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In the optimization of problems in dynamic environments, algorithms need to not only find the global optimal solutions in a
specific environment but also to continuously track the moving optimal solutions over dynamic environments. To address this
requirement, a species conservation-based particle swarm optimization (PSO), combined with a spatial neighbourhood best
searching technique, is proposed.+is algorithm employs a species conservation technique to save the found optima distributed in
the search space, and these saved optima either transferred into the new population or replaced by the better individual within a
certain distance in the subsequent evolution. +e particles in the population are attracted by its history best and the optimal
solution nearby based on the Euclidean distance other than the index-based. An experimental study is conducted based on the
moving peaks benchmark to verify the performance of the proposed algorithm in comparison with several state-of-the-art
algorithms widely used in dynamic optimization problems. +e experimental results show the effectiveness and efficiency of the
proposed algorithm for tracking the moving optima in dynamic environments.

1. Introduction

As a very challenging optimization tool, evolutionary
algorithms (EAs) have been successfully applied to the
optimization problems in static environments. Never-
theless, EAs have not been effectively used to solve op-
timization problems in dynamic environments, which are
very common in many real-world applications, for ex-
ample, the changes of vehicle routing due to the tem-
porary traffic control or sudden changes in weather, the
newly added artefacts in production scheduling, and
uncertain market factors lead to changes in financial
trading models. In these complex real-world problems, its
constraints and coefficients or even objectives may vary
with time. +e problems with these characters can be
modelled as dynamic optimization problems (DOPs). In
DOPs, the worse candidate solutions in the past can be the
optimal solutions in the new environment, and vice versa.
+e development of solution strategies in the area of EAs

that may work in such uncertain environments raises new
challenges.

In static environments, the goal is to find a single op-
timum or multioptima in the search space. However, in
dynamic environments, the goal of the algorithms is no
longer to locate the optimal solution, but to continuously
track the moving optimum as closely as possible. Many
researchers have introduced various strategies into canonical
EAs to enhance their ability for tracking changing optima. In
static optimization, convergence is a positive factor for the
algorithms to locate the global optimum; however, it may
weaken the ability of the algorithm to find the moving
optimum in a later evolving process because of the diversity
loss. In order to increase or maintain the population di-
versity, researchers have developed many schemes to en-
hance the canonical EAs’ ability to locate moving optimum
in dynamic environments.

+e simplest method of solving DOPs is to regard each
change as the new optimization and reinitialize the
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population. However, in real-world applications, most of the
environmental changes may not be too drastic, and the new
optimum will be in some sense related to the historical
optimal solutions [1]. In that case, saving the old optimum
according to certain strategies is beneficial to the optimi-
zation in the new environment. +us, the memory-based
scheme is a widely used method adopted in DOPs [2–4]. In
[2], the authors combined the multipopulation scheme and
an improved memory strategy, which is saving the elite
individual retrieved from each subpopulation, to enhance
the exploration ability of the algorithm. In [4], a similar
technique as [2] is used for the optimization of DOPs.

A similar scheme to memory named species is also a
commonly used technique by EAs’ community [5]. Species-
based EAs are often regarded as a kind of multiswarm
algorithm. It preserves the candidate solutions distributed
in the search space according to a predefined radius, and
after the evolution in each generation, the saved species
seeds are either replacing the worse individual, if there has
an unprocessed individual within the search radius, or
replacing the worst unprocessed individual in the current
population, if there is no solution within the search radius
[6]. Many experimental results have shown that multi-
swarm strategy is helpful in locating multiple optima in
multimodal optimization problems, and some researchers
have extended this strategy to DOPs and achieved a good
performance in locating and tracking the moving optimum
[7, 8].

In EAs’ community, there are two well-known strategies,
which are also commonly adopted in the optimization of
DOPs to promoting diversity of the population, named
hypermutation [9] and random immigrants. Hypermutation
increases population diversity by drastically increasing the
mutation rate as the environment changes, and random
immigrants strategy replaces a fraction of EAs’ population at
each generation. +e selection of individuals to be replaced
often has two ways: one is randomly selected to be replaced
and this way seems to be losing the good candidates in some
cases, and another one is replacing the worst individuals in
the current population.

