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ABSTRACT: Electrospun fibers are excellent delivery vehicles
enabling a sustained release of growth factors to elicit favorable cell
responses and are increasingly used in tissue engineering. Scaffolds
with specific physical/topographical features can also guide cell
migration and maturation. Therefore, growth factor-loaded
electrospun scaffolds with a designed topography are promising
for tissue regeneration. In this investigation, aligned-fiber scaffolds
composed of poly(lactic-co-glycolic acid) nanofibers incorporating
a glial cell line-derived growth factor and poly (D,L-lactic acid)
nanofibers incorporating a nerve growth factor were produced by
electrospinning. The scaffolds provided an aligned fibrous
topography and a dual release of growth factors. The rat
pheochromocytoma cell (PC12 cell) response to produced non-
woven and aligned-fiber scaffolds with/without growth factors was studied. The dual release of growth factors and topographical
cues provided by aligned-fiber bicomponent scaffolds induced significant neurite extension, neuronal differentiation, and neurite
alignment in a synergistic manner. The scaffolds with predesigned biochemical/topographical cues demonstrated in this study might
be promising for nerve tissue repair.

1. INTRODUCTION

Tissue engineering scaffolds are designed to recapitulate cell
niche and/or provide required biochemical signals. To date,
the investigations on the effects of topographical cues,
biological cues, and electrochemical cues have gained
increasing attention, suggesting that scaffolds with both
biosignal capability and appropriate topographical features
are promising in inducing the regeneration of targeted tissues.
In peripheral nerve tissue engineering, local and sustained

delivery of growth factors from biodegradable scaffolds has
promoted neural differentiation.1−5 Biocompatible nerve
conduits with designed topographical features have been
used to provide native neuronal cells with contact guidance,
promoting neuronal growth and axonal extension in different
ways.6−16 Among various fabrication techniques, electro-
spinning is advantageous in making extracellular matrix-like
scaffolds with a designed pore size, porosity, fiber diameter,
and alignment. Meanwhile, electrospun scaffolds are also
efficient delivery vehicles of labile biomolecules.17−22

In this study, electrospun scaffolds with both aligned
topographical guidance and dual release of growth factors
were made, aiming at eliciting enhanced neurite outgrowth,
neural differentiation, and neurite alignment. Fibrous bicom-
ponent scaffolds with aligned fibers were fabricated through

high-speed dual-source dual-power electrospinning (HS-
DSDP-ES). Bicomponent scaffolds with a randomly orientated
fibrous structure (non-woven scaffolds) were made as a
control. The structure and morphology of scaffolds and the
in vitro release of both growth factors were investigated. The
rat pheochromocytoma cell line (PC12) was used for in vitro
experiments. Neurite outgrowth, neural differentiation, and cell
alignment on scaffolds were investigated and quantified using
immunofluorescence staining.

2. RESULTS

2.1. Characterization of Scaffolds. Aligned-fiber scaf-
folds were made through HS-DSDP-ES, whereas non-woven
scaffolds were made through normal DSDP-ES. Both types of
fibers were uniformly distributed in aligned-fiber scaffolds,
showing a distinct fiber alignment (Figure 1a). It can be seen
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that fibers had similar average fiber diameters (around 500
nm) in all scaffolds. The fiber alignment was clearly visible in
aligned-fiber scaffolds (Figure 1d,e), while a non-woven fibrous
structure was seen in non-woven scaffolds (Figure 1g,h). The
distribution of fiber orientations in aligned-fiber scaffolds and
non-woven scaffolds is shown in Figure 1c,f. A narrow
distribution of fiber orientations was observed in aligned-
fiber scaffolds, indicating a high fiber alignment. By contrast, a
wide distribution of fiber orientations was found in non-woven
scaffolds, which indicated a low fiber alignment.
The wettability of produced scaffolds was measured by water

contact angle (WCA) tests. The WCAs of aligned-fiber
bicomponent scaffolds in different directions were examined.
As shown in Figure 1l, the WCA was 122.3 ± 1.3 and 127.9 ±
3.0° in the aligned direction and the perpendicular direction,
respectively.

