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ABSTRACT.

Purpose: To analyse miRNA regulation in a rat model of acute ocular

hypertension (AOH).

Methods: Acute ocular hypertension (AOH) was induced in the left eye of adult

albino rats by inserting a cannula connected with a saline container into the

anterior chamber. The contralateral eye served as a control. Seven days later,

animals were killed. Retinas were used either for quantitative analysis of retinal

ganglion cells (RGCs) and microglial cells or for miRNA array hybridization,

qRT-PCR and Western blotting.

Results: Anatomically, AOH caused axonal degeneration, a significant loss of

RGCs and a significant increase in microglial cells in the ganglion cell layer. The

miRNAs microarray analysis revealed 31 differentially expressed miRNAs in the

AOH versus control group, and the regulation of 12 selected microRNAs was

further confirmed by qRT-PCR. Bioinformatic analysis indicates that several

signalling pathways are putatively regulated by the validated miRNAs. Of

particular interest was the inflammatory pathway signalled by mitogen-activated

protein kinases (MAPKs). In agreement with the in silico analysis, p38 MAP

kinase, tumour necrosis factor-alpha (TNF-a) and iNOS proteins were

significantly upregulated in the AOH retinas.

Conclusions: Acute IOP elevation led to changes in the expression of miRNAs,

whose target genes were associated with the regulation of microglia-mediated

neuroinflammation or neural apoptosis. Addressing miRNAs in the process of

retinal ischaemia and optic nerve damage in association with high IOP elevation

may open new avenues in preventing retinal ganglion cell apoptosis and may

serve as target for future therapeutic regimen in acute ocular hypertension and

retinal ischaemic conditions.
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Introduction

Acute angle-closure glaucoma results
in an increase in the intra-ocular pres-
sure (IOP) which may temporarily
exceed the retinal perfusion pressure,
and this may result in retinal ischae-
mia, optic nerve damage and retinal
ganglion cell (RGC) death (Selles-
Navarro et al. 1996; Lafuente et al.
2002). Although a number of mecha-
nisms and molecules have been found
to be potentially associated with the
aetiology of retinal/optic nerve damage
in acute angle-closure glaucoma, the
main causes are, so far, elusive
(Almasieh et al. 2012). In particular,
the role that microRNAs (miRNA)
may play in the development of retinal
damage is yet unclear (Genini et al.
2014). miRNAs are an evolutionarily
conserved class of non-coding small
RNAs that have a length of approxi-
mately 19 ̴ 23 nucleotides and play a
crucial part in the post-transcriptional
regulation of gene expression (Bartel
2004, 2009; Bentwich et al. 2005; Lewis
et al. 2005). miRNAs derive from long
endogenous transcripts and undergo
several processing steps to yield mature
miRNAs. The mature miRNAs regu-
late the gene expression through bind-
ing the 30-untranslated region (30-UTR)
of its target gene, resulting in either
reduced protein translation or degra-
dation of the mRNA (Bartel 2004,
2009; Bentwich et al. 2005; Lewis et al.
2005). Considerable abundance of
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miRNAs has been found in the retina.
Previous studies have indicated the
essential roles of miRNAs in the devel-
opment, survival and normal function
of the retina (Almasieh et al. 2012;
Maiorano & Hindges 2012). miRNAs
also play a key role in the regulation of
polarization of microglial cells and
have thus an effect on the progress of
retinal disorders (Andreeva & Cooper
2014).

An abnormal expression or activity
of miRNAs in the retina has been
described in a variety of ophthalmic
diseases in human patients and in ani-
mal models. These disorders include
primary vitreo-retinal lymphoma,
uveitis, ocular adnexal lymphoma or
diabetic retinopathy among other
conditions (Kovacs et al. 2011; Dun-
mire et al. 2013; Funari et al. 2013;
Hother et al. 2013; Kutty et al. 2013;
Tanaka et al. 2014; Tuo et al. 2014).
Recently, it has been described the
implication of miRNAs in the mainte-
nance of the trabecular meshwork, an
organ of high relevance in high-tension
glaucoma (Sacc�a et al. 2016). Since an
association between miRNA regulation
and acute ocular hypertension (AOH)
has not yet been examined, we purposed
here to analyse whether retinal miRNAs
were regulated in a rat model of acute
increase in IOP (AOH; acute ocular
hypertension) and if so, to study which
signalling pathways and biological pro-
cess may be affected using in silico
prediction tools.