Particle swarm optimization (PSO) [10] is a population-
based stochastic optimization algorithm; it can be consid-
ered as one of the most popular nature-inspired meta-
heuristics for continuous optimization, which was first
developed by Eberhart and Kennedy in 1995. Due to its
simple concept and easy implementation, PSO has been
developed rapidly in the last two decades [11]. PSO has been
widely used in the optimization in static environments, and
many important research studies have been achieved
[12–14]. In recent years, with more andmore attention being
paid to the research area of DOPs, PSO has been widely
applied to the optimization of DOPs.

According to the characteristics of DOPs, and the
commonly adopted strategies introduced mentioned above,
we observed that the population diversity and historical
information play an important role in the optimization of
DOPs. Motivated by these observations, a species conser-
vation combined with a spatial neighbourhood best
searching strategy is integrated into canonical PSO (denoted

as sslPSO) during the evolutionary process, to strengthen the
exploration and exploitation ability of the PSO. In each
iteration, in order to mitigate the loss of population di-
versity, the best individual in each subswarm is archived, and
then, these species seeds are transferred into the next
generation. Experiments on a commonly used benchmark of
moving peaks benchmark (MPB) are carried out to inves-
tigate the effect of our proposed algorithm.+e experimental
results show that the proposed algorithm has a promising
performance in solving the DOPs.

+e primary contribution of sslPSO is an enhanced
species conservation, which uses species conserving during
the environmental change period; at the same time, the
spatial neighbourhood searching is introduced in the
updating procedure. +e comparison results indicate that
the introduction of species conservation is beneficial for the
tracking of moving optima in dynamic environments.
Meanwhile, the spatially local best searching in the updating
of position ensures the algorithm’s high exploration ability
while maintaining high exploitation ability.

+e rest of this paper is arranged as follows. In Section 2,
the canonical PSO and its application in DOPs and some
related works included in this study are briefly reviewed.+e
proposed sslPSO algorithm is described in detail in Section
3. Section 4 compares the sslPSO with other state-of-the-art
algorithms widely used in DOPs which are presented to
show the effectiveness and efficiency of the proposed al-
gorithm. Finally, Section 5 concludes the study and outlines
future work.

2. Background and Related Works

In this section, we first give a brief description of the def-
inition of DOP. After that, the PSO framework and its
application in DOPs and the need of species in dynamic
environments are given briefly.

2.1.DOP. Dynamic optimization problems are optimization
problems in which one or more of its problem parameters,
such as objective function, constraints, or environmental
coefficients, may change over time.+e dynamic character of
the problem makes the optimization procedure much more
complicated than the static optimization problem.

A DOP can be defined in general as follows:

opt f(x, t),

s.t. gi(x, t)≤ 0, (i � 1, 2, . . . , m),

hj(x, t) � 0, (j � 1, 2, . . . , n),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where f(x, t)is the objective function of the problem. x is the
decision vector of Ddimensions in the search space, and
gi(x, t) and hj(x, t) denote the ith inequality constraint and
jth equality constraint of the problem, respectively. Both of
them may vary during the evolutionary process for specific
change type in real-world applications. In our study, we only
consider the dynamic optimization without any dynamic
constraints.
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2.2.Particle SwarmOptimization (PSO). In a PSO algorithm,
each particle i is a potential solution in the D-dimensional
search space.+e position of ith particle in a population with
N individuals (X1,X2, . . .XN) can be represented by
Xi � (Xi1, Xi2, . . . , Xi D), and the velocity of this particle is
represented byVi � (Vi1, Vi2, . . . , ViD). In a commonly used
update model, each particle is updated by two best solutions,
Pi � (Pi1, Pi2, . . . , Pi D), the best position of particle i it has
experienced, and Pg � (Pg1, Pg2, . . . , PgD), the best position
discovered so far by all particles. At the beginning, N

particles are randomly generated over the search space.
+en, all particles search for the optimum by fly over the
search space, until the global optimal position is found. At
each iteration, the new velocity and position of each particle
can be updated according to its current velocity and position
as follows [10]:

Vi(t + 1) � ωVi(t) + φ1 Pi(t) − Xi(t)( 􏼁

+ φ2 Vg(t) − Xi(t)􏼐 􏼑,
(2)

Xi(t + 1) � Xi(t) + Vi(t + 1), (3)

where

φ1 � c1R1,

φ2 � c2R2,
(4)

ω is a parameter used to control the influence degree of the
previous velocity to the current velocity, which is named
inertia weight. c1 and c2 are two positive constants balancing
the contribution of the particle’s own previous best position
and the best position the whole swarm had attained. R1 and
R2 are two D-dimensional random vectors uniformly dis-
tributed in the interval U(0.0, 1.0).