2.2. In Vitro Release of Growth Factors. The release
behavior of both growth factors from scaffolds was
investigated. A fast glial cell line-derived growth factor
(GDNF) release and a slower NGF release are shown in
Figure 1j. 16.7% of NGF was released in initial 24 h and up to
34.8% of NGF was released after 42 days. During the initial
release period (24 h), 20.3% of GDNF was released, and 62.5%
GDNF release was achieved after 42 days. The results showed
that sustained and dual release of growth factors with different
release behaviors was achieved.

2.3. Cell Morphology. PC12 cells were cultured on
scaffolds and their morphology is shown in Figure 2. In
general, cell adhesion, spreading, and migration on all types of
scaffolds were improved with increasing culture time.
At day 1, cells on non-woven scaffolds without growth

factors (Figure 2b) were in spherical shape with little
spreading. Cells on growth factor-containing non-woven

Figure 1. Confocal image of aligned-fiber (a) and non-woven (b) bicomponent scaffolds containing rhodamine-B-labeled nerve growth factor
(NGF)/poly (D,L-lactic acid) (PDLLA) fibers. SEM image of aligned-fiber + GFs (d), aligned-fiber only (e), non-aligned fiber + GFs (g), and non-
aligned fiber only (h) scaffolds. Distribution of fiber orientations in aligned-fiber (c) and non-woven (f) bicomponent scaffolds. Water contact
angles (i) and GF release profile (j) of the fibrous bicomponent scaffold.
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scaffolds (Figure 2a) exhibited improved cell attachment,
spreading, and migration. After 4 days of culture, more cells
were elongated to an elliptical shape, and improved neurite
extensions were observed on scaffolds with GFs (Figure 2e) as
compared to those without GFs. The neurite sprouts on both
non-woven scaffolds protruded in random orientations. Most
cells showed an elongated elliptical shape on aligned-fiber
scaffolds in spite of no growth factor stimulation (Figure 2h).
Much improved neurite sprouting and elongation was also seen
on the aligned-fiber scaffolds as compared to the cell
morphology on non-woven fibrous scaffolds without growth
factors. Some of the neurite protrusions showed an alignment
in the direction of the red-dotted line (Figure 2g). After 7 days
of culture, cells on growth factor-containing non-woven
scaffolds (Figure 2i) showed improved neurite branching and
neurite outgrowth. Neurite branching and outgrowth pro-
truded in random orientations on both types of non-woven
scaffolds. Cells on aligned-fiber scaffolds appeared to spread in
a well-organized manner. Much increased neurite sprouting
and elongation was also seen on the aligned-fiber scaffolds as
compared to the cell morphology on non-woven fibrous
scaffolds without growth factors. The neurite alignment was
obviously seen as revealed by the read-dotted line.
2.4. Analysis of Neurite Differentiation. Neurite

differentiation and alignment were characterized as shown in
Figure 3. At day 1, cell differentiation in the GF-containing
group was higher than that in the control group. More cell
differentiation was obtained in the aligned-fiber group
compared with the non-woven group. The results showed

limited neurite differentiation was induced at day 1. At day 4,
cell differentiation in the GF-containing group was much
higher than that in the control group. More cell differentiation
was obtained in the aligned-fiber group compared with the
non-woven group. The longest neurite outgrowth was achieved
on GF-containing aligned-fiber scaffolds. At day 7, much
higher cell differentiation percentage was obtained in the GF-
containing group compared with the control group. More cell
differentiation was achieved in the aligned-fiber group
compared with the non-woven group. Significant neurite
extensions were obtained on both aligned-fiber scaffolds
without GFs and GF-containing non-woven scaffolds. A
random distribution of neurite orientations was found in
non-woven fibrous scaffolds (Figure 3d). However, a highly
organized arrangement of neurite orientations was noticed in
both types of aligned-fiber scaffolds (Figure 3c), indicating that
a good neurite alignment was achieved attributed to the fiber
alignment.