Materials and Methods

Animal handling

The study was approved by the Com-
mittees of Animal Care of the Sun Yat-
Sen University (Guangzhou, China)
and the University of Murcia (Murcia,
Spain), and all experimental proce-
dures were performed in accordance
with the European Union Directive
2010/63/EU for animal experiments
and the Association for Research in
Vision and Ophthalmology (ARVO)
statement for the use of animals in
ophthalmologic research. All experi-
ments were performed in adult female
Sprague Dawley rats (200–250 g body
weight). Animals had free access to
food and water and were kept in an
environmentally controlled room with
an alternating 12-hr/12-hr light/dark
cycle. Animals were euthanized with an

overdose of sodium pentobarbital
injected intraperitoneally (Dolethal,
Vetoquinol�, Especialidades Veterinar-
ias, S.A., Madrid, Spain).

Acute ocular hypertension induction

This technique has already been
described in detail previously (Huang
et al. 2007, 2008; Zhang et al. 2009;
Chi et al. 2014). Briefly, animals were
anesthetized using a mixture of xyla-
zine (10 mg/kg body weight, Rompun;
Bayer, Kiel, Germany) and ketamine
administered intraperitoneally (60 mg/
kg body weight, Ketolar; Pfizer,
Alcobendas, Madrid, Spain). Addition-
ally, topical anaesthesia was achieved
with 0.5% proparacaine hydrochloride
eye drops (Alcon Co., Fort Worth, TX,
USA). A 30-gauge infusion needle
connected to a 500-ml plastic bottle of
sterile saline was placed into the ante-
rior chamber of the left eye. By lifting
the infusion bottle to a height of
150 cm above the level of the eye,
IOP was elevated to 110 mmHg for a
period of 60 min. Intra-ocular pressure
(IOP) was measured using a Tono-Pen
(Tono-Pen; Medtronic Co., Dublin,
Ireland), following previously
described methods (Salinas-Navarro
et al. 2010; Ort�ın-Mart�ınez et al.
2015; Valiente-Soriano et al. 2015a,b).
Care was taken not to injure the lens
and the iris during the experiment, and
animals with an impaired lens were
excluded from the study. After 60 min,
the infusion needle was removed from
the anterior chamber. The right retinas
of these animals served as control
group. All animals were killed 7 days
after the induction of IOP elevation;
such a survival interval was chosen
because, as shown here and in

accordance with previous studies, at
this time–point, AOH causes RGC
death and microglial activation (Leung
et al. 2009; Zhang et al. 2009; Liu et al.
2012b). The number of retinas used in
each analysis is detailed in results.

Retinal dissection, immunodetection and

imaging

Animals were perfused transcardially
with 4% paraformaldehyde in phos-
phate buffer 0.1 M after a saline rinse.
Then, retinas were dissected as whole
mounts (Nadal-Nicol�as et al. 2012;
Rovere et al. 2015) and immunode-
tected following previously described
methods (Salinas-Navarro et al. 2010;
Nadal-Nicol�as et al. 2012). Microglial
cells (Iba1, Galindo-Romero et al.
2013) and RGC (Brn3a Nadal-Nicol�as
et al. 2014) or RGCs (Brn3a) and their
intraretinal axons (pNFH, Parrilla-
Reverter et al. 2009) were double-
immunodetected. Primary antibodies
were rabbit anti-Iba-1 (1:500 dilution;
Dako; Rafer, Zaragoza, Spain), mouse
IgG1 anti-pNFH (1:200 dilution,
Clone RT-97; Serotec, Bionova, Spain)
and goat anti-Brn3a (1:750 dilution; C-
20, Santa Cruz Biotechnology, Heidel-
berg, Germany). Iba1 is expressed by
microglial cells (Galindo-Romero et al.
2013): Brn3a is expressed by the vast
majority of the general population of
RGCs (approximately 97%), except
the melanopsin-expressing RGCs and
one half of the ipsilaterally projecting
RGCs (Nadal-Nicol�as et al. 2012,
2014, 2015). The monoclonal antibody
RT97 recognizes the phosphorylated
heaviest subunit of the neurofilament
triplet (pNFH), and its abnormal
expression is an index of axonal injury
(Vidal-Sanz et al. 1987; Villegas-P�erez