In the velocity updating procedure using equation (2), all
particles are attracted to the best solution (Pg(t)) found by
all members of the population. +is updating model is
typically called global best (denoted as gbest). In the gbest
model, every individual learns from its own experience and
imitates the very best member found in the population [15].
Another commonly used model is called local best (denoted
as lbest). In the lbest network, each individual’s movement is
attracted by the best performance of its neighbours in a
certain range. +e determination of neighbours usually has
two ways: one is determined according to the index which is
randomly assigned at the initialization step and keeps
constant in the whole evolution process; the other is de-
termined on the basis of spatial distance between particles
(the difference between these two structures will be de-
scribed in detail in Section 3). +e gbest model is generally
considered to have a faster convergence rate; in the
meantime, it would be more likely to get stuck in local
optimal solution. +e lbest model, however, is converged
slower with less likely to be trapped into the local optimum
than that of gbest model. +e PSO algorithm repeatedly
applies the update procedure until themaximum evaluations
are reached.+e pseudocode of the canonical PSO algorithm
is described in Algorithm 1.

2.3.PSOinDynamicOptimizationProblems. +e application
of PSO to dynamic optimization problems has been widely
studied in recent years [5, 16–20]. Similar to other EAs, there
are two key facts that must be faced in the application of PSO
to dynamic environment: one is the outdated memory, and
the other is the loss of diversity [18]. Most of the existing
research studies introduce various strategies into canonical
PSO to overcome these two problems. When a new envi-
ronment comes, the previous best location visited by the
particle becomes outdated. In this case, a simple and effective
response is to recalculating the fitness value of the objective
function of each particle. However, in real-world applica-
tions, most of the environmental changes are usually not
dramatic. When the dynamic problem changes periodically
or recurrently, it might be helpful to reuse previously found
solutions to reduce the computation times [21]. Many re-
searchers adopt various strategies to save redundant in-
formation to the memory particles for later use in case of
environmental changes. In [22], a triggered memory scheme
is proposed, in which the best individuals found by the
“explore” population are stored in the memory, and two
memory retrieval schemes, named memory-based resetting
and memory-based immigrants, are adopted to retrieve
memory when environmental change is detected. Zhu et al.
[4] propose a new memory scheme with a large memory
capacity to improve the performance of multipopulation
algorithms for DOPs.

In dynamic optimization, convergence is unfavourable
to the performance of the algorithms. +erefore, many re-
searchers have introduced various schemes into canonical
PSO to maintain or increase the diversity of the population
during evolution. Inspired by the movement of atom,
Blackwell et al. [23, 24] proposed charged PSOs to main-
taining diversity in the solving of DOPs. Multiple swarm/
population methods are often considered as another effec-
tive strategy for increasing population diversity in the op-
timization of DOPs. In [25], the authors proposed two
multiswarm paradigms of particle swarms and verified the
effectiveness on a widely used moving peaks benchmark. Li
et al. [8] proposed an adaptive multiswarm optimizer to
enable adaptively to change the number of populations in
dynamic environments.

2.4.4eNeed of Species Conservation. In biology, species are
a group of creatures with similar characteristics; similarly, in
EAs’ community, a species represents a collection of indi-
viduals with common characteristics. In all similarity
measurements, the Euclidean distance is the most com-
monly used similarity measurement. +e smaller the dis-
tance between two individuals, the more similar they are.

+e distance between two individualsXi � (Xi1, Xi2, . . . ,

XiD) and Xj � (Xj1, Xj2, . . . , XjD) is defined as follows:

d Xi, Xj􏼐 􏼑 �

��������������

􏽘

D

k�1
Xi,k − Xj,k􏼐 􏼑

2

􏽶
􏽴

. (5)
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In this paper, the above definition of distance is used to
measure the similarity between two individuals.

