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Abstract

Objective: We aimed to mine the data in the Electronic Medical Record to automatically discover patients’ Rheumatoid
Arthritis disease activity at discrete rheumatology clinic visits. We cast the problem as a document classification task where
the feature space includes concepts from the clinical narrative and lab values as stored in the Electronic Medical Record.

Materials and Methods: The Training Set consisted of 2792 clinical notes and associated lab values. Test Set 1 included
1749 clinical notes and associated lab values. Test Set 2 included 344 clinical notes for which there were no associated lab
values. The Apache clinical Text Analysis and Knowledge Extraction System was used to analyze the text and transform it
into informative features to be combined with relevant lab values.

Results: Experiments over a range of machine learning algorithms and features were conducted. The best performing
combination was linear kernel Support Vector Machines with Unified Medical Language System Concept Unique Identifier
features with feature selection and lab values. The Area Under the Receiver Operating Characteristic Curve (AUC) is 0.831
(s= 0.0317), statistically significant as compared to two baselines (AUC = 0.758, s= 0.0291). Algorithms demonstrated
superior performance on cases clinically defined as extreme categories of disease activity (Remission and High) compared to
those defined as intermediate categories (Moderate and Low) and included laboratory data on inflammatory markers.

Conclusion: Automatic Rheumatoid Arthritis disease activity discovery from Electronic Medical Record data is a learnable
task approximating human performance. As a result, this approach might have several research applications, such as the
identification of patients for genome-wide pharmacogenetic studies that require large sample sizes with precise definitions
of disease activity and response to therapies.
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Introduction

Long-term outcome in patients with rheumatoid arthritis (RA) is

highly dependent upon an aggressive pharmacological control of

inflammation early in the disease course. Despite the importance

of selecting the optimal medication soon after disease onset, there

is no reliable biomarker predictor of drug treatment response. As a

consequence, RA patients often suffer irreversible joint destruction

while a physician searches for an effective drug. Disease activity

modifying anti-rheumatic drugs (DMARDS) are considered first-

line therapy for RA while new biologic agents, such as drugs that

block the inflammatory cytokine TNF-alpha are considered highly

effective yet induce remission in only 30% of patients [1,2,3,4,5].

The choice of drug therapy is based on disease activity levels and

clinical prognostic features. A genetic biomarker that associates

with high likelihood of biologic agent response could change this

paradigm, and improve outcomes in early RA.

Disease activity assessed at clinical visits drives the choice of

therapy. Standardized disease activity levels are measured at
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regular intervals as the primary endpoint in RA clinical trials.

However, defining disease activity before and after drug exposure

in observational Electronic Medical Record (EMR) data is

challenging, as clinicians typically do not regularly code disease

activity in structured fields but describe it as free text in the clinical

narrative. For example, at our institution, we have a structured

disease activity tool [6] and a longitudinal cohort study [7] that

collect disease activity data at individual patient visits, but these

structured data are available on a minority of visits (20–30%).

One example of a structured tool used by Partners HealthCare

is the Disease Activity Score in 28 joints (DAS28) tool scored by

study rheumatologists for RA patients followed annually in a

cohort study, the Brigham&Womens Rheumatoid Arthritis

Sequential Study (BRASS), and clinical rheumatologists for RA

patients. DAS28 is a composite index developed and validated for

use in clinical trials. It is based on weighted variables for swollen

joint count, tender joint count, the C-reactive protein level (CRP)

or erythrocyte sedimentation rate (ESR), and patient-reported

assessment of global health. The original DAS algorithm was

developed from clinical and laboratory variables assessed by six

rheumatologists in a prospective study of three years’ duration.

They defined high, moderate, low and remission disease activity

based on associations with changes in medication [8]. Once the

DAS algorithm was developed, it was validated in additional RA

patients [9], and eventually applied to thousands of patients in

clinical trials, patient registries and routine office visits. Remark-

ably, the original analysis was performed in only 113 RA patients

in the 1980’s, prior to the introduction of biological DMARDs;

nonetheless, the essential components of the algorithm are in use

today.