Table 1. miRNAs selected for qRT-PCR validation.

miRNA Accession number

Amplicon

size(bp) Sequence

rno-miR-1-3p MIMAT0003125 22 UGGAAUGUAAAGAAGUGUGUAU

rno-miR-190a-5p MIMAT0000865 22 UGAUAUGUUUGAUAUAUUAGGU

rno-miR-539-5p MIMAT0003176 22 GGAGAAAUUAUCCUUGGUGUGU

rno-miR-17-5p MIMAT0000786 23 CAAAGUGCUUACAGUGCAGGUAG

rno-miR-215 MIMAT0003118 22 AUGACCUAUGAUUUGACAGACA

rno-miR-628 MIMAT0012836 22 AUGCUGACAUAUUUACGAGAGG

rno-miR-22-3p MIMAT0000791 22 AAGCUGCCAGUUGAAGAACUGU

rno-miR-350 MIMAT0000604 24 UUCACAAAGCCCAUACACUUUCAC

rno-miR-336-5p MIMAT0000576 21 UCACCCUUCCAUAUCUAGUCU

rno-miR-93-5p MIMAT0000817 23 CAAAGUGCUGUUCGUGCAGGUAG

rno-miR-532-3p MIMAT0005323 22 CCUCCCACACCCAAGGCUUGCA

rno-miR-124 MIMAT0000828 20 UAAGGCACGCGGUGAAUGCC
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et al. 1988; Parrilla-Reverter et al.
2009). Secondary detection was carried
out with Alexa Fluor-conjugated anti-
bodies (donkey anti-rabbit Alexa 594,
donkey anti-goat Alexa 488 and goat
anti-mouse IgG1 Alexa 488, all diluted
at 1:500; Molecular Probes Thermo-
Fisher, Madrid, Spain). After immun-
odetection, retinas were mounted on
glass slides with the vitreal side up and
covered with antifading solution
(Nadal-Nicol�as et al. 2015).

Photographic reconstructions of
whole-mounted retinas were obtained
under an epifluorescence microscope
(Axioscop 2 Plus; Zeiss Mikroskopie,
Jena, Germany) equipped with a com-
puter-driven motorized stage (ProScan
H128 Series; Prior Scientific Instru-
ments, Cambridge, UK) according to
previously described methods (Vidal-
Sanz et al. 2012, 2015a,b). Then, the
individual frames (154/retina) were
reconstructed and further analysed.
The total number of Brn3a+RGCs
was automatically quantified using the
Image-Pro Plus (IPP 5.1, Media
Cybernetics, Silver Spring, MD,
USA) software, as reported (Nadal-
Nicol�as et al. 2012). With these quan-
titative data, isodensity maps of
Brn3a+ RGCs were constructed using
a graphing software (SIGMAPLOT

©
R) as

reported (Vidal-Sanz et al. 2012,
2015a,b). For quantitative analysis of
the Iba-1+ microglia in the ganglion
cell layer, 12 rectangular areas
(0.36 9 0.24 mm) at a magnification
of 9100 were taken from concentric
zones of each retina, three per quad-
rant at equidistant distances from the
optic disk. The total number of
microglial cells obtained in these areas
was averaged to obtain a mean cell
density per retina. Then, the total
numbers of microglial cells in the
whole-mounted retina were estimated
by multiplying the mean cell density
times the total area of the retina.