2.5. Cell Morphology on Scaffolds. SEM images of cells
grown on scaffolds are shown in Figure 4. Enhanced cell
attachment, spreading, and migration over culture time were
observed. Cells proliferated well on fibrous scaffolds and
covered a large portion of the scaffold surfaces at day 7. Cell
differentiation characterized by neurite outgrowth on fibrous
scaffolds increased over culture time as more cells being in the
elongated elliptical shape with neurite protrusions were seen at
day 4 and day 7. The stimulation of GFs released from fibrous
scaffolds significantly improved cell differentiation in both non-
woven scaffolds and aligned-fiber scaffolds as more cells in the

Figure 2. Confocal micrographs of PC12 cells grown on scaffolds: non-aligned fiber + GFs (a,e,i), non-aligned fiber only (b,f,j), aligned fiber + GFs
(c,g,k), and aligned fiber only (d,h,l) at days 1, 4, and 7, respectively. Scale bar: 30 μm.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c05117
ACS Omega 2021, 6, 33010−33017

33012

https://pubs.acs.org/doi/10.1021/acsomega.1c05117?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05117?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05117?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05117?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c05117?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


elliptical shape bearing neurite outgrowth but less cells in the
spherical shape were clearly seen on GF-containing scaffolds as
compared to scaffolds without GFs. The fiber alignment also
contributed to the elongation of cells, neurite outgrowth, and
neural differentiation. High-resolution SEM micrographs
(insets in Figure 4g,h,k,l) revealed more details about neurite
outgrowth and cell−scaffold interactions on aligned-fiber
scaffolds. It was found that neurite protrusions tended to
extend along fibers underneath and appreciable amounts of
short filopodia and microspikes protruded out of the cell body
toward adjacent fibers. The fiber alignment noticeably
increased cell differentiation as much more neurite outgrowth
was observed on aligned-fiber scaffolds compared with non-
woven fibrous scaffolds. These results showed that the fiber
alignment in fibrous scaffolds and released GFs promoted
neurite outgrowth and neural differentiation independently or
synergistically.

3. DISCUSSION
Scaffold-based nerve guidance conduits mimicking the micro-
environments are important for peripheral nerve regeneration.
Studies have shown that plain nanostructured scaffolds can
provide topographical cues to enhance neurite outgrowth.
Neuronal growth and axonal extension can also be promoted
by neurotrophic factors secreted from surrounding.4 Due to

the vulnerability and short half-lives of these growth factors,
delivery vehicles are essential for their controlled release.23,24

Therefore, the combination of sustained delivery of dual
growth factors (GDNF and NGF) and topographical signaling
to seeded cells within a single scaffold would be advantageous.
Biocompatible scaffolds resembling natural ECM can induce

enhanced cell adhesion, migration, and proliferation.25−28

Electrospun fibers have been employed to deliver various
bioactive molecules including proteins and nucleic
acids.21−23,29−31 In this study, scaffolds with dual growth
factor delivery and an aligned-fibrous structure were produced,
attempting to provide biochemical cues and topographical cues
simultaneously for enhanced neurite outgrowth, differentiation,
and neurite alignment.
Topographical signaling plays important roles in cell sensing,

focal adhesions, cell contractility, and other cell activities.32,33

It was reported that neuronal differentiation and neurite
alignment of PC12 cells could be achieved on various
nanogratings with or without the stimulation of biochemical
cues.6,8,10 Highly aligned electrospun fibers could guide neurite
outgrowth along fibers.34 It was also claimed that the fiber
diameter could influence the cellular response and determine
cell fate.35,36 Aligned fibers could be produced through a high-
speed electrospinning (HS-ES) technique, which could help
alleviate or eliminate bending instability of electrospun fibers

Figure 3. Differentiation percentages of PC12 cells grown on scaffolds (a). Neurite length (dotted line: 28 μm) (b). Distribution of neurite
orientations on aligned-fiber scaffolds (c) and non-woven scaffolds (d).
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and consequently facilitate fiber alignment.37,38 The fiber
alignment would decrease with the increase of the scaffold
thickness.39,40 Fibrous bicomponent scaffolds with aligned-
fiber structures and an even distribution of both types of fibers
were achieved here through the HS-DSDP-ES.
It is well known that wettability of scaffolds would influence

cell spreading and adhesion. The wettability of produced
aligned-fiber bicomponent scaffolds in different directions was
both above 120° (Figure 1i), revealing that the produced
fibrous scaffold was hydrophobic. The wettability of
bicomponent scaffolds was predominantly influenced by the
PDLLA component, which was consistent with the study
reported by other groups.41 In wettability tests, the static
contact angle in the x-direction (aligned direction of fibers)
was defined as θx and the static contact angle in the y-direction
(perpendicular direction to the fiber alignment) was defined as
θy. Wetting anisotropy was defined as Δθ = θy − θx. In this
study, θy was 127.9°, θx was 122.3°, and Δθ was 5.6°. The
anisotropy was caused by preferential spreading and ingression
of water droplets in the x-direction.42