However, the majority of the disease activity information is not

created through structured tools; rather, it is scattered as free text

descriptions throughout the clinical narrative within the EMR.

Over the past decade, many natural language processing (NLP)

systems have been utilized in various types of healthcare EMR

applications [10,11,12,13,14,15,16,17] to process the clinical

narrative and extract relevant information from it. There are

tools built for specific tasks such as SymText utilized in identifying

pneumonia-related concepts and finding pneumonia-supported

reports [13,14]. The Unified Medical Language System (UMLS)

[18] is frequently used as a source of ontology codes, for example

the terms rheumatoid arthritis and RA are assigned the same UMLS

concept unique identifier (CUI) C0003873 with a semantic type of

Disease/Disorders. The UMLS provides CUIs for over 130

biomedical ontologies.

For machine learning purposes, the clinical narrative is typically

represented as a vector of features, where the features can be such

as expert-provided terms related to a target disease [16], all

distinct terms (bag-of-words (BOW) [19]) or UMLS concepts [17]

found in a clinical document. A disadvantage of the task-specific

dictionaries is that they are manually tailored by domain experts in

a time-consuming process. While these features have proven

helpful [8][15] , they might not be exhaustive. On the other hand,

the drawback of using all unique terms is that the feature space

becomes very big. A small corpus of clinical narratives may have a

representation of thousands of features. Therefore, different

methods for statistical feature selection to reduce the feature space

[20,21] have been proposed. A range of feature selection methods

are summarized by Joachims [22], Ma & Huang [23], Sayes, Inza,

& Larranaga [24], Zhao et al. [25], and Yang et al. [26].

In this study, we aim to develop methods to automatically

discover RA disease activity at discrete rheumatology clinic visits

based on EMR data. Such an automated method has the potential

to speed up the collection of patient cohorts from the EMR for

further clinical investigation, currently a time-consuming manual

process. We approach the problem as a classification task. NLP

technologies are utilized to analyze the EMR clinical text and

transform it into computable features. In our previous work

[27,28], we (1) explored multiple feature representations of clinical

notes such as user-defined terms, UMLS CUIs [18], BOW, and

word-CUI bigrams, and (2) tested several filter-based feature

selection methods to reduce the dimensionality of the feature space

and improve classification. In this manuscript, our goal is to build

on that work and to investigate algorithms for discovering disease

activity level using EMR data. This work is the first step for future

studies of pharmacogenetic predictors of biologic agent drug

response in large cohort studies harvested from big data EMRs.

All abbreviations used in this paper are listed in Table S6.

Materials and Methods

Materials
The RA EMR cohort used in this study included 5,900 patients

from Partners HealthCare RA case status was assigned based on a

validated algorithm developed at Partners HealthCare that used a

combination of variables extracted from the clinical narrative and

codified EMR data to automatically discover RA cases [15]. The

EMR algorithm has a 0.94 positive predictive value (PPV) for RA

diagnosis with demonstrated portability across two other EMRs

[29]. We also devised a series of filtering criteria to select

informative notes from rheumatology clinic visits from the cohort,

excluding educational notes, telephone notes, and visits to the

infusion center, primary care, or other subspecialists (Consult the

Filtering Criteria S1 for a list of the filtering criteria). Based on

recommended thresholds in clinical trials [30], DAS28 score was

categorized into High (DAS28.5.1), Moderate (DAS28.3.2–5.1),

Low (DAS28$2.6–3.2), and Remission (DAS28,2.6). We used

the four DAS28-derived categories of disease activity as gold

standard labels for the Training Set and Test Set 1 described

below. Lab values were retrieved from a structured EMR database

separate from the database containing the text blob of the clinical

narrative.

