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Abstract. A clinical validation of the bone scan lesion area (BSLA) as a quantitative imaging biomarker was
performed in metastatic castration-resistant prostate cancer (mCRPC). BSLA was computed from whole-body
bone scintigraphy at baseline and week 12 posttreatment in a cohort of 198 mMCRPC subjects (127 treated and
71 placebo) from a clinical trial involving a different drug from the initial biomarker development. BSLA compu-
tation involved automated image normalization, lesion segmentation, and summation of the total area of
segmented lesions on bone scan AP and PA views as a measure of tumor burden. As a predictive biomarker,
treated subjects with baseline BSLA <200 cm? had longer survival than those with higher BSLA (HR = 0.4 and
p < 0.001). As a surrogate outcome biomarker, subjects were categorized as progressive disease (PD) if the
BSLA increased by a prespecified 30% or more from baseline to week 12 and non-PD otherwise. Overall survival
rates between PD and non-PD groups were statistically different (HR = 0.64 and p = 0.007). Subjects without
PD at week 12 had longer survival than subjects with PD: median 398 days versus 280 days. BSLA has now
been demonstrated to be an early surrogate outcome for overall survival in different prostate cancer drug treat-
ments. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI.5.1.011017]
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1 Introduction

More than 90% of patients with advanced prostate cancer
develop bone metastases,! which can produce some of the
most severe complications of the disease and is associated
with shorter survival times.?® New drugs are under development
for metastatic castration-resistant prostate cancer (mCRPC),
and there is a need for biomarkers to identify target populations
and for early evaluation of treatment effects as an alternative to
overall survival, which leads to long studies and is becoming
problematic due to subject crossover and contamination from
multiple therapies.

Whole-body bone scintigraphy is the accepted standard im-
aging modality for detection of bone metastases and assessment
of treatment outcomes. Response evaluation criteria in solid
tumors, the standard guideline used to assess outcomes in
solid tumor malignancies, treats bone lesions as ‘“nonmeasura-
ble” and is therefore of limited usefulness in the setting of pros-
tate cancer treatments.” Therefore, the Prostate Cancer Working
Group 2 (PCWG2) developed visually based criteria for assess-
ing disease progression on bone scans based on counting new
lesions.> PCWG2 does address the significance of changes in
intensity, size, or area of individual lesions, all of which are
limited by the challenges of subjective, visual lesion detection.

*Address all correspondence to: Matthew S. Brown, E-mail: mbrown @ mednet.
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The simple conventional metric of lesion counting is of limited
value when assessing treatment effects, as lesions may decrease
in size without changing in number or may break into smaller
components and, thus, superficially appear as an increased
metastatic burden. This motivated the development of com-
puter-aided quantitative measures of disease burden on bone
scans.

The two quantitative bone imaging biomarkers that have
undergone the most study and use in oncologic clinical trials
are the bone scan index (BSI)’ and bone scan lesion area
(BSLA).'"” The BSI sums the product of the estimated weight
and the fractional involvement of each bone, determined visu-
ally or from lesion segmentation on the bone scan. BSI was first
evaluated as a prognostic biomarker!! and has had a number of
more recent follow-up studies.'>!* BSLA was the first quantita-
tive imaging biomarker to be developed and evaluated primarily
for treatment response assessment in prostate cancer. The calcu-
lation and its ongoing clinical validation will be described in
this paper.

In development of an imaging biomarker, there are two
important phases: (1) development and analytic validation
(including training of classifiers, determination of cut points,
assessment of reproducibility, and evaluation against radiologist
measurements) and (2) clinical validation in which the system
and its cut points are fixed and it is evaluated against outcomes
in new clinical trial data. BSLA is an imaging biomarker
computed from whole-body scintigraphic imaging as a measure
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of overall bone tumor burden. Initial development and analytic
validation, including evaluation against manual tumor
segmentation'* and determination of response thresholds using
trial cohorts, are from a single drug treatment (cabozantinib)
with controls in subjects with metastatic CRPC.!%!> A 30%
increase/decrease in BSLA relative to baseline was defined as
progression/response on bone scan based on the data from
these previous cohorts. Because of the promising results and
urgent need, the BSLA imaging biomarker was rapidly adopted
in clinical trials, such as'® using the drug for which the bio-
marker was initially developed and, in Ref. 17, an ongoing
trial using a different treatment. Therefore, rather than an inves-
tigation into threshold or other algorithm parameters, this paper
is focused on clinical validation of an existing test that has been
adopted by the research community in prostate cancer clinical
trials. In the computer-aided diagnosis research community, the
majority of papers involve analytic validation, and this clinical
validation is the next step in putting biomarker translation into
practice. As a clinical validation, the analysis approach in this
paper is consistent with those used in clinical trials.