Dual release of growth factors with different release profiles
was achieved in this investigation. NGF and GDNF can both
stimulate neurite outgrowth and neural differentiation through
a specific signaling pathway.3,43 In our recent study, it was
found that dual delivery of NGF and GDNF could promote
neurite outgrowth and neural differentiation synergistically.31

Contact guidance provided by aligned fibers induced a much
higher level of neurite outgrowth and neuronal differentiation
and an obvious neurite alignment (Figure 2d,h,l) as compared
to non-woven fibrous scaffolds (Figure 2b,f,j). Interestingly,
cells on randomly oriented fibrous scaffolds showed partial
neurite outgrowth and neuronal differentiation but no neurite
alignment over the culture time, indicating that cells also
responded to topographical cues provided by randomly
oriented fibers. The neurite outgrowth and neuronal differ-
entiation might be attributed to short-ranged topographical

guidance. The long-ranged topographical guidance was
disturbed by randomly oriented fibers and resulted in no
neurite alignment. The neurite outgrowth on fibrous scaffolds
and cell-scaffold interactions were revealed by SEM micro-
graphs.
Elongated cells with an elliptical shape on fibrous scaffolds

differentiated as characterized by neurite outgrowth tending to
extend along fibers underneath. The observations might be
explained by the involvement of focal adhesions, which
coordinate cell polarity and cytoskeleton arrangement and
consequently motivate neurite migration and path-finding.44,45

In this study, the difficulty in establishing focal adhesions to
adjacent fibers resulted in cytoskeleton organization and cell
migration preferentially along electrospun fibers underneath,
which consequently led to cell polarity and neurite path-
finding. The difficulty in establishment of focal adhesions to
adjacent fibers was revealed by high-resolution SEM micro-
graphs (insets in Figure 4g,h,k,l). Appreciable amounts of very
short filopodia and microspikes protrude out of the cell body
toward adjacent fibers in the orthogonal direction of the fiber
alignment but most of them failed to anchor to the adjacent
fibers. Therefore, a much higher level of neurite outgrowth and
neuronal differentiation and more obvious neurite alignment
were observed in aligned-fiber scaffolds.
Interestingly, the degree of neurite alignment was signifi-

cantly higher than that of the fiber alignment, suggesting that
the neurite alignment was tolerant of topographical noise to a
certain extent. The degree of neurite alignment in GF-
containing aligned-fiber scaffolds was slightly higher than that
in the aligned-fiber scaffolds without growth factors, indicating
that growth factors contributed to the neurite alignment
synergistically in the context of topographical guidance.
It can be concluded that growth factors released from

scaffolds and topographical cues induced enhanced neurite
outgrowth and differentiation in different manners. With the
combinatory stimulation of biochemical cues and topo-

Figure 4. SEM images of PC12 cells grown on scaffolds: non-aligned fiber + GFs (a,e,i), non-aligned fiber only (b,f,j), aligned fiber + GFs (c,g,k),
and aligned fiber only (d,h,l). Scale bar: 50 μm.
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graphical cues, most neuronal differentiation and neurite
alignment was achieved. Although these results highlighted
the effectiveness of aligned bicomponent fibrous scaffolds in
guiding neurite outgrowth, neuronal differentiation, and
neurite alignment, the non-human cell line used in this study
has a limited translational value for nerve conduit application.
More representative human neural cells should be utilized in
the future investigation of nerve tissue regeneration.

4. CONCLUSIONS
Fibrous bicomponent scaffolds providing both biochemical
cues and contact guidance were fabricated through HS-DSDP-
ES. The dual delivery of GDNF and NGF and the
topographical cues in aligned bicomponent scaffolds induced
significant neurite extension, neuronal differentiation, and
neurite alignment in a synergistic manner. The elaborately
designed scaffolds providing multiple microenvironmental
signals in a controlled manner are promising for potential
applications.

