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ABSTRACT

Lodging is a common problem in rice, reducing its yield andmechanical harvesting efficiency. Rice architec-

ture is a key aspect of its domestication and amajor factor that limits its high productivity. The ideal rice culm

structure, includingmajor_axis_culm,minor axis_culm, andwall thickness_culm, is critical for improving lod-

ging resistance.However, the traditionalmethodofmeasuring riceculms isdestructive, timeconsuming, and

labor intensive. In this study, we used a high-throughput micro-CT-RGB imaging system and deep learning

(SegNet) todevelopahigh-throughputmicro-CT imageanalysispipeline thatcanextract24 riceculmmorpho-

logical traits and lodging resistance-related traits. When manual and automatic measurements were

compared at themature stage, themean absolute percentage errors for major_axis_culm, minor_axis_culm,

andwall_thickness_culm in104 indica riceaccessionswere6.03%,5.60%,and9.85%, respectively, and theR2

valueswere 0.799, 0.818, and 0.623.Wealsobuiltmodels of bending stressusing culm traits at themature and

tillering stages, and theR2 valueswere 0.722 and 0.544, respectively. Themodeling results indicated that this

method can quantify lodging resistance nondestructively, even at an early growth stage. In addition, we also

evaluated the relationshipsofbendingstress toshootdryweight, culmdensity, anddrought-related traits and

found that plants with greater resistance to bending stress had slightly higher biomass, culm density, and

culm area but poorer drought resistance. In conclusion, we developed a deep learning-integrated micro-CT

image analysis pipeline to accurately quantify the phenotypic traits of rice culms in �4.6 min per plant; this

pipeline will assist in future high-throughput screening of large rice populations for lodging resistance.
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BACKGROUND

Rice is the main staple food for most of the world’s population

(Zhang, 2007). To keep pace with rapid population growth and

mitigate the negative effects of global climate change on crop

yield, it is important to increase yield potential and the reliability

of production (Brown and Funk, 2008; Beddington, 2010).

Lodging, in which crops fall over, occurs when the bending force

exerted by strong wind on the plant exceeds the strength of the
Plant Com
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stem or the anchorage in the soil. Lodging is a problem in

cereals, reducing the harvestable yield and thus the reliability of

production. In rice, lodging is known to reduce mechanical

harvesting efficiency (Kashiwagi et al., 2004) and disrupt canopy

architecture (Liu et al., 2018). The maintenance of an appropriate
munications 2, 100165, March 8 2021 ª 2021 The Author(s).
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architecture is a major factor in maximizing productivity, and

architecture has been improved during the domestication of rice

(Wang et al., 2008; Li et al., 2003; Wang et al., 2005).

The ability of structural improvements to reduce stem lodging

was demonstrated in the ‘‘Green Revolution,’’ in which major al-

leles in the gibberellin pathway were modified to produce dwarf

stems, which in turn reduced lodging under conditions of high ni-

trogen and yield (Hedden, 2013). The possibility that further

height reduction might decrease lodging risk has been

considered, but it is also likely to reduce yield (Berry et al.,

2007). It is therefore worth focusing on detailed structural

characteristics that might be modified to increase stem

strength. However, measurement of these traits is destructive,

time consuming, and labor intensive (Houle et al., 2010;

Furbank and Tester, 2011). For example, measurements of the

major and minor diameters of the elliptical cross-section and

the wall thickness of the stem must be obtained manually with

Vernier calipers and may therefore be somewhat subjective as

well as destructive. In addition, bending stress is typically

measured with a prostrate tester, which measures a group of

stems destructively (Kashiwagi et al., 2004; Duan et al., 2004).

To address the challenge of screening high numbers of rice

genotypes, a rapid, nondestructive phenotyping tool is needed

for screening the structural characteristics of rice stems.

The monitoring of rice lodging has been improved by the use of

imaging sensors mounted on unmanned aerial vehicles (Li

et al., 2014; Chu et al., 2017). This process has advanced with

the use of high-resolution digital and multispectral cameras to

map areas of lodging in rice crops for disaster-relief purposes

(Yang et al., 2017). In addition, visible and thermal infrared

images have been used to establish lodging percentages that

allow comparisons between two varieties of rice (Liu et al.,

2018). However, although monitoring the amount of lodging is

useful for revising crop forecasts, in the longer term it is

important to breed crops that do not lodge in the first place. In

addition, the effect of a given combination of lodging forces will

increase as grain filling occurs because greater leverage is

exerted on the stem as grain weight increases. Thus, increasing

lodging resistance by improving the structural strength of plants

is a focus of breeding programs and requires nondestructive

and accurate phenotyping techniques.