Figure 1 illustrates the need for species conservation
during evolution. As Figure 1 shows, after some iterations of
the EA, most of the individuals have converged on peak S1,
and at the same time, an individual X3 with low fitness has
emerged. Because of its low fitness, the individual X3 will
have a high probability of being eliminated in the next
generation. However, this individual is very important in the
multimodal optimization problems that need the algorithms
to find all the optima, or in dynamic optimization problems
that need the algorithms to track the moving optima. In
order for the individual to survive in the next generation,
this individual must be preserved. +e species conservation
procedure is described in Algorithm 2.

3. The Proposed Algorithm

Our proposed algorithm, denoted by sslPSO, takes advan-
tage of the memory strategy to enhance the tracking ability
of the PSO in dynamic environments. After initialization,
the proposed enhanced species conservation-based PSO
algorithm conducts the main loop with four main stages:
species determination, particle update, seeds conservation,
and particle attractor and swarm attractor update. +ese
stages are briefly described as follows.

+e species-based scheme is introduced into the mul-
timodal optimization or dynamic optimization [17], in
which the whole population is divided into several species
according to their similarity. In the later of the evolution
process, most individuals are concentrated in a few optima,
resulting in too large number of individuals in the corre-
sponding species and a rapid decline in population diversity.
+us, a mechanism for preventing too many individuals
following a single peak is needed for the algorithm to track
the moving optima. As in [17], a parameter PSmax is also
introduced in our study. If the number of particles in a
species exceeds PSmax, only the pre-PSmax fittest particles are

retained in the species, and the remainder will be randomly
reinitialized, thus to maintain the population diversity
during the evolution.

Following the species determination, the update pro-
cedure is applied. In this study, an improved lbest-based
update strategy is introduced. In the usual lbest topology,
each particle is affected by the best performance of its r

immediate neighbours. However, the vector indices are
assigned as their generating order at the initialization step
and are kept constant throughout the evolution.+e indices-
based neighbours may belong to a different group far apart
spatially in the search space, resulting in a degradation of the
exploitation ability of the algorithm.

As Figure 2(a) shows, the individuals X1,X2,X3, and X4
are neighbours to each other, but it can be seen from the
figure that some of them are spatially far apart. TakeX1 as an
example, if an index-based neighbour is used, then X2 or X3
will be selected as the local best particle, and X1 searches
around X2 or X3, resulting in severe decrease in the ex-
ploitation ability of the algorithm. Different from the
indices-based neighbourhood, we use spatial-based neigh-
bourhood in the update procedure, and the parameter r is
renamed as neighbourhood radius and denoted by nr, which
is used to search the fittest individual in what range. +e
determination of local best in nr neighbours is as shown in
Algorithm 3. From Figure 2(b), we can see that the update of
X1 is only affected by the individuals around it in a certain
range. If the radius is small, i.e., nr1, then the update of X1 is
affected by 4 individuals (denoted by the solid blue circle); if
the radius is further increased, i.e., (nr1 < nr2), then the
update of the X1 will be affected by 7 individuals around it.
+e difference in neighbourhood radius will affect the in-
dividual’s exploitation ability and exploration ability. If the
neighbourhood radius is small, the algorithm’s exploitation
ability will be higher; otherwise, the algorithm’s exploration
ability will increase. In dynamic environments, how to
achieve a balance between exploitation ability and explo-
ration ability is an important fact for the algorithm to

(1) Randomly initialize N particles of population Pwithin the problem’s search space;
(2) Evaluate each individual in P;
(3) for each Pi ∈ Pdo
(4) Pbest

i � Pi;
(5) end for
(6) Find the global best particle Pbest

g ;
(7) while termination condition is not reached do
(8) Apply equation (2) to update each particle’s velocity;
(9) Apply equation (3) to update each particle’s location;
(10) Calculate the fitness value of Pi;
(11) if f(Pi) is better than f(Pbest

i )

(12) Pbest
i � Pi;

(13) end if
(14) if f(Pi) is better than f(Pbest

g )

(15) Pbest
g � Pi;

(16) end if
(17) end while

ALGORITHM 1: Pseudocode of the canonical PSO algorithm.
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Figure 1: An illustration of the need for species conservation.