Among the RA EMR Cohort, disease activity was quantitatively

measured in 852 RA patients enrolled in longitudinal cohort study,

the BRASS. We selected 2792 notes from visits at rheumatology

clinics from these 852 patients to form the Training Set. Each note

has a DAS28 score and associated CRP and/or ESR lab values,

and MD-estimated DAS scored at the time of the visit (without

laboratory data available). The disease activity labels associated

with each clinical note were automatically assigned by using the

DAS28 score into High, Moderate, Low, or Remission categories.

Among the RA EMR cohort, disease activity was quantitatively

measured using an online disease activity tool for an independent

group of 821 RA patients as part of clinical care at Brigham &

Women’s Hospital. We selected 1749 notes from rheumatology

visits from these 821 patients to form Test Set 1. Each note has a

DAS28 score and associated CRP and/or ESR values, and MD-

estimated DAS scored at the time of the visit (without laboratory

data available). The disease activity labels associated with each

document were automatically assigned by using the DAS28 score

into High, Moderate, Low, or Remission categories following the

same procedure as for the Training Set. To measure the inter-

annotator agreement (IAA) as F1 score [31], two domain experts

reviewed 93 of these clinical notes to classify disease activity into

the four disease activity categories, without knowledge of

laboratory values.

We randomly selected 445 clinical notes for a third group of 445

RA patients (one note per each patient) without structured DAS28

Automatic Prediction of RA Disease Activity
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from the remaining RA EMR cohort to form an independent test

set comprised of notes from regular care to form Test Set 2. Three

domain experts (study rheumatologists) independently reviewed

these notes to assign clinical disease activity labels (High,

Moderate, Low and Remission) based on clinical data in the

notes alone with no additional outside lab values since CRP results

were not available to the clinician at the time of the visit.

Disagreements were resolved in an adjudication step. The IAA for

Moderate and Low categories was consistently low with difficulty

reaching consensus. Thus, reviewers subsequently labeled disease

activity into aggregate Moderate/High or Low/Remission cate-

gories. Some of the notes did not contain enough information for

the domain experts to make a reliable classification, therefore they

were removed. Thus, the final Test Set 2 included 344 notes for

344 RA patients. Test Set 2 is used to test the portability of the

methods for automatic disease activity labeling of notes without

CRP/ESR laboratory data.

Table 1 presents the dataset characteristics.

The study was conducted under an approved Institutional

Review Board (IRB) protocol.

Methods
Figure 1 presents the general flow of our document-level disease

activity prediction process. As most of the information necessary

for assigning a disease activity status is contained in the free text

EMR clinical narrative, we used an open source Apache Software

Foundation NLP System, the clinical Text Analysis and Knowl-

edge Extraction System (cTAKES) [32,33], to discover clinical

named entity mentions (NEs) such as diseases/disorders, signs/

symptoms, anatomical sites, procedures, and medications, along

with their UMLS code, negation status, and context. Each EMR

note is then represented as a vector of features. The multi-

dimensional feature space is reduced using feature selection

methods. This pruned feature space is then combined with lab

values as retrieved from a relation database within the EMR and

used to train and evaluate several classification methods to predict

the disease activity label.

Free Text Features and Feature Selection
In our previous work [27] we tested four sets of features to

represent the clinical narrative text: (1) a user-defined list of terms,

(2) UMLS CUIs, (3) BOWs, and (4) unigrams or word-CUI

bigrams. The user-defined dictionary features (also referred to as

‘‘customized dictionary’’) are entities hand-picked by human

experts (study rheumatologists) through chart review or based on

their expertise and professional experience. Customized features

are usually small in number but their manual generation is a time-

consuming process. In contrast, feature sets 2–4 are generated

automatically and could be large in number requiring space

reduction. We call set 2–4 features ‘‘comprehensive automatic

features’’. UMLS CUI features are medical entity mentions

mapped to a UMLS CUI, e.g. in the example in Figure 1 ‘‘no joint

pain’’ is represented as the negation of a UMLS concept with CUI

C0003862 (-C0003862). BOW features are unordered collections

of words that appear in all notes, ignoring stop words, e.g. the

example in Figure 1 has the following alphabetically ordered

BOW representation – has, joint, pain, patient, this. Word-CUI

bigram features are the two-unit sequence of a CUIs and its

modifier (if such exists in the text). For example, ‘‘severe synovitis’’