5. EXPERIMENTAL SECTION
5.1. Materials. Poly(lactic-co-glycolic acid) (PLGA, LA/

GA = 50:50, Mw = 100 kDa) and PDLLA (Mw = 100 kDa)
were supplied by Lakeshore Biomaterials. The human β-NGF
with the ELISA kit was supplied by Peprotech Inc., and human
GDNF with the ELISA kit was supplied by R&D Systems, Inc.
The culture medium and other reagents were purchased from
Invitrogen, Inc. All chemicals were used as purchased.
5.2. Fabrication of Electrospun Scaffolds. NGF or

GDNF containing DI water (supplemented with 0.5% BSA)
and 5 wt % Span-80 were mixed with PLGA/chloroform or
PDLLA/chloroform polymer solutions (15%, w/v) at a volume
ratio of 10:1 for 10 min at 300 rpm to prepare water-in-oil (w/
o) emulsions. The applied voltage during electrospinning was
set at 16 kV. A needle tip with a 0.8 mm inner diameter was
used. The needle-to-collector distance was optimized at 8 cm,
and the feeding rate of emulsions was set at 2 mL/h. A drum
collector rotating at 3000 rpm was used to make aligned-fiber
scaffolds. The emulsion formula is shown in Table 1. The
fabricated scaffolds were freeze-dried for 24 h.

5.3. Characterization. Produced scaffolds were processed
using a sputter coater (BEL-TACSCD005) and examined
under a scanning electron microscope (Hitachi S-4800 FEG,
Japan). WCAs of scaffolds at room temperature were examined
using a measuring machine (Solon SL200B, China).

5.4. In Vitro Release Tests. For in vitro release tests,
previous procedures were followed.46 PBS release medium
containing 0.5% BSA, 0.1% heparin, 0.05% Tween-20, and
0.02% NaN3 was prepared. 50 mg freeze-dried scaffolds were
immersed in 3 mL release medium and incubated in a 37 °C
water bath. About 0.4 mL release medium was collected and
replaced by 0.4 mL fresh release medium at different times
during the 42 day tests. The concentration of growth factors in
the collected release medium was measured by ELISA.

5.5. In Vitro Experiments. PC12 cells (Biowit, China)
were maintained and expanded in DMEM medium and
incubated in a 5% CO2 atmosphere at 37 °C. The culture
medium was replaced every 2 days. When the cultured cells
reached 80% confluence, they were used for further experi-
ments.

5.6. Cell Adhesion and Proliferation. Scaffold samples
(5 mg each) in the square shape were sterilized by 60Co γ-
irradiation at a dose of 15 kGy before any further experiment.
Samples were immersed in the culture medium and fixed at the
bottom of the culture plate. About 4 × 103 PC12 cells were
seeded on each scaffold. After preset culture times, the cell-
scaffold constructs were collected and washed two times with
PBS, followed by 10 min fixation with 4% PFA at room
temperature. After that, cells were treated with 0.1% Triton X-
100 in (1% w/v) BSA block solution for 30 min. The
cytoskeletons and nuclei of cells were stained with FITC
phalloidin (1:40 dilution) for 30 min and DAPI (1:1000
dilution) for 5 min. Cells were observed using a confocal laser
scanning microscope (CLSM 710, Carl Zeiss).
The samples with cells were rinsed with PBS and fixed with

2.5% glutaraldehyde at 4 °C for 4 h, followed by further
washing with 0.1 M sucrose-containing sodium cacodylate
buffer, PBS, and DI water. The cell-scaffold samples were
further freeze-dried for 48 h, sputter-coated with gold, and
photographed using a scanning electron microscope.

5.7. Image Analysis. Image J software (NIH, USA) was
used for morphological analysis. SEM micrographs and
confocal images were loaded into Image J to measure the
fiber alignment, neurite length, and neural orientation.
Outgrowth of cells longer than 28 μm were counted as
neurites. At least 100 fibers or cells in each scaffold were
randomly selected for measuring the fiber alignment, neurite
length, and neural orientation.

5.8. Statistical Analysis. All of the data were achieved at
least in triplicate, and the results were expressed as the mean
and standard deviation.
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