X-ray CT has the potential to provide such measurements in a

scalable fashion because it requires no direct contact, is relatively

quick to implement, and is inherently nondestructive. X-ray CT

has already been used to detect and quantify the inner structures

of shoots, organs, and roots from the cellular to the whole-organ

scale. For example, the structure of xylem vessels and the fre-

quency of embolism can be rapidly assessed in maize leaves

(Ryu et al., 2016). This technology has also provided detailed

internal three-dimensional (3D) phenotypic information for

flowers (Tracy et al., 2017), grains (Hughes et al., 2017), spikes

(Strange et al., 2015), and stalks (Zhang et al., 2018) in a

nondestructive manner. X-ray CT scanning has also been used

in studies of root lodging aimed at determining the structure of

roots in soil (Lontoc-Roy et al., 2006; Flavel et al., 2012),

quantifying compaction (Tracy et al., 2012, 2015), and

investigating the effect of the rhizosphere on soil hydraulic

properties (Daly et al., 2015).
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How to process huge numbers of raw CT images and detect the

target organ is the next challenge. In the past few years, deep

learning with convolutional neural networks (CNNs) has been

widely used in crop organ detection (Kamilaris and Francesc,

2018); examples include the detection and quantification of

soybean seed numbers (Uzal et al., 2018) and the counting of

fruit (Rahnemoonfar and Sheppard, 2017). Faster R-CNN (Ren

et al., 2017) has also been used to detect maize tassels (Liu

et al., 2020), tomato diseases (Wang and Qi, 2019), and maize

stems (Jin et al., 2018). To the best of our knowledge, a

combination of CT images and deep learning has not previously

been used to quantify structures related to rice stem lodging.

Inour previouswork,wedevelopedanefficient andeffectivemicro-

CT-RGB imagingsystemthat includedCTscanningandRGB imag-

ing in one chamber and could be used to quantify tiller growth

nondestructively in whole rice populations (Wu et al., 2019). Here,

we describe the application of this system to extract lodging-

related stem morphological traits, focusing on culm (Wang et al.,

2005) lodging. In particular, we use deep learning to improve the

speed and accuracy of the segmentation between stem

components and background, a critical requirement for the

routine use of the system. This technology is scalable and could

be adopted to screen large diversity sets or mapping populations,

thereby assisting in the breeding of rice and other crops.
RESULTS

Image analysis pipeline and trait extraction

A high-throughput micro-CT system was developed to extract

rice tiller growth traits in our previous work (Wu et al., 2019).

Here, 104 rice accessions were inspected at the mature stage

(approximately 120 days after sowing) to acquire lodging-

related traits. For each sample, we reconstructed 80 slices (80

transverse sections of equally spaced rice culms obtained 50–

118 mm from the soil surface, 1803 3 1803 pixels per slice).

After 80 reconstructed CT images of each sample were

obtained, the CT image analysis pipeline for lodging-related traits

consisted of six steps (Figure 1): (1) 200 rice stem cross-sections

were randomly selected and used to train and test the Culms-

SegNet model using SegNet architecture (Vijay et al., 2017);

(2) each original image (1803 3 1803 pixels) was enlarged and

divided into 24 patches (480 3 360 pixels) to meet the input

format of SegNet; (3) after data augmentation, a total of 10 173

patches, 480 patches, and 480 patches were used as the

training set, validation set, and test set, respectively (more

details of the Culms-SegNet construction are provided in the

Methods section); (4) a total of 104 rice samples and 8320 images

were automatically segmented by a well-trained Culms-SegNet

model (Supplemental Note 2); (5) noise points (such as leaf

sheaths) surrounding the culms (i.e., rice plant stems) were

removed; and (6) after 80 slices were segmented for each plant,

segmented 3D images of the rice culms were obtained.

Supplemental Figure 1 shows the comparison to the original CT

image, the manual segmentation, and the SegNet segmentation.

Figure 1N shows the reconstructed 3D images of the rice culms

obtained by micro-CT and used to extract 24 culm traits

(Table 1). The specified plant area (red box) in Figure 2A is the

region of interest detected by micro-CT, and the height ranges
or(s).



Figure 1. The CT image analysis pipeline.
(A) 3D reconstruction image; (B) 2D original image; (C and E) image extending, dividing, and input of the training set, validation set, and test set; (F and H)

offline training with SegNet to obtain the trained Culms-SegNetmodel; (I) 2D original image; (J andK) image extending, dividing, and online segmentation

with the Culms-SegNet model; (L andM)merging of segmented patches into a segmented slice, with the removal of small regions and erosion operation;

and (N) 3D segmented image.
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from 50 to 118 mm above the soil surface. As shown in Figure 2B

and 2C, the main rice culm traits were calculated as follows: (1)

major_axis_culm was the length of the minimum circumscribed

rectangle of each culm; (2) minor_axis_culm was the width of

the minimum circumscribed rectangle of each culm; and (3)

culm diameter was calculated as:

culm diameter = ðmajor_axis_culm + minor_axis_culmÞ =2:
(Equation 1)

Themajor_axis_cavity andminor_axis_cavity were the length and

width of the minimum circumscribed rectangle of each culm cav-

ity, and the cavity diameter was calculated as:

cavity diameter = ðmajor_axis_cavity + minor_axis_cavityÞ=2:
(Equation 2)

Finally, wall_thickness_culm was calculated as:

wall_thickness_culm = ðculm diameter � cavity diameterÞ=2:
(Equation 3)

All the culm traits are listed in Table 1, and the main source code

is provided in Supplemental Note 2.