is represented as the bigram ‘‘severeC0039103’’. If, on the other

hand, there is no modifier for ‘‘synovitis’’, it is represented as a

unigram ‘‘C0039103’’. To reduce the space of the comprehensive

automatic features, we devised a feature selection pipeline to select

the most informative features which we described in a separate

manuscript [27]. Briefly, the three-step feature selection pipeline is

composed of a frequency cutoff, Chi-squared [34] feature

selection, and the Correlation-based Feature Selection (CFS)

[35] that uses the genetic algorithm [36] to search for an optimal

feature subset. We selected features which had positive chi-square

scores with the class label, ignoring features which had zero chi-

square scores with the class label where zero is a natural threshold

for un-correlated variables. We used the default setting of the

Weka [37] Genetic Algorithm tool: crossover probability as 0.6,

mutation probability as 0.033 and population size as 20.

Lab Values as Features
The ESR/CRP lab values are stored in a structured database

within the EMR and are therefore straightforward to unambig-

uously extract. We used these values as an additional feature in

algorithm development motivated by their relevance in the DAS28

calculation [8,9,38]. These lab values were represented as

numerical values in our feature space. Figure 2 shows that lab

value features (CRP or ESR) are indeed the most informative

feature in terms of the Chi-square score.

Training Selection
In routine practice, it is quite clear when patients have active

inflammation or are in complete remission - the extremes on the

disease activity spectrum. Not surprisingly, disease activity indices

are more accurate for patients with either high or low disease

activity [6]. In Collier et al. [6], the physician-predicted disease

activity was compared with the calculated DAS. Using the

physician-predicted disease activity score as the gold standard,

calculated DAS accuracy was greatest for patients with High

Table 1. Dataset characteristics.

Training Set Test Set 1 Test Set 2

High Disease Activity 506 notes 190 notes

Moderate Disease Activity 966 notes 610 notes

Aggregate High/Moderate Disease Activity 1472 notes 800 notes 133 notes

Low Disease Activity 369 notes 312 notes

Remission Disease Activity 951 notes 637 notes

Aggregate Low/Remission Disease Activity 1320 notes 949 notes 211 notes

Total 2792 notes 1749 notes 344 notes

Agreement MD/DAS28: 0.81 MD/DAS28: 0.87 Inter-annotator agreement: 0.87

doi:10.1371/journal.pone.0069932.t001
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disease activity (68% accuracy) and those in Remission (75%

accuracy), and less accurate for those with Moderate (48%) or Low

disease activity (62%) [6]. By studying the IAA between domain

expert clinical notes review without available laboratory data and

structured DAS-derived labels in the Training Set, we found that

the majority of the discrepancies fell in the Moderate and Low

disease activity categories (19 cases), while the High and Remission

disease activity categories account for only 6 discordances. Figure 3

plots the histogram of the 25 discordant cases.

Therefore, we hypothesized that by removing the Moderate and

Low disease activity documents from the Training Set (albeit not

from the test set), the classifier can learn concepts that are

important in the extreme cases of Remission and High disease

activity and avoid terms from the noisier categories of Moderate

and Low disease activity. Focusing on these informative terms may

not only help classify the extreme cases but also improve the model

performance on the middle boundary sections. Beigman and

Klebanov [39] showed that adding controversial cases in training

could be detrimental to the correct prediction of uncontroversial

cases (‘‘hard case bias’’). Thus, we compared training on the

‘‘extreme’’ High and Remission labels to training on ‘‘all notes’’

labeled with the aggregate High/Moderate and Low/Remission.

Classification Method
We used the following classification algorithms in our experi-

ments: Logistic Regression [40], Naı̈ve Bayes [41], Multilayer

perceptron [42], Support Vector Machines (SVMs) [43,44] with

linear kernel, SVMs with polynomial kernel, SVMs with Pearson

universal kernel [45], and SVMs with Gaussian kernel, all as

implemented in Weka [37].