miRNA microarray analysis

Retinas were freshly dissected and
immediately frozen. Total retinal
RNA was extracted using the Trizol
reagent (Life Technologies Invitrogen
Co., Carlsbad, CA, USA). Quantity
and purity of the RNA were assessed
using the DW-K5500 micro-spectro-
photometer (Drawell International
Technology Co., Ltd. Shanghai,
China). A ratio of 260/A280 ≥ 1.5

and a ratio of A260/A230 ≥ 1 indi-
cated an acceptable RNA purity, and
an RNA Integrity Number (RIN)
value of ≥7 as assessed by the Agilent
2200 RNA assay (Agilent Technolo-
gies, Santa Clara, CA, USA) indi-
cated an acceptable RNA integrity.
The screening of the miRNA

expression profiling was performed
using the commercial Rat miRNA
Microarray 1 9 12K kit according
to the manufacturer’s protocol (Ribo-
Bio Ltd., Guangzhou, China). All
analyses and annotations were based
on the miRbase database release 21.0.
To reduce the errors of the

(A)

(B)

(A′)

Fig. 1. Seven days after induction of AOH, there is a diffuse loss of retinal ganglion cells. (A-A’)

Retinal photomontages showing Brn3a+RGCs in a control (A, left) and an experimental (A,

right) retina and their isodensity maps (A’). Maps in this figure show that in control retinas, RGCs

are denser in the medial–central retina, being densest above of the optic nerve. A diffuse loss of

RGCs is observed after AOH. At the bottom of each map is shown the number of RGCs

quantified in its corresponding retina. Density colour scale is shown at the bottom of panel A’

right and goes from 0 RGCs/mm2 (purple) to ≥3500 RGCs/mm2 (red). (B) Bar graph showing the

mean � standard deviation of RGCs in control and AOH retinas (n = 6/group). The loss of

RGCs in the AOH retinas is significant compared to control (t-test, p-value <0.0001). AOH, acute

ocular hypertension; S, superior; N, nasal; T, temporal; I, inferior.
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microarray analysis, three paired sam-
ples were measured and each experi-
mental condition was independently
repeated three times. In each of these
three biological repetitions, three tech-
nical replicas were made. All biolog-
ical replicates were pooled and
calculated to identify differentially
expressed miRNAs. A given miRNA
was considered differentially expressed
in AOH retinas when its fold change
was a factor of 2 or more compared
to control retinas with a statistical p-
value of <0.05. To directly display the
correlations among the replicates and
sample conditions, a cluster analysis

was performed which was visualized
by a Z-score.

qRT-PCR validation

Total retinal RNA was extracted as
above. Retrotranscription primers
(steem loop) and qPCR primers (for-
ward and reverse) for eachmiRNAwere
designed by RiboBio (Guangzhou,
China; Punj et al. 2010). Two micro-
grams of total RNA was reversely tran-
scribed with moloney murine leukaemia
virus reverse transcriptase (Promega,
Madison, WI, USA). Quantitative
PCRs were performed with Platinum

SYBR Green qPCR SuperMix-UDG
reagents (Invitrogen, Carlsbad, CA,
USA) using the PRISM 7900HT system
(Applied Biosystems, Carlsbad, CA,
USA). U6 snRNA was used as endoge-
nous control for the quantification of
miRNAs (Liu et al. 2012a). Each sam-
ple was measured three times. The
selected miRNAs are listed in Table 1.

In silico pathway analysis

To comprehensively predict the target
genes of the validated miRNAs, TAR-

GETSCAN (www.targetscan.org/), MIR-

WALK (http://zmf.umm.uni-heidelberg.
de/apps/zmf/mirwalk2/) and MIRDB

(http://mirdb.org/miRDB/) free data-
bases were used. Only their intersection
was regarded as target genes. Each gene
was assigned to an appropriate sig-
nalling pathway according to its main
cellular function. The Database for
Annotation, Visualization and Inte-
grated Discovery 6.7 (DAVID;
https://david.ncifcrf.gov/) was used for
gene ontology analysis. Signalling path-
way analysis was performed using the
microarray gene pathway annotations
acquired from Kyoto Encyclopedia of
Genes and Genomes (KEGG, http://
www.genome.jp/kegg/). Pathways with
a p-value of <0.05 were chosen as
significantly regulated. All statistical
analyses were performed applying Fish-
er’s exact test, and the p-values were
adjusted using the false discovery rate
algorithm for the microarray analysis
of miRNAs (Zhang et al. 2012).