Measuring the accuracy of major_axis_culm,
minor_axis_culm, and wall_thickness_culm

To evaluate the measurement accuracy of major_axis_culm, mi-

nor_axis_culm, and wall_thickness_culm, 104 rice accessions

were automatically measured by micro-CT and manually
Plant Com
measured. The scatterplots of the automatic measurements

versus the manual measurements for major_axis_culm, minor_

axis_culm, and wall_thickness_culm are provided in Figure 2D–

2F. The squares of the correlation coefficients (R2), the mean

absolute percentage error (MAPE), and the root-mean-square

error (RMSE) were 0.623–0.818, 5.605%–9.846%, and 0.104–

0.518 mm, respectively. The computational formulas of MAPE

and RMSE are defined by Equations 4 and 5:

MAPE =
1

n

Xn

i = 1

jxai � xmij
xmi

3 100%; (Equation 4)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i = 1

ðxai � xmiÞ2
s

: (Equation 5)

In Equations 4 and 5, xmi is themanually measured value, xai is the

automatically measured value, and n is the number of rice

accessions.

Frequency plots of the absolute percentage error for major_ax-

is_culm, minor_axis_culm, and wall_thickness_culm are shown

in Figure 2G–2I. As shown in the frequency plots, the absolute

percentage error of 80% of the rice accessions was less than

10%, 10%, and 15% for major_axis_culm, minor_axis_culm,

and wall_thickness_culm, respectively. The original data are

provided in Supplemental Data 1.

Modeling bending stress at the mature stage

To investigate bending stress (which reflects lodging resistance)

(Kashiwagi et al., 2004) using nondestructively measured CT
munications 2, 100165, March 8 2021 ª 2021 The Author(s). 3



Definition and calculation Abbreviation

Maximum value of culm wall area (sum
of culm wall pixels) for all culms

max_area_culm

Mean value of culm wall area (sum of
culm wall pixels) for all culms

mean_area_culm

SD of culm wall area (sum of culm wall

pixels) for all culms

SD_area_culm

Maximum value of culm wall area (sum

of culm wall pixels)/perimeter (sum of
pixels around the culm wall) ratio for all

culms

max_APR_culm

Mean value of culm wall area (sum of
culm wall pixels)/perimeter (sum of

pixels around the culm wall) ratio for all

culms

mean_APR_culm

SD value of culmwall area (sum of culm

wall pixels)/perimeter (sum of pixels

around the culm wall) ratio for all culms

SD_APR_culm

Convex hull area surrounding all culms

(sum of convex hull pixels)

CHA_culm

Total culm wall area (sum of total culm

wall pixels)/convex hull area

surrounding all culms (sum of convex
hull pixels) ratio

CHR_culm

Total culm wall area (sum of total culm
wall pixels)/circumcircle area (sum of

circumcircle pixels) ratio

CCR_culm

Total culm wall area (sum of total culm
wall pixels) for all culms

total_area_culm

Tiller number for all culms (the number
of connected regions)

TN

Mean value of culm diameter for the

largest three culms

mean_diameter_culm

Maximum value of culm diameter for

the largest three culms

max_diameter_culm

SD of culm diameter for the largest

three culms

SD_diameter_culm

Mean value of max_area_culm for the

largest three culms

max_area_culm

Mean value of minor_axis_culm for the

largest three culms

minor_axis_culm

Mean value of wall_thickness_culm for
the largest three culms

wall_thickness_culm

Mean value of culm angle for all culms MEANTA

Maximum value of culm angle for all

culms

MAXTA

SD value of culm angle for all culms SDTA

Total volume for all culms (sum of total
culm wall pixels at all heights)

total_volume_culm

Total surface area for all culms (sum of

total pixels around the culm wall at all
heights)

total_SA_culm

Mean of gray values of all culm pixels culm_density_mean

Sum of gray values of all culm pixels culm_density_total

Table 1. Twenty-four 3D culm traits measured by the micro-CT system.