Logistic Regression directly models the posterior class proba-

bilities by applying a logistic sigmoid function on a linear

combination of the feature vector. Its parameters are usually

estimated by maximum likelihood. Naı̈ve Bayes classifier models

the probability of a class given features by applying Bayes’ theorem

and a strong independence assumption. That is, conditional on the

class, the distributions of the feature variables are independent to

each other. Multilayer perceptron, also known as the neural

network, is a network of multiple layers of nodes in a directed

graph. The network can be trained in a supervised fashion by the

backward propagation of errors. The information of an input

vector will be propagated through the network for output

evaluation. SVMs are supervised learning methods that take a

set of training data and optimize separations by maximizing the

margin between the data categories. SVMs retain input data that

lie on the maximum margin hyperplanes as support vectors to

define the distinguishing criteria for making predictions on new

data. For the data that are not linearly separable in their original

space, SVMs have kernel functions that project the data into other

feature spaces to achieve better separation.

Evaluation
Performance is evaluated using standard metrics. F1 score [31] is

the harmonic mean of recall (R) and precision (P): F1 = (2*P*R)/

(P+R), where recall is (R = TP/(TP+FN)) and precision is (P = TP/

(TP+FP)) where TP is true positives, FN is false negatives, FP is

false positives). Area Under the Receiver Operating Characteristic

Curve (AUC) [46] is a measure of discrimination that can be

viewed as the overall model performance given varied decision

boundaries.

To compare the performance, two baselines were used. Baseline

1 is a linear SVMs model; features are BOWs without FS. Baseline

2 is a linear SVMs model; features are BOWs features and lab

values. BOWs features are traditionally used as baselines for

document classification.

Figure 1. Representation of the processing flow for automatic disease activity labeling. Abbreviations: CUI – Unified Medical Language
System Concept Unique Identifier; cTAKES – clinical Text Analysis and Knowledge Extraction System; LR – Low/Remission disease activity; MH –
Medium/High disease activity; EMR – Electronic Medical Record.
doi:10.1371/journal.pone.0069932.g001
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Test Sets were split into 10 folds. Models were tested across all

folds for measuring the variance of performance.

Results

SVMs with a linear kernel deliver the most robust performance

especially when Lab values were added as a feature. Detailed

results from all experiments can be found in Tables S1, S2, S3, S4,

S5. Figures S1, S2, S3 show the top contributing variables with the

feature sets and their chi-square values.

Table 2 shows results on Test Set 1 using a linear-kernel SVM

model. The best performing model is the linear-kernel SVM

model trained on extremes in the Training Set where the features

are the UMLS CUIs after feature selection and ESR/CRP values.

Its average 10-fold AUC on the test set evaluation was 0.831, with

a standard deviation of 0.0317. Figure 4 shows the distribution of

mis-classified cases from the best performing model. The majority

of the errors are in the Moderate and Low categories, 62% and

20% respectively. We compared the results from this best

performing model with the ones from the other Table 2 models

using DeLong test [47] and found it is significantly better (p-

values,0.05). The ROC curves of these models are shown in

Figure S4.

For the best performing model in Table 2, we examined the

contribution of each feature. The lab value feature is a strong

indicator of disease activity. This fact is further supported by its

Chi-square value (Figure 2). Table 3 compares the feature

contribution given both linear-kernel SVM and Decision Tree

[48], a baseline rule-based classifier. It shows that using only the

lab value feature gets the majority of classifications correct, even

though its effectiveness is not as good as the CUI features. As

expected, the best result combines NLP-based features and Lab

values.

Table 4 shows the results from the portability test. Because the

notes in Test Set 2 do not have associated CRP/ESR lab values,

these missing values are imputed as the global feature mean by

Weka.