Western blotting

Retinaswere fresh-dissected and homog-
enized in RIPA lysis buffer (Beyotime
Institute of Biotechnology, Haimen,
China) supplemented with 100 mM

PMSF. Protein concentration was
assessed using BCA Protein Assay Kit
(Beijing CoWin Bioscience Co., LTD.
Beijing, China). Samples containing
equal amounts of protein (20–50 lg)
were separated in 8 or 12% sodium
dodecyl sulphate–polyacrylamide gel
electrophoresis (SDS-PAGE) and then
transferred to PVDF membranes. Pro-
teins were blocked with 5% non-fat milk
in PBS for 1 hr and then incubated
overnight at 4°C with the following
primary antibodies: rabbit antiphospho-
rylated-p38 MAP kinase (Thr180/
Tyr182, 1:500 dilution. sc-17852-R),

(A)

(B)

A
B

Fig. 2. Acute ocular hypertension (AOH) causes the degeneration of RGC intraretinal axons.

Retinal photomontages showing pNFH+ intraretinal RGC axons in a control and an

experimental retina. Below each photomontage is shown a magnification of the squared areas

(A, B). In control retinas, pNFH expression is restricted to the middle and central retina while

after AOH extends to the periphery. The abnormal pNFH expression in the AOH retinas depicts

intensely stained RGCs (red arrows) as well as beaded axons (white arrows), showing the typical

features of AOH-induced retrograde axonal degeneration.
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rabbit antitotal p38 MAP kinase (1:500;
sc-7149), goat anti-tumour necrosis
factor-alpha (TNF-a) (1:500; sc-1350)
and rabbit anti-iNOS (1:800; sc-650)
purchased from Santa Cruz Biotech-
nologies. Secondary detection was per-
formed with horseradish-conjugated
antibodies (1:5000 or 1:10 000, from
Beijing Biosynthesis Biotechnology).
Signal was visualized using an enhanced
chemiluminescence kit (Millipore,-
Jaffrey, NH, USA). Membranes were
exposed toX-ray films that were scanned
using a molecular dynamic densitometer
(Scion, Frederick, MD, USA). Then
Quality One software (Bio-Rad, Phila-
delphia, PA, USA) was used for the
densitometric analysis. b-Actin (1:500,
sc-130656; Santa Cruz Biotechnologies)
was used as loading control.

Statistics

Statistical analysis was performed using
the programs of SPSS (version 22.0; SPSS
Inc., Chicago, IL, USA) and GRAPH PAD

PRISM (version 5.0 Graph Pad Inc., La
Jolla, CA,USA). The data are presented
as mean � standard deviation. Acute
ocular hypertension (AOH) and control
groups were compared with each other
using the Student’s t-test. A p value of
<0.05 was considered to be statistical
significant.

Results

RGC loss, axonal degeneration and

microglial activation

Examination of the retinal whole
mounts 7 days after the induction of
AOH revealed that the density of RGCs
was significantly lower in the Acute
ocular hypertension (AOH) retinas
compared to the control ones. In control
retinas, the total number of
Brn3a+RGCs was 81 451 � 3383
(mean � standard deviation; n = 6),
while in AOH retinas, this number
decreased to 64 143 � 6229 (n = 6),
which accounts for a loss of approxi-
mately 21.3% of RGCs (Fig. 1).

In control retinas, pNFH+ intrareti-
nal axons were constricted to the cen-
tral and middle regions of the retina
and had a rectilinear morphology
(Fig. 2, 2A). In contrast, in the AOH
retinas, the pNFH signal extended to
the periphery of the retinas, with the
presence of abnormal expression of

pNFH within cell bodies and primary
dendrites of RGCs. In addition, there
were many intra-axonal deposits of
pNFH shaped like small varicosities
and rosary beads (Fig. 2B). All these
findings are compatible with an axonal
injury and have been previously
observed after axotomy (Vidal-Sanz
et al. 1987; Villegas-P�erez et al. 1988;
Parrilla-Reverter et al. 2009) or ocular
hypertension (Salinas-Navarro et al.
2009, 2010; Vidal-Sanz et al. 2012).