Input: species seed set Pseeds saved at the species seed determination procedure and the newly generated population Pt+1, species
radius δs.
Output: the population after the species conservation procedure.
(1) Mark all individuals in population Pt+1 as unprocessed;
(2) for all x ∈ Pseeds do
(3) Select the worst unprocessed individual px ∈ Pt+1 which satisfy d(px, x)≤ δs;
(4) if px exists then
(5) if f(x) is fitter than f(px) then
(6) replace px with x;
(7) end if
(8) else
(9) replace the worst unprocessed px in Pt+1 with x;
(10) end if
(11) Mark px as processed;
(12) end for

ALGORITHM 2: +e procedure of species conservation.

X4

X

Y

X3

X1

X2

(a)

X4

X

Y

X3X1

X2
nr1

nr2

(b)

Figure 2: +e illustration of different neighbourhood structures: (a) indices-based neighbourhood and (b) spatial-based neighbourhood.
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improve its performance. +e performance of the algorithm
under different neighbourhood radius will be analysed later
in this paper.

In order to accelerate the convergence process over an
environment period, the inertia weight ω in equation (2) is
linearly decreasing from ωmax to ωmin as follows:

ω � ωmax −
ωmax − ωmin( 􏼁 × Eitr

Eitr
, (6)

whereωmax andωmin are themaximum andminimum values
of ω, respectively, and Eitr is the iteration counter during an
environment cycle (in this study, it is assumed that the
environmental change cycle is known in advance).

Once all the particles are updated, some species may not
survive. +us, seeds conservation process is conducted
immediately after the update procedure. +e species seeds
are either copied to the new population or substituted by
better samples of the same species.

Algorithm 4 describes the framework of the sslPSO and
Figure 3 presents the flowchart of the algorithm.

4. Experimental Evaluation

In this section, a series experiments are carried out based on
the moving peaks benchmark problem to measure the ef-
fectiveness of the proposed algorithm (run on an Intel Core
i5 4590@ 3.30GHz processor with 8Gb RAM on Windows
10 Home Premium 64-bit operation system), and then, the
performance of sslPSO is compared with a set of EAs taken
from the literature for DOPs. +e involved algorithms in-
clude CPSO [19], mCPSO [24], mQSO [24], SPSO [26], and
rSPSO [27] and canonical PSO. All the results of the peer
algorithms presented in this paper are taken from the paper
where they were proposed. In the following section, we will
introduce the benchmark function adopted in our experi-
ments, as well as the performance measure and parameter
settings. Finally, we present the experimental results and
analysis.

4.1. Benchmark Problem. +e moving peaks benchmark
(MPB) was proposed by Branke [28] and has been widely
used to test the performance of the dynamic optimization
algorithms. Within an MPB problem with Np peaks in a
D-dimensional search space, the location, height, and the

width of the peaks can be varied at a certain frequency. +e
form of the canonical MPB is formulated as follows:

F(X, t) � max
i�1,...,Np

Hi(t)

1 + Wi(t) 􏽐
D
d�1 Xd(t) − Xid(t)( 􏼁

2, (7)

where Wi(t) and Hi(t) denote the width and height of peak i

at time t, respectively, and Xid(t) denotes the dth element of
peak i at time t, and Xd(t) is the dth element of particle X at
time t.

+e location of each peak is shifted by a vector v of a fixed
distance s in a random direction. +e parameter s is named
as the shift length, which is used to define the change severity
of the dynamic problems. +e move of a single peak can be
defined as follows:

vi(t) �
s

r + vi(t − 1)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(1 − λ)r + λvi(t − 1)( 􏼁, (8)

where r is a random vector and λ is used to determine the
move direction correlated to the previous movement, λ � 0
for a random direction and λ> 0 for a direction related to the
previous direction.

More formally, a move of a single peak can be denoted as
follows:

Hi(t) � Hi(t − 1) + heightseverity × σ, (9)

Wi(t) � Wi(t − 1) + widthseverity × σ, (10)

Xi(t) � Xi(t − 1) + vi(t), (11)

σ ∈ N(0, 1). (12)

4.2. Performance Measurement. Properly measuring the
performance of the algorithms is vital in the optimization of
DOPs. +ere are several most commonly used criteria to
evaluate the algorithms in existing studies. Existing per-
formance measures in DOPs can be classified into two main
groups: optimality-based and behaviour-based. Interested
readers can refer to [21] for a more detailed description. In
this study, in order to quantify the performance of the
proposed algorithm (sslPSO) within a dynamic environ-
ment, and for a fair comparison with the peer algorithms, we

(1) Input: particle pi of population P with size N

(2) Output: particle plbest
i in the nr neighbourhoods of pi

(3) for j⟵ 1 to N do
(4) Calculate Euclidean distance d(pi, pj), i≠ j;
(5) end for
(6) Sort pi’s neighbours set Pi

rs in ascending order according to the d(pi, pj);
(7) Pi

rs � prs
1 , prs

2 , . . . , prs
N−1􏼈 􏼉;

(8) Select the formerly ranked nr particles in Pi
rs;

(9) Pr � prs
1 , prs

2 , . . . , prs
nr

􏽮 􏽯;
(10) Search the local best plbest

i in Pr.