Discussion

The best performing disease activity classifier utilizes a

representation of the clinical narrative as UMLS CUIs pruned

by feature selection and combined with lab values from structured

EMR databases. The F1 score of the best model approaches the

human expert agreement. As demonstrated by Collier et al [6] and

Figure 3, most of the discrepancies between rheumatologist ratings

Figure 2. Lab-value and 20 top-ranked CUIs. Their Chi-square values were visualized as bars. Longer bars suggest higher impact. The negative
signs ‘‘-’’ before some of the CUIs suggest negation (CUI – Unified Medical Language System Concept Unique Identifier).
doi:10.1371/journal.pone.0069932.g002
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of disease activity (without knowledge of ESR or CRP lab results)

and DAS28 occur in the Moderate and Low categories. We

hypothesized that excluding these categories from training (albeit

not from testing) would improve discrimination. As expected,

results did improve (AUC 0.81 to 0.83 in Table 2). Since IAA

between rheumatologists and DAS28 range from 0.81–0.87 when

they do not have results available from ESR or CRP, we

hypothesized that laboratory test results would be strong predictors

of DAS28 categories. We found that adding lab values to the

models improved discrimination from 0.78 to 0.83.

Why is the classification of Low and Moderate disease activity

by machine learning problematic? By studying the concordance

between the DAS28 scores and lab values, we found that these two

values are poorly correlated with the Low and Moderate disease

activity labels. For the 429 mis-classified cases, the scatter plot

between DAS28 and log transformed lab values appears random

(Figure 5, right diagram, Spearman: 0.02 [49]). For the 1320

correctly classified cases, the scatter plot (Figure 5, left diagram)

shows relatively good correlation (Spearman: 0.63).

It is well known that the ESR and/or CRP values are indicators

of disease activity. When the lab value correctly reflects the reality

of the patient’s disease status, especially for the extreme cases, our

model is very accurate. However, if the lab value is less well

correlated with clinical aspects of the DAS28 score as in Low and

Moderate disease activity documents, the model’s performance is

strongly influenced by it. The left diagram in Figure 6 points to a

lab range corresponding to the different disease activity categories.

For the 1320 correctly classified cases, the lab values for the

Moderate/High class and the lab values for the Low/Remission

class can be separated at 1.5 log value (the first quartile of

Figure 3. Histogram of DAS28 scores for 25 discordant cases. These discordant cases are between DAS labels and domain expert labels
among 93 random samples from the Training Set (the remaining 68 cases were concordant).
doi:10.1371/journal.pone.0069932.g003

Table 2. Corpus selection effect on Test set 1 using a linear-kernel SVM model.

Features Training Testing F1 score 6 s AUC 6 s

UMLS CUIs after feature
selection and lab values

High and Low Disease Activity labels
from Training set

Aggregate High/Moderate and Low/
Remission Disease Activity labels from
Test Set 1 (10-fold cross-validation)

0.78960.0445 0.831±0.0317

UMLS CUIs after feature
selection and lab values

Aggregate High/Moderate and Low/
Remission Disease Activity labels from
Training Set

Aggregate High/Moderate and Low/
Remission Disease Activity labels from
Test Set 1 (10-fold cross-validation)

0.74760.0316 0.81060.0297

Baseline 1
Bag-of-words

Aggregate High/Moderate and Low/
Remission Disease Activity labels from
Training Set

Aggregate High/Moderate and Low/
Remission Disease Activity labels from
Test Set 1 (10-fold cross-validation)

0.73760.0331 0.73260.0348

Baseline 2
Bag-of-words and lab values

Aggregate High/Moderate and Low/
Remission Disease Activity labels from
Training Set

Aggregate High/Moderate and Low/
Remission Disease Activity labels from
Test Set 1 (10-fold cross-validation)

0.75060.0265 0.75860.0291

doi:10.1371/journal.pone.0069932.t002

Automatic Prediction of RA Disease Activity

PLOS ONE | www.plosone.org 6 August 2013 | Volume 8 | Issue 8 | e69932



Moderate/High class meets the third quartile of Low/Remission

class at 1.5 log value). However, for the 429 misclassified cases

there is no such range pattern (Figure 6, right diagram). Among

the 429 errors, given the 1.5 lab boundary, there are 212 notes

whose lab values cross the boundary indicating a disease activity

category not matching the final DAS28. A possible solution to this

problem could be incorporating additional structured codified

data, such as the patient self-reported assessment of global health,

to help balance the impact of lab values. Another approach is to

add a learnable weight for the ESR/CRP feature.