Microglial cells in control retinas
were present as ‘resting’ ramified
microglia with several processes. How-
ever, in the AOH retinas, microglial
cells changed to an amoeboid shape
indicative of their activated state
(Fig. 3A; Jonas et al. 2012; de Hoz
et al. 2013). Furthermore, in the gan-
glion cell layer of the AOH retinas
(Fig. 3B), the density of microglial cells
was almost twofold of control retinas.

miRNA regulation

When the AOH eyes (study group) were
compared with the contralateral eyes

without IOP change (control group), we
detected 31 miRNAs which were differ-
entially expressed, that is the degree of
expression differed by a factor of ≥2. In
the study group, among these 31 miR-
NAs, 9 miRNAs were upregulated and
22 miRNAs were downregulated
(Fig. 4). The validity of the microarray
analysis was verified by qRT-PCR, and
the regulation trend for all validated
miRNAwas in correspondence with the
results from the microarray profiling
(Fig. 5). Of note, we performed qRT-
PCR of miR-124 because, even though
it was not regulated in the array analy-
sis, it is expressed by microglial cells
(Caldeira et al. 2014) and upregulated
in a model of oxygen–glucose depriva-
tion (Kong et al. 2014). As seen in
Fig. 5, there was no change of miR-
124 between control and AOH retinas.
This is further discussed below.

In silico prediction of regulated pathways:

Upregulation of proinflammatory proteins

Three prediction-free databases of
microRNA targets (TARGETSCAN, MIR-

WALK and MIRDB) were applied to

Fig. 3. Increased number of microglial cells in the ganglion cell layer after acute ocular

hypertension (AOH). (A) Magnifications from flat-mounted retinas immunodetected for Brn3a

(RGCs) and Iba1 (microglial cells) and focused on the ganglion cell layer. In control retinas,

microglial cells are ramified and evenly distributed. In AOH retinas, microglial cells are amoeboid,

less ramified and more abundant. (B) Graphs showing the mean density (left) and the calculated

total number (right) �standard deviation of microglial cells in control or AOH retinas (see

Methods for details). The number of microglial cells in the AOH retinas is significantly higher than

in control retinas (n = 6/group; t-test, pvalue <0.0003).
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disclose the integrated miRNA-target
and gene ontology analysis. After,
based on biological process and molec-
ular function, the resulting data were
used to uncover the miRNA-Gene
Regulatory Network (Figs 6 and 7).
This analysis revealed that every
miRNA had multiple gene targets and
each target gene was regulated by more
than one miRNA. In a next step, we
performed a pathway analysis using
DAVID and KEGG platforms, to
clarify the putative pathways in which
the miRNAs were involved (Tables 2
and 3). The upregulated miRNAs were
ascribed to five functional clusters and
the downregulated miRNAs to nine
functional clusters (Tables 2 and 3).
For a subsequent analysis, we focused
on the MAPK pathway which had 18
genes that, according to the bioinfor-
matics analysis, may be targets of the
regulated miRNAs. Thus, we per-
formed Western blotting of three pro-
teins linked to the MAPK pathway,

stress and inflammation. As shown in
Fig. 8, AOH upregulated the stress
kinase p38 and the production of
inflammatory proteins iNOS and
TNF-a. These upregulations concord
with the observed increase and activa-
tion of microglial cells.

Discussion

In our experimental study on rats with
an acutely elevated IOP to supradias-
tolic pressure levels for a period of one
hour, a significant loss in retinal gan-
glion cells was associated with an
activation of retinal microglial cells
and an upregulation or downregulation
of 31 miRNAs. Some of these miRNAs
were involved in various biological
processes including regulation of neu-
ron apoptosis and inflammatory path-
ways.

