
peels. The PMFs combination exhibits robust anti-
hyperlipidemic activities both in PA-stimulated
HL7702 cells in vitro and in HFD-fed rats in
vivo. Moreover, the combination exerts anti-
hyperlipidemic effect via a synergistic mode, and
the mechanism is attributed to the inhibition of fatty
acid and cholesterol synthesis, as well as inflam-
mation. The BECCs obtained from this study may
shed light on the selection of appropriate maker
compounds for quality control of citrus products.
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