Another possible venue to improve the performance of the

classifier is through new feature engineering that incorporates

domain knowledge. Asserted relations between relevant entity

mentions more precisely represent the details of the clinical events.

For example, an asserted locationOf relation between a sign/

symptom mention and an anatomical site mention such as

‘‘swollen wrists’’ can provide important learnable information for

better understanding of the clinical narrative.

Why does the linear-kernel model yield the best performance?

There could be several explanations. The lab feature is a

dominating feature and by itself has a strong indication of linear

separation (i.e. higher lab values indicate higher disease activity

levels). For the comprehensive feature sets, we applied chi-square

and CFS methods. Chi-square tests and Pearson correlations

which the CFS is based on are both not very sensitive to non-linear

relationships [50,51]. Thus the selected features may be dominat-

ed by variables that are linearly correlated with the label. We have

been working on exploring other statistics that can give balanced

measures for both linear and non-linear correlation [28], so that

our future feature selection pipeline can include both linearly and

non-linearly informative features.

Automatic discovery of document-level disease activity in large

EMR datasets is a critical step towards our overarching goal of

identifying responders and non-responders to biologic agents for

pharmacogenomics research in RA. In the future, we are planning

to integrate the automatically generated document-level disease

activity labels for the clinical visits with the medication start date to

model a general timeline for responders and non-responders.

Limitations
We made efforts to test the approach for portability on

independent previously unseen data (Test Set 1 and Test Set 2).

However, our portability tests come from one institution.

Expanded testing will port the classifier to a different EMR

environment. In order to deploy our disease activity classifier to

other institutions, the document filtering criteria (as described in

Filtering Criteria S1) would need to be tailored to the specific

institution’s EMR and then applied to an RA EMR cohort. To

Table 3. Feature contribution.

SVM with linear kernel Decision Tree

Features F1 score 6 s AUC 6 s F1 score 6 s AUC 6 s

UMLS CUIs 0.74060.039 0.77560.036 0.72260.0602 0.66960.0641

Lab Values 0.73660.0393 0.74860.0300 0.70460.0419 0.67960.0337

UMLS CUIs and Lab Values 0.78960.0445 0.831±0.0317 0.7460.0447 0.71460.0505

doi:10.1371/journal.pone.0069932.t003

Figure 4. Error analysis of the best performing classifier. Out of
429 misclassified cases (using DAS28 derived dichotomous labels as
gold standard), the majority are from the Moderate and Low disease
activity categories.
doi:10.1371/journal.pone.0069932.g004

Table 4. Portability testing.

Features Training Testing F1 score 6 s AUC 6 s

UMLS CUIs after feature
selection and lab values

High and Low Disease Activity
labels from Training set

Aggregate High/Moderate and Low/Remission
Disease Activity labels from Test Set 2 (10-fold
cross-validation)

0.76160.0553 0.78560.0599

UMLS CUIs after feature
selection and lab values

Aggregate High/Moderate and
Low/Remission Disease Activity
labels from Training Set

Aggregate High/Moderate and Low/Remission
Disease Activity labels from Test Set 2 (10-fold
cross-validation)

0.64660.0863 0.74860.0944

doi:10.1371/journal.pone.0069932.t004
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maximize the model’s performance, each document would benefit

from an association with a lab value (either ESR or CRP), though

our model can deal with missing ESR/CRP. In addition, we are in

the process of porting the methodology to discover disease activity

levels for other medical conditions such as Multiple Sclerosis and

Inflammatory Bowel Disease.