4 Plant Communications 2, 100165, March 8 2021 ª 2021 The Author(s).
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Figure 2. Explanation of culm traits and performance evaluation of rice culm 3D trait extraction.
(A) Original color image; (B and C) trait extraction and illustration. The red box is the region of interest detected by micro-CT, and the height ranges from

50 to 118 mm above the soil surface. Scatterplots of automatic versus manual measurements of mean values of (D) major_axis_culm, (E) minor_ax-

is_culm, and (F) wall_thickness_culm made by the CT system. Frequency plots of rice culm mean values of (G) major_axis_culm, (H) minor_axis_culm,

and (I) wall_thickness_culm obtained by the CT system.
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traits, 104 rice accessions were tested at the mature stage, and

all 24 3D CT traits were used for linear stepwise regression

analysis (SPSS v.19, IBM, USA). After each sample was

inspected by micro-CT, the bending stress was measured

destructively using a prostrate tester (DIK-7401, Daiki Rika Ko-

gyou, Japan). Up to 72.2% of the phenotypic variation in bending

stress at the mature stage could be explained using two traits:

mean_area_culm and MAXTA (maximum value of culm angle

for all culms) (Figure 3A). The 104 accessions were divided into

two groups: 50 accessions with higher resistance to bending

stress (1113–3534 g) and 54 accessions with lower resistance

to bending stress (195–1067 g). Statistical analyses showed a

significant difference in mean_area_culm (t-test, P < 0.01) and

MAXTA (t-test, P < 0.05) between these two groups. As shown

in Figure 3B, the plants with higher resistance to bending stress

had a higher mean_area_culm (reflecting thicker stems) and a

lower MAXTA (reflecting more erect stems) than those with

lower resistance.

We used three methods to evaluate the classification accuracy of

bending stress: stepwise discriminant analysis (SDA) (Mallios,

2001; Shi et al., 2006), support vector machine (SVM) (Fung

and Mangasarian, 2005; Iosifidis and Gabbouj, 2016), and

random forest (RF) (Granitto et al., 2006; Pardo and
Plant Com
Sberveglieri, 2008). Based on the modeling results in Figure 3A,

two traits (mean_area_culm and MAXTA) were selected. When

these traits were used, as shown in Figure 3C, the final leave-

one-out cross-validation classification accuracies at the mature

stage were 87.5%, 83.7%, and 80.8% for SDA, SVM, and RF,

respectively. Among the three methods, SDA had better classifi-

cation accuracy for rice culm bending stress than SVM and RF.
Prediction of bending stress at the tillering stage

It would be helpful for rice breeding if we could predict bending

stress at early developmental stages. In our previous work, 234

rice accessions were tested at the tillering stage using micro-

CT and an RGB camera (Wu et al., 2019). Seventeen tiller traits

(extracted by micro-CT) and 58 plant architecture traits (ex-

tracted fromRGB images) of the same 104 indica rice accessions

were selected and analyzed. We used 58 rice phenotypic traits at

the tillering stage to evaluate the bending stress model by linear

stepwise regression analysis (SPSS v.19, IBM). Scatterplots of

the automatic measurements versus the manual measurements

of RGB traits are shown in Supplemental Figure 2A. Up to

48.5% of the phenotypic variation in bending stress could be

explained by combining five traits. Scatterplots of the

automatic measurements versus the manual measurements for
munications 2, 100165, March 8 2021 ª 2021 The Author(s). 5



Figure 3. Modeling of bending stress with two culm traits at the
mature stage.
(A) The modeling result of bending stress at the mature stage, (B) effects

of higher and lower resistance to bending stress on mean_area_culm and

MAXTA, and (C) classification results of stepwise discriminant analysis

(SDA), support vector machine (SVM), and random forest (RF) with two

culm traits.

Figure 4. Heatmap of correlations between bending stress and
24 3D rice culm traits extracted by micro-CT.
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CT and CT +RGB traits are shown in Supplemental Figure 2B and

2C. Up to 40.1% and 54.4% of the phenotypic variation in

bending stress could be explained by combining three CT traits

(MAXCD, tiller number, and MAXTA) and five CT + RGB traits,

respectively. The detailed procedure for stepwise regression

analysis is shown in Supplemental Table 1.

We also used SDA, SVM, and RF to classify bending stress. As

shown in Supplemental Figure 3, when five RGB traits selected

by modeling were used, the final leave-one-out cross-validation

classification accuracies at the tillering stage were 75.0%,

68.3%, and 73.1% for SDA, SVM, and RF, respectively. When

three CT traits and five CT + RGB traits selected by modeling

were used, the final leave-one-out cross-validation classification

accuracies at the tillering stage were 70.2%–74.0% and 72.1%–

76.0% for CT and CT + RGB, respectively. In general, the classi-
6 Plant Communications 2, 100165, March 8 2021 ª 2021 The Auth
fication accuracy for bending stress was lower at the tillering

stage than at the mature stage. However, when CT traits and

RGB traits were combined, we could infer bending stress at the

tillering stage with a relatively high R2 (up to 0.544).