ALGORITHM 3: +e algorithm of spatially neighbourhoods best searching.
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used the MPB as the test suite, and the offline error mea-
surement is adopted, which is defined as follows:

eoff �
1

Ne

􏽘

Ne

k�1
f
opt
k − fk􏼐 􏼑, (13)

where fk is the best evaluation found by an algorithm right
before the kth environmental change, f

opt
k is the theoretical

optimum value of the kth environment, eoff is the average of
all differences between f

opt
k and fk over the environmental

changes, and Ne is the total number of environmental
changes in a run.

4.3. Parameter Settings. +e default settings of theMPB used
in the experiments in this paper are given in Table 1, which
are the same as in all the peer algorithms (for SPSO in [26],
the authors in [27] tuned the algorithms to optimising this
benchmark, and the results are taken from [27]). In Table 1,
the term “change of frequency, U” means that for every U

fitness evaluation, an environment change will occur.

Initially, P peaks are randomly generated with the given
boundaries of position, height, and width as shown in
Table 1. +e height and width are shifted randomly with the
shift severity s in the range H � [30, 70] and W � [1, 12],
respectively.

In our sslPSO algorithm, the population size is set to 100,
and the learning factors c1 and c2 are both set to 1.7. +e
inertia weight ω is initially set to ωmax � 0.9 and then de-
creases linearly to ωmin � 0.3 over the entire change cycle.
+e other parameters are set as follows: the species size is
confined to PSmax � 10, the species distance σs is set to 30,
the neighbourhood radius is set to nr � 3.0, and the perfor-
mance with different sizes is also investigated in our study.
For each test case, there were Ne � 100 environmental
changes, which result in Ne × U � 100× 5,000 fitness eval-
uations in each run. +e result of each experiment is the
average of 30 independent runs with different random seeds.

4.4. Experimental Results and Analysis. In this section, the
performance of sslPSO is investigated in several aspects,
including the effect of neighbourhood radius, the effect of

(1) Initialize the population P with size N;
(2) While stop criterion is not satisfied do
(3) Species determination;
(4) for all i such that 0≤ i≤N

(5) Search the local best Plbest
i with Algorithm 3;

(6) Apply equation (2) to update Vi(replace Pg(t) with Plbest
i );

(7) Apply equation (3) to update Xi;
(8) end for
(9) Seeds conservation;
(10) Update each particle’s attractor and the population’s attractor;
(11) end while

ALGORITHM 4: +e framework of sslPSO.

Start

Randomly generate
initial population

Evaluate each
individual

Stop criteria
satisfied

Species determination

Update each individual
with Pi (lbest)

Search each individual’ local
best Pi (lbest)

Seeds conservation

End

Y

N

Figure 3: Flowchart of sslPSO.
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varying the shift severity, and the ability of locating and
tracking the moving optima, respectively.

4.4.1. Sensitivity Analysis of Parameter nr. Figure 4 presents
the offline error achieved by sslPSO on the MPB problem
with different neighbourhood radius. From Figure 4, we can
see that when the particles learn from only its nearest
neighbour (i.e., the neighbourhood radius is set to 1.0), the
sslPSO achieved the largest offline error.With the increase of
neighbourhood radius, the offline error begins to decrease.
When the neighbourhood radius reaches 3.0, the optimal
solution obtained is 0.75 and then increases slowly with the
increase of the neighbourhood radius. When the neigh-
bourhood radius is equal to the popsize, the lbest model is
equivalent to gbest model, and the offline error obtained by
the algorithm is 6.56 (not plotted in Figure 4).