The findings obtained in our study
agree with results of previous investi-
gations showing that a short-term

increase in IOP to values of 100 mmHg
or higher can lead to marked retinal
damage with resulting loss in RGCs
and axonal degeneration (Selles-
Navarro et al. 1996; Naskar et al.
2002; Zhang et al. 2009; Liu et al.
2012b). Our results are also in agree-
ment with previous studies showing
that damage to RGCs is associated
with an activation of retinal microglial
cells (Salvador-Silva et al. 2000;
Sobrado-Calvo et al. 2007; Gallego
et al. 2012; Liu et al. 2012b; de Hoz
et al. 2013; Abbott et al. 2014; Rojas
et al. 2014). In addition, our miRNA
analysis revealed, through a bioinfor-
matics analysis, a cluster of signalling
pathways predicted to be regulated by
the differentially expressed miRNAs.
Various cellular activities in mammals
including innate immunity, cell prolif-
eration, differentiation, apoptosis or
survival, and inflammation can be reg-
ulated by the top signalling pathways.

The mitogen-activated protein
kinases (MAPKs) signalling pathways
were enriched signalling pathways pos-
sibly regulated by the differentially
expressed miRNAs, for instance miR-
350/MAPK14, miR-539/MAP3K8,
miR-93/MAPK9. The MAPKs path-
ways include the c-Jun NH2-terminal
kinase, p38 MAP kinase and extracel-
lular signal-regulated kinase and are
involved in a wide variety of cellular
processes. For instance, in vascular
tissue, it has been shown that the
activation of the PI3K/Akt/mTOR
survival signalling pathway with a
concomitant suppression of the p38
MAPK proapoptotic pathway protects
the endothelium against stress-induced
apoptosis (Joshi et al. 2005). Further-
more, the compromised MAPKs path-
ways contribute to the pathology of
many neurodegenerative diseases (Kim
& Choi 2015). Our findings showed
accelerated p38 MAP kinase in the
AOH eyes. Activated p38 MAP kinase
causes the release of inflammatory
factors, whose accumulation induces a
cascade of events leading to inflamma-
tion and RGC death. The differentially
expressed miRNAs and abnormally
activated p38 MAP kinase provides a
potential way to suppress the inflam-
mation and prevent RGC damage
caused by acute IOP elevation.

The differentially expressed miR-
NAs are assumed to influence the
function of microglia by regulating
specific cell signalling pathway, such

Fig. 4. Heat map of miRNA expression profiles. Thirty-one miRNAs significantly changed

between the AOH and control retinas. Significant upregulation or downregulation of each

miRNA was determined as fold changes >2.0 and the values are shown at the right. Red indicates

high expression level, and green indicates low expression level.
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as chemokine signalling pathway and
TGF-beta signalling pathway. The pre-
vailing phenotype of retinal microglia
is the resting phenotype M2, which is
able to release high levels of anti-
inflammatory cytokines, associated
with recovery, repair and neuroprotec-
tion in retinal development and various

other retinal disorders. Following inju-
ries, retinal microglia cells change into
an activated phenotype M1, which can
produce proinflammatory factors and
contribute to retinal dysfunctions.
Retinal microglial cells M1 and M2
can transform from each other upon
different types of stimulation, a process

known as ‘polarization’. Several miR-
NAs have been shown to be important
regulators of microglial polarization
and play a critical role in the micro-
glia-mediated neuroinflammation (Su
et al. 2016).

miR-124 is expressed in microglia,
where it has a role in maintaining the

Fig. 5. qRT-PCR validation of regulated miRNAs. (A) Upregulated miRNAs. (B) Downregulated miRNAs. Data are presented as the

mean � standard deviation (n = 5 retinas/group, **p < 0.01. AOH, acute ocular hypertension.
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microglial cells in a quiescent state and
is critical for the switching from M1
type to M2 types of retinal microglial
cells (Caldeira et al. 2014). Upregula-
tion of miR-124 may play a protective
role against neural apoptosis (Sun
et al. 2013). Significant upregulation
of miR-124 was found in oxygen–
glucose deprivation model (Kong et al.
2014). In our study, we did not detect a
statistically significant change in the
expression of miR-124 (Fig. 5).
Because of the role of this particular
miRNA in microglial quiescence, it is
possible that its upregulation occurs if
the increase in IOP becomes chronic.
This hypothesis would explain why

miR124 is not regulated in our model
of AOH although it is important to
have in mind that we have only exam-
ined miRNAs at 7 days after AOH,
which is a limitation of the present
study.