Correlations among rice culm traits measured by the
micro-CT system

The Pearson correlations (r) between bending stress and 24 3D

rice culm traits measured by micro-CT are illustrated in

Figure 4. Bending stress was highly positively correlated with

eight rice culm morphological traits (major_axis_culm,

minor_axis_culm, wall_thickness_culm, mean_diameter_culm,

max_diameter_culm, mean_area_culm, max_area_culm, and

mean_APR_culm), all of which reflected culm thickness.

Pearson correlation coefficients between bending stress and

the eight rice culm traits ranged from 0.748 to 0.831. Tiller

number was negatively correlated with the eight rice culm

morphological traits and with bending stress; the

corresponding values of r ranged from �0.650 to �0.454,

indicating that, among these 104 indica rice accessions, plants

with more tillers often had smaller and thinner culms. More

interestingly, we found that CHR_culm and CCR_culm (which

reflect culm compactness) were negatively correlated with

MEANTA and MAXTA (which reflect the culm angle), with r

values from �0.748 to �0.428. Therefore, plants with a more

compact architecture (larger CHR_culm and CCR_culm values)

also had more erect culms (smaller MEANTA and MAXTA

values). Image acquisition was developed using Heml 1.0 (The

CUCKOO Workgroup, Huazhong University of Science and

Technology, PR China).

Comparison of micro-CT and RGB-manual
measurements of rice culm diameter

A comparison of the micro-CT and RGB-manual methods for

measuring rice culm diameter is shown in Figure 5. The R2
or(s).



Figure 5. Comparison of tiller diameter measurements by the
micro-CT and RGB-manual methods.
(A) Scatterplots of automatic versus manual measurements of rice culm

diameter by the micro-CT and RGB-manual methods, (B) frequency plots

of rice culm diameter measured by the micro-CT and RGB-manual

methods, and (C) illustration of RGB-manual measurements of culm

diameter.
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values for micro-CT andRGB-manual measurements of rice culm

diameter were 0.851 and 0.118, respectively, and the MAPE

values were 5.230% and 17.720% (Figure 5A). Frequency plots

of rice culm diameter are shown in Figure 5B. The absolute

percentage error for rice culm diameter measured by micro-CT

(blue column graph) was less than 20%, whereas the absolute

percentage error for rice culm diameter measured by the RGB-

manual method (red column graph) was less than 50%. Clearly,

the accuracy of rice diameter measurement was much higher

with micro-CT, which provides more transverse section informa-

tion for rice culms. All rice plants were cultivated in plastic pots

with three iron poles to avoid rice culm lodging (Figure 5C). The

CT scan images appear very noisy and full of artifacts because

of the three poles; these noises are difficult to remove but can

easily be dealt with using the deep learning method.
DISCUSSION

Relationships between bending stress and shoot dry
weight, culm density, and drought-related traits

After inspectionbymicro-CT, all 104 rice plantswere cut and oven-

dried to measure their shoot dry weights. Figure 6A shows that

there was a significant difference in shoot dry weight between

the higher and lower bending stress resistance groups (t-test,
Plant Com
P < 0.01). Plants with higher resistance to bending stress (red)

had higher shoot dry weights, indicating that thicker culms

contributed relatively more biomass. In addition to culm size,

thickness, and angle, culm density can also be measured by

micro-CT. culm_density_mean is the mean of the gray values

(culm electron density) of all culm pixels in the reconstructed CT

image, and culm_density_total is the sum of the gray values of all

culm pixels in the image. Figure 6B and 6C show that there was

a significant difference in culm_density_mean (t-test, P < 0.01)

and culm_density_total (t-test, P < 0.01) between the higher and

lower bending stress resistance groups. Plants with higher

resistance to bending stress (red) had a slightly higher

culm_density_mean (higher culm density) and culm_density_total

(higher culm density and culm area) than those with lower

resistance to bending stress. CT images of three different

density materials are shown in Supplemental Figure 4.

In our previous work on 533 rice accessions, we obtained three

drought-related traits: the green projected area ratio (GPAR_R,

which reflects the stay-green phenotype and drought tolerance),

total projected area/bounding rectangle area ratio (TBR_R, which

reflects leaf rolling and drought avoidance), and leaf water con-

tent (LWC) (Guo et al., 2018). Here, the three drought-related

traits of the same 104 indica rice accessions were reanalyzed

and compared in terms of bending stress. Figure 6D–6F shows

that there were significant differences in GPAR_R (t-test, P <

0.01), TBR_R (t-test, P < 0.05), and LWC (t-test, P < 0.01)

between the higher and lower bending stress resistance

groups. Plants with higher resistance to bending stress (red)

had a slightly lower GPAR_R (poorer drought tolerance), higher

TBR_R (poorer drought avoidance), and lower LWC (poorer

drought tolerance). We could also infer that, among the tested

accessions, plants with relatively more biomass had better

bending stress resistance but poorer drought resistance

because their relatively thicker culms lost water more easily

under drought stress.
Evaluation of the calculated culm area at different
heights