Conclusion

In this work we show how within an EMR environment the

output of a comprehensive clinical NLP system in combination

with lab values stored in structured databases can be used to

develop a document-level classifier for the novel phenotype of

Figure 5. Scatter plot of DAS28 scores and log transformed lab values. (Left) Scatter plot of DAS28 scores and log transformed lab values for
1320 correctly classified notes. (Right) Scatter plot of DAS28 scores and log transformed lab values for 429 misclassified notes. The lines are the
regression lines.
doi:10.1371/journal.pone.0069932.g005

Figure 6. Ranges of lab values. (Left) Range of lab values for Moderate/High (MH) disease activity cases vs. Range of lab values for Low/Remission
(LR) disease activity cases among 1320 correctly classified notes. (Right) Range of lab values for Moderate/High (MH) disease activity cases vs. Range
of lab values for Low/Remission (LR) disease activity cases among 429 misclassified notes.
doi:10.1371/journal.pone.0069932.g006
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disease activity in RA. The best performing classifier uses as

features lab values and UMLS CUIs after feature selection. The

classifier is implemented as a linear kernel SVM to achieve results

that are comparable to the human expert agreement. This study is

a building block towards the task of identifying responders and

non-responders of disease treatments in pharmacogenomics

research.

Supporting Information

Figure S1 20 top-ranked user-defined customized dic-
tionary features. Their related Chi-square values were

visualized as bars. Longer bars suggest higher impact.

(TIF)

Figure S2 20 top-ranked unigram and word-CUI bi-
gram features. Their Chi-square values were visualized as bars.

Longer bars suggest higher impact. The negative signs ‘‘-’’ before

some of the CUIs suggest negation. A bigram is formatted as

‘‘CUI_modifier’’ or ‘‘modifier_CUI’’, depending on the order

between CUI and its modifier/noun in real text. The concept

name of each CUI/RxNorm Code is listed after ‘‘|’’. If there is no

nearby modifier or noun word, the CUI is picked up as a unigram,

such as RxNORM ‘‘8640’’ has a preferred term of ‘‘prednisone’’.

(TIF)

Figure S3 20 top-ranked word features. Their related Chi-

square values were visualized as bars. Longer bars suggest higher

impact. ‘‘hapatospleno’’ is the stemmed form of ‘‘hepatospleno-

megaly’’.

(TIF)

Figure S4 ROC curves of five models tested on the Test
set 1. From top to bottom: (1) The linear-kernel SVM model

trained on High and Remission cases of the Training set, using

selected CUI features and lab values; (2) The RBF-kernel SVM

model trained on High and Remission cases of the Training set,

using selected CUI features and lab values; (3) The linear-kernel

SVM model trained on all notes of the Training set, using selected

CUI features and lab values; (4) Baseline system 2, which is a

linear kernel SVM model on all BOW features with lab values; (5)

Baseline system 1, which is a linear kernel SVM model on all

BOW features without lab values.

(TIF)

Filtering Criteria S1 The filtering criteria were developed

iteratively as we reviewed sets of charts and were applied to the test

sets. No filtering criteria were applied to the training set.

(DOCX)

Table S1 Number of features for a user-defined customized

dictionary, Unified Medical Language System Concept Unique

Identifier (UMLS CUI), Word, and Word_CUI bigram on the

Training Set.

(DOCX)

Table S2 Portability test for all classifiers trained on Unified

Medical Language System Concept Unique Identifier (UMLS

CUI) features: using lab feature vs. no lab features.

(DOCX)

Table S3 Portability test for all classifiers trained on user-defined

customized dictionary features: using lab feature vs. no lab

features.

(DOCX)

Table S4 Portability test for all classifiers trained on word

features: using lab feature vs. no lab features.

(DOCX)

Table S5 Portability test for all classifiers trained on word-CUI

bigram features: using lab feature vs. no lab features.

(DOCX)

Table S6 Table of abbreviations.

(DOCX)
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