Many of the differentially expressed
miRNAs are considered to modulate
microglia activation and thus involved
in the regulation of proinflammatory
cytokines production. The target
genes of miR-93-5p, one significantly
downregulated miRNA in the AOH
eyes, included MAPK9, MAP3K12,
caspase 3 and others. MiR-93-5p has
been acknowledged as a negative reg-
ulator of the immune response and

can inhibit nuclear factor-kappa B
(NF-jB) activation and proinflamma-
tory cytokines (Lyu et al. 2014; Xu
et al. 2014). miR-17-5p, which was
detected to be downregulated in our
study group, has also been considered
to be a regulatory intermediate of
multiple MAPKs (Cloonan et al.
2008). miR-17-5p could promote cell
migration through targeting the P38
MAPK pathway (Yang et al. 2010).
Moreover, overexpression of miR-17-
5p was able to enhance cell
proliferation by promoting G1/S tran-
sition of the cell cycle and inhibiting
apoptosis in cancer cell lines (Li et al.
2015).

Fig. 6. Interaction network of downregulated miRNAs and their target genes. The target genes were predicted by three computational programs

TARGETSCAN, MIRWALK and MIRDB. Red circles: microRNAs. Yellow circles: important target genes.
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Except for the extensively studied
miRNAs, some of the differentially
expressed miRNAs are reported to
regulate the proliferation, invasion
and apoptosis of other types of cells.
MiR-144, one upregulated miRNA in
the acute glaucoma eyes, plays a key
role in the occurrence and development

of tumours, especially in the early stage
of tumour formation. One of its targets
is the insulin receptor substrate (IRS1)
that plays important biological func-
tions for both metabolic and mitogenic
pathways and activating signalling
pathways, including the PI3K pathway
and the MAP kinase pathway (Joshi

et al. 2005). Upregulation of miR-144
could inhibit A549 cell proliferation
and reduce its invasion and migration,
suggesting that miR-144 might be a
tumour suppressor gene in lung cancer
(Zhang et al. 2015). Therefore, we
speculate that upregulation of miR-
144 might be a compensatory

Fig. 7. Interaction network of upregulated miRNAs and their target genes. The target genes were predicted by three computational programs

TARGETSCAN, MIRWALK and MIRDB. Red circles: microRNAs. Yellow circles: important target genes.
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mechanism and miR-144 might also
inhibit microglia activation, prolifera-
tion and migration. However, there is
no related information about the func-
tion of miR-144 in the microglia cell
and further study is needed in the
future.

The differentially expressed miR-
NAs are also involved in the regulation
of neural apoptosis. TGF-beta sig-
nalling pathway, neurotrophin sig-
nalling pathway and natural killer
cell-mediated cytotoxicity pathway
were supposed to be regulated by
differentially expressed miRNAs. Some
of the differentially expressed miRNAs
have been considered as apoptosis-
related miRNAs. MiR-592 has been
thought to be a key regulator of the
neurotrophin receptor p75 (NTR),

which had been implicated in mediat-
ing neuronal apoptosis during injury.
A previous study showed that the
expression level of miR-592 decreased
in neuronal ischaemic injury and over-
expression of miR-592 in neurons
could decrease the degree of ischaemic
injury and attenuate activation of
proapoptotic signalling and death in
neuronal cells. Interestingly, the
expression change of miR-592 in our
study was highly consistent with that in
focal cerebral ischaemia, which sug-
gested that miR-592 may also influence
the apoptosis of retinal ganglion cells
in eyes after an acute IOP elevation
(Irmady et al. 2014).

In summary, an acute IOP elevation
led to changes in the expression of
miRNAs, whose target genes were
associated with the regulation of
microglia-mediated neuroinflammation
or neural apoptosis. As miRNAs are
highly conserved in mammals, the
findings from our investigation on rats
may cautiously be transferred onto the
situation in humans and may lead to a
better understanding of the contribu-
tion of miRNAs to the consequences of
an AOH. Addressing miRNAs in the
process of retinal ischaemia and ON

damage in association with high IOP
may open new avenues in preventing
RGC apoptosis and loss and may serve
as target for future therapeutic regimen
in acute glaucoma.
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