For manual measurements of rice culm traits such as major_ax-

is_culm, minor_axis_culm, and wall_thickness_culm, 40 individ-

ual rice culms were cut in the middle of the third internode

(approximately 50 mm from the soil surface), and rice culm traits

were measured destructively (Duan et al., 2004). The manual

measurements of rice culms were labor intensive, time

consuming, and poorly repeatable. Using micro-CT, we

measured the traits of all rice culms at the 3D level, including

the culm area. Figure 7 shows the distribution of culm wall area

at different heights for different tillers (Beizinuo cultivar, 50–

118 mm distance from the soil surface). As illustrated in

Figure 7A, the culm areas could be nondestructively obtained

at heights ranging from 50 to 118 mm, thereby more accurately

quantifying the variation in culm size between each pair of

internodes. Interestingly, several clear peaks (red arrows) can

be seen in Figure 7B and 7C, which indicate the node position

of each rice culm within the larger area. In the future, if the

micro-CT field of view were extended vertically and whole rice

culms were screened and reconstructed, the node position,

node length, and other node traits for all culms could also be

obtained nondestructively. Also, the 3D bending stress
munications 2, 100165, March 8 2021 ª 2021 The Author(s). 7



Figure 6. The relationships between bending stress and shoot dry weight, culm density, and drought-related traits.
Effects of higher and lower resistance to bending stress on the (A) shoot dry weight, (B)mean of gray values of all culm pixels, (C) sum of gray values of all

culm pixels, (D) green projected area ratio, (E) total projected area/bounding rectangle area ratio, and (F) leaf water content.

Plant Communications Micro-CT for rice lodging phenotyping
distribution could be visualized through 3D heatmaps of rice culm

wall area at different heights of rice culms. Figure 7D and 7G show

a rice accession with lower bending stress resistance

(Xiangzaoxian7hao) and an accession with higher bending

stress resistance (BERLIN) at the mature stage. Based on the

calculated rice culm wall area of 80 slices, a 3D heatmap of the

rice culm wall area was obtained (Figure 7E and 7H). In the 3D

heatmap, the red color indicates higher rice culm wall area

(higher resistance to bending stress), and the blue color

indicates lower rice culm wall area (lower resistance to bending

stress). It is clear that BERLIN had a higher resistance to

bending stress. In addition, the bending stress of a single culm

is also shown in Figure 7F and 7I, which clearly show the strong

and weak parts of a single culm.

Compared with the traditional method of measuring rice culm

bending stress at a fixed height (50 mm from the soil surface),

ourmethod canmeasure all culmwall areaswithin a certain range

and can evaluate the bending stress of the rice culm from a 3D

perspective. By measuring differences in culm wall area at

different heights, the location of the rice culm with the lowest

bending stress resistance can be predicted accurately. There-

fore, our method is potentially more accurate than the traditional

manual method of assessing bending stress resistance of the rice

culm.

Processing efficiency of the image analysis pipeline

In this work, the time cost of image analysis for each plant

could be divided into four parts: image reconstruction, image
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segmentation with Culms-SegNet, trait extraction, and 3D

data visualization. These steps required approximately 2.2,

0.1, 0.1, and 0.1 min, respectively (Microsoft Windows 10 PC

with a 12-core Intel i7-6850K CPU, 3.6 GHz per CPU core,

32 GB of memory, and an Nvidia Titan Xp video card). There

is a trade-off between reconstruction resolution and time/stor-

age consumption. The time cost and storage cost increase if

more slices are reconstructed; for example, the reconstruction

and analysis of 1536 slices require 36 min on the hardware

described above and 3.9 GB of storage (2.6 MB per slice). In

this paper, our purpose was to evaluate lodging-related traits

with a high-throughput method and a low number of recon-

structed slices. For other purposes, such as measuring the

vascular bundles of maize stalks (Du et al., 2016), the slice

number and spatial resolution of micro-CT should be set at a

higher level.

CT image-based trait measurement for rice breeding
and other applications

The micro-CT system can nondestructively measure culm area

traits at different heights and predict the possible lodging point

at an early stage, comprehensively characterizing the lodging

resistance of the rice stem. When there are large differences

among rice accessions, such as contrasting levels of bending

stress resistance, it is necessary to comprehensively examine

the lodging resistance of each rice accession at different heights.

In addition, based on the culm wall area in different transverse

sections, the 3D distribution of bending stress can be visualized,

and 3D traits such as culm angle, total_volume_culm, and
or(s).