As can be seen from Figure 4, when the neighbourhood
radius is small, the algorithm has a good balance of ex-
ploration ability and exploitation ability. As the neigh-
bourhood radius increases, the individual moves closer to
the global optima at a faster rate, which weakens the ex-
ploration ability of the algorithm. And this is the key issue

that needs to be overcome in the optimization problem in
the dynamic environments.

4.4.2. Comparison of sslPSO with Peer Algorithms. In this
section, a set of experiments is conducted to compare the
performance of sslPSO with peer algorithms on the MPB
problems with different settings of the shift severity
parameters. Table 2 presents the experimental results re-
garding the offline error and standard deviation. +e ex-
perimental results of the peer algorithms are taken from the
corresponding research studies, and the parameters are set
to the optimal values which enable them to achieve their best
performance (e.g., using the optimal configuration of C(70, 3)
for CPSO and using the optimal nr � 3.0 for sslPSO).

From Table 2, it can be seen that the results achieved by
sslPSO are much better than the results of the other five
algorithms on the MPB problems with different shift se-
verities and are better than the results of the CPSO in most
cases, or at least as good as CPSO. As we have speculated, the
performance obtained by the canonical PSO is the worst
among all algorithms, that is, the canonical PSO almost loses
the ability to track moving optima in a dynamic

Table 1: Default settings for the MPB problem.

Parameter Value
Number of peaks, P 10
Change of frequency, U 5000
Height severity 7.0
Width severity 1.0
Peak shape Cone
Shift length, s 1.0
Number of dimensions, D 5
Search space range [0, 100]
Peak height, H [30, 70]
Peak width, W [1, 12]
Correlation coefficient, λ 0
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Figure 4: Offline error of sslPSO on the MPB problem with different neighbourhood radius.
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environment. As we know, with the increasing of the shift
severity, the ability of the algorithm to track the moving
peaks decreases simultaneously. From the results of Table 2,
we can see that the performance of all the algorithms de-
grades when the shift severity increases (there is an ex-
ception that canonical PSO achieves the similar worst
performance under different shift severities). +e offline
error of SPSO increases fastest in comparison with the other
five algorithms, while the sslPSO and CPSO are two algo-
rithms which are slightly affected by the increase of the shift
severity. When the shift severity is set to 0.0, i.e., there is no
movement of the peaks, the offline error of the sslPSO
achieved the best with 0.65. When the shift severity is set to
1.0, a value setting as most researches adopted, the sslPSO
achieved a value of 0.75, which is much better than the other
peer algorithms. When the shift severity reaches 6.0, a value
which is usually hard for an algorithm to track the moving
optima, the offline error of sslPSO is 1.92, which is only
slightly higher than that of CPSO, and is much better than
the results of the other five algorithms. +e results show that
sslPSO is very robust to track the moving optima in severely
change environments.

5. Conclusions

Particle swarm optimization algorithms have been widely
used in the optimization in static environments, and some
promising results have been achieved in recent years when it
was applied to address DOPs. For DOPs, in order to ef-
fectively track the moving optima in dynamic environments,
it is usually important to introduce additional strategies to
increase or maintain the population diversity or to effectively
use the history optima information in the following
evolution.

In this work, a species conservation-based PSO com-
bined with a spatial neighbourhood best searching is pro-
posed for DOPs. In order to effectively track the moving
optima in dynamic environments, the previously found
optima distributed in the population are reserved according
to their dissimilarity based on Euclidean distance and are
either preserved or replaced by the better individuals within
a predefined range in the following evolution. Experimental

results on a commonly used benchmark function for DOPs
show that the proposed algorithm can greatly improve the
performance of PSO in terms of tracking the moving optima
in a dynamic fitness landscape with multiple changing peaks.
+e performance of sslPSO has good expansibility regarding
the change severity in the peaks movement in comparison
with other peer algorithms. sslPSO performs much better
thanmCPSO, mQSO, rSPSO, SPSO, and PSO in tracking the
moving optima in dynamic environments with different
change severities and is better than CPSO or as good as it in
each circumstance. When the change severity is small,
sslPSO outperforms all the other peer algorithms. In future
work, we will consider using fewer memory optima to re-
duce the computational complexity caused by the partici-
pation of the previous optima in the subsequent evolution; it
would also be very interesting to investigate the performance
of the proposed technique under different change periods
and change peaks, and applying to the real-world application
is also a promising direction.
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