Figure 7. Evaluation of the calculated culm wall area at different heights and 3D heatmap of culm wall area distribution.
(A) 3D reconstructed image and (B and C) the distribution of culm wall area at different heights for different tillers, where the red arrows show the node

position of each rice culm. RGB side view image (D), 3D heatmap of the wall areas of all culms (E), and 3D heatmap of a single culm (F) from accession

Xiangzaoxian7hao, which has lower resistance to bending stress. RGB side view image (G), 3D heatmap of the wall area of all culms (H), and 3D heatmap

of a single culm (I) from accession BERLIN, which has higher resistance to bending stress.
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total_SA_culm can be extracted. In the future, more 3Dmeasure-

ments could be extracted to comprehensively identify rice acces-

sions with higher bending stress resistance. In conclusion, based

on a high-throughput micro-CT imaging system and deep

learning, we developed a micro-CT image analysis pipeline that

rapidly (�4.6 min per plant, including an acquisition time of

2.5 min) and accurately quantified 24 phenotypic traits of rice

culms. It also enabled us to visualize the 3D bending stress distri-

bution of rice culms, which will be useful for future high-

throughput screening of large rice populations for lodging

resistance.
Plant Com
METHODS

Plant materials and experimental design

One hundred and four indica rice accessions (two samples per acces-

sion) with higher or lower bending stress resistance were analyzed in

this study (see detailed information on the accessions in Supplemental

Data 1 and Supplemental Table 2). All rice plants were cultivated in

plastic pots (235 mm in diameter and 190 mm in height) that contained

experimental soil. Each pot was filled with 5 kg of soil (pH 5.45; total

nitrogen, 0.241 g/kg; total potassium, 7.20 g/kg; total phosphorus, 0.74

g/kg; alkali-hydrolyzable nitrogen, 144.06 mg/kg; available potassium,

188.64 mg/kg; available phosphorus, 16.81 mg/kg; and organic matter,
munications 2, 100165, March 8 2021 ª 2021 The Author(s). 9
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46.55 g/kg). The experimental conditions are shown in Supplemental

Figure 5.

To estimate measurement accuracy, 104 plants at the mature stage

(approximately 120 days after sowing) were digitally measured by micro-

CT and manually measured to obtain the major_axis_culm, minor_axis_-

culm, and wall_thickness_culm of the three thickest culms using a Vernier

caliper and prostrate tester (DIK-7401, Daiki Rika Kogyou Co., JPN). The

average values of the three rice culms were used as the manual measure-

ments of major_axis_culm, minor_axis_culm, and wall_thickness_culm.

The measurement position was 40–60 mm from the soil surface.

In our previous work, we quantified three drought-related traits (stay-

green, leaf-rolling, and LWC) of 507 rice accessions (Guo et al., 2018).

To analyze the relationship between bending stress and drought

resistance, we reanalyzed and compared the same three drought-

related traits of the same 104 rice accessions in this study.

In our previous study, 75 traits (CT traits and RGB traits; the traits of rice

accessions were calculated independently) were obtained for 234 rice ac-

cessions at the tillering stage (Wu et al., 2019). In this work, the phenotypic

traits of 104 rice plants at the tillering stage (approximately 60 days after

sowing) were reanalyzed and compared to predict bending stress at the

mature stage.

To compare the accuracy of CT andRGB inmeasuring rice culm diameter,

we also manually measured rice culm diameters from the RGB images us-

ing the following steps: (1) one of the RGB side view images was selected

in NI Vision Assistant software (National Instruments, USA); (2) ‘‘Process-

ing Functions: Image,’’ ‘‘Measure,’’ and ‘‘Length’’ were selected; (3) the

three thickest rice culms were observed (consistent with the manual and

CT measurements), and three lines were drawn on the culms to represent

rice culm diameter; and (4) the three values were averaged to give a final

value for rice culm diameter (RGB-manual, Figure 5C).

Micro-CT system

The high-throughput micro-CT-RGB imaging system was developed in our

previous work (Wu et al., 2019) and can nondestructively obtain 75 rice

phenotypic traits with high efficiency (�4.6 min per plant, including an

acquisition time of 2.5 min) during the tillering stage. In this study, a

micro-CT image analysis pipeline and deep learning network (SegNet)

were used, and the bimodal imaging system was used to nondestructively

obtain 24 culm traits at themature stage to reflect lodging resistance.When

using the micro-CT-RGB imaging system to screen rice culms, we can also

obtain RGB side view images at the same time (Wu et al., 2019). From the

RGB images, we can evaluate the diameters of rice culms manually using

NI Vision Assistant (National Instruments) (see details in the Plant

materials and experimental design section). The micro-CT system is

composedof ninemain elements: anX-ray source (Nova 600,Oxford Instru-

ments, UK), anX-ray source chiller (Nova 600,Oxford Instruments), an X-ray

flat panel detector (PaxScan 2520DX, Varian Medical Systems, USA), an

RGB camera (AVT Stingray F-504B, Allied Vision Technologies, Germany),

a lead chamber, a computer (M6600N, Lenovo, China), a programmable

logic controller (CP1H, Omron, Japan), a white light, and a rotation platform

(MSMD022G1U, Panasonic, Japan). The main specifications of the micro-

CT system inspection unit are shown in Supplemental Table 2.

Image analysis pipeline using SegNet and LabVIEW

After we obtained the reconstructed rice culm images, each slice needed

to be segmented to calculate the culm traits. Image segmentation was

performed using a fully convolutional neural network, SegNet (Vijay

et al., 2017). The SegNet architecture is composed of an encoder

network to perform convolution and a corresponding decoder network

to perform upsampling for pixel-wise classification. The trait extraction

was performed in LabVIEW 8.6 (National Instruments), using the following

steps.
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(1) We randomly selected 160 original images (slices) as the training set,

20 slices as the validation set, and 20 slices as the test set. To enlarge

the training set, we rotated each slice in the training set and adjusted its

contrast to generate seven new training samples. The seven new samples

included: (1–3) the original slice rotated by 90�, 180�, and 270�; (4) the orig-
inal slice with the gray value of each pixel multiplied by 0.75 and 32 added;

(5) the original slice rotated by 90� with the gray value of each pixel multi-

plied by 0.75 and 32 added; (6) the original slice rotated by 180� with the

gray value of each pixel multiplied by 0.6 and 51 added; and (7) the original

slice rotated by 270� with the gray value of each pixel multiplied by 0.6 and

51 added. After data augmentation, the training set included 1280 slices

(Supplemental Note 1).

(2) Because the size of each slice was 1803 3 1803 pixels, which did not

meet the input requirements of SegNet, all the slices were expanded to

1920 3 2160 pixels. The gray value of the extended portion of the pixels

at the right and bottom edges was set to zero (Figure 1C and 1E). The

enlarged image was then divided into 24 patches, each of which was

360 3 480 pixels. After removing large numbers of patches that

contained only background pixels in order to balance the positive and

negative pixels in the training set, the final training set contained 10 173

patches, the validation set 480 patches, and the test set 480 patches.

(3) SegNet was trained as shown in the tutorial http://mi.eng.cam.ac.uk/

projects/segnet/tutorial.html(Vijay et al., 2017). After 25 440 iterations, the

IoU, precision, recall, and F-measure (%) of the 20 original slices in the

test set were 0.727%, 0.749%, 0.961%, and 84.2%, respectively. The

detailed procedure for training SegNet is described in Supplemental Note 1.

(4) The total number of rice samples in this study was 104, and the number

of reconstructed slices for each rice sample was 80; thus, the total slice

number was 8320. After the trained SegNet (Culms-SegNet) model was

obtained, each of the 8320 reconstructed slices (Figure 1I) was first

expanded to 1920 3 2160 pixels and divided into 24 patches

(Figure 1J). Then, 24 patches of each slice were segmented using the

trained SegNet (Figure 1K) and merged into one slice (Figure 1L).

(5) After the segmented slice (Figure 1L) was obtained, the small regions

were removed, and erode operations were used to remove noise points

(such as the leaf sheath) surrounding the segmented culms (Figure 1M).

After 80 slices were segmented, 3D data points of rice culms were

generated, and 24 3D culm traits were calculated. All the culm traits are

listed in Table 1, and the main source code is provided in Supplemental

Video 1, Supplemental Note 2, our Crop Phenomics Group website

(http://plantphenomics.hzau.edu.cn/download_checkiflogin_en.action),

and a GitHub website (https://github.com/diwu861125/diwu123456).

Three different classification methods

In the present study, SDA training was performed using SPSS v.19 soft-

ware (IBM, USA) (Shi et al., 2006), which is a proven technique for

classifying rice accessions into higher and lower bending stress

resistance groups. SVMs (Iosifidis and Gabbouj, 2016) are binary

classifiers that learn a hyperplane that separates two classes with

maximum margins; they are widely used in many classification

applications. The libsvm MATLAB toolkit was used to run the SVM

model. RF (Pardo and Sberveglieri, 2008) is a powerful statistical

classifier, and the RF classifier is a combination of multiple decision

trees. In this paper, SVM and RF were implemented using MATLAB 8.3

software (MathWorks, USA), and the core source code is provided in

Supplemental Notes 3 and 4.

DATA AND CODE AVAILABILITY
All phenotypic data can be downloaded in Supplemental Data 1. The

source code and user guidelines are available at http://plantphenomics.

hzau.edu.cn/download_checkiflogin_en.action and https://github.com/

diwu861125/diwu123456.
or(s).
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