We seek to establish the clinical value of an existing imaging
test based on the quantitative BSLA and will investigate and
evaluate the biomarker as a prognostic factor, predictive factor,
and surrogate outcome marker. A prognostic factor is a clinical
or biologic characteristic that is objectively measurable and that
provides information on the likely outcome of the cancer disease
in an untreated individual. A predictive factor is a clinical or
biologic characteristic that provides information on the likely
benefit from treatment (either in terms of tumor shrinkage or
survival). Such predictive factors can be used to identify subpo-
pulations of patients who are most likely to benefit from a given
therapy. Importantly, prognostic factors define the effects of
patient or tumor characteristics on the patient outcome, whereas
predictive factors define the effect of treatment on the tumor.'8
A surrogate outcome marker can be defined as a laboratory
measurement that is used in therapeutic trials as a substitute
for a clinically meaningful endpoint, such as survival, and is
expected to predict the effect of the therapy.'>*

We hypothesize that, when applied to an independent treat-
ment trial cohort with a different mechanism of drug action, a
week 12 change posttreatment using this prespecified threshold
for progression is predictive of a subject’s overall survival,
i.e., can be used as a surrogate outcome marker. Second, we
evaluated the potential of baseline BSLA (disease burden on
the baseline scan) as a predictive biomarker used to identify
patients most likely to benefit from treatment.

2 Methods
2.1 Data Collection

From an anonymized imaging research database, a cohort of
198 mCRPC subjects who enrolled in a multicenter treatment
trial of abiraterone acetate (127 treated and 71 placebo) using
a standardized imaging protocol was identified. Subjects were
included that had whole-body original DICOM images and
survival data available. This cohort was independent of those
used for development of the biomarker criteria for progression/
response and involved a different mechanism of drug action.
Subjects underwent the standard of care whole-body bone
scintigraphy with 99mTc-Methyl diphosphonate (99mTc-MDP)
at baseline and week 12 posttreatment.
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2.2 Bone Scan Image Processing

A CADrx system for bone scan assessment was developed
within the imaging biomarker information system (IBIS) for
image markup and analysis (MedQIA, LLC, Los Angeles,
California). The IBIS markup system combines image review
capabilities with computer-aided tools for region segmentation,
quantitative analysis, and data export for clinical trials. In the
CADrx system, anterior and posterior bone scan images are
processed with pixel intensity normalization and lesion segmen-
tation, followed by quantitative assessment of lesion burden.
The image analysis method was previously described in
detail,'>?! and the steps are summarized here.

2.2.1 Anatomical region segmentation

Atlas-based segmentation was performed to label seven ana-
tomical regions on the bone scan: sternum/spine, ribs/head,
extremities (arms and legs), pelvis, shoulders, kidney search
region, and bladder search region. Registration to the atlas
involved affine registration using the Mattes mutual information
metric’?> followed by a multiresolution demons deformable
registration.”> An example of the output of the anatomical region
segmentation is shown in Fig. 1.

Fig. 1 Automated anatomical region segmentation of ribs/head (red),
spine/sternum (yellow), pelvis (green), extremities (blue), shoulders
(magenta), kidney search region (cyan), and bladder search region
(orange).
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2.2.2 Image intensity normalization

Image intensity normalization was applied to reduce inter- and
intrapatient variations due to differences in body habitus, radio-
tracer dosing levels, and scan acquisition parameters. A region
of normal bone in the extremities was identified automatically
based on the anatomical region segmentation. Then all pixel
values were linearly rescaled to set the intensity of this normal
bone to a reference intensity. After normalization, the pixel
intensities of normal bone are consistent between subjects and
across time points for a given subject, allowing for reproducible
lesion segmentation and quantitative assessment in serial patient
images.

2.2.3 Automated lesion detection

Based on the atlas-based segmentation, anatomical region-spe-
cific lesion intensity thresholds for lesion detection were learned
previously using receiver operating characteristic (ROC) analy-
sis on a training set of images.'® The ROC analysis was used to
set the region-specific thresholds to maximize segmentation
accuracy against expert delineated reference segmentations on
the training set.'"* An additional classification stage was applied
to candidate lesions generated by the thresholding to remove
false positives related to bladder uptake, kidney uptake, and
symmetric degenerative joint disease.”’ False positives related
to uptake in these anatomical regions were identified and
removed based on overlap with corresponding regions from
the atlas-based segmentation. Symmetric degenerative joint dis-
ease removal involved computing features of lesion candidates:
lesion area, mean intensity, perpendicular distance from the mid-
line, and vertical distance along the midline. Lesion candidates
were compared in a pairwise manner and symmetric pairs iden-
tified based on feature difference thresholds. Parameters in the
false positive reduction were trained using a multistart local
optimization method using the Nelder—Mead simplex.’*

A e S
.

Baseline Week 12 Baseline

(PD: BSLA +55%)

(Non-PD: BSLA -3%)

2.2.4 Segmentation review and approval

For each bone scan, the results of the automated lesion segmen-
tation were reviewed by a nuclear medicine physician and
manually edited (lesion pixels added or removed) as needed.
This editing typically involved removal of any remaining false-
positive regions (e.g., areas of degenerative joint disease) and
took on the order of minutes per scan. Previous studies showed
89% pixel accuracy of the lesion segmentation method against
manual expert annotations, so the amount of editing required for
a given case is typically minimal.'*

2.3 Treatment Response Assessment Using Bone
Scan Lesion Area

BSLA is summed as BSLA =} A, where R is the set of
pixels identified as bone lesion and A, is the physical area of
pixel p (in cm?). The BSLA measure thus represents a quanti-
fication of the size and number of active regions on the bone
scan. BSLA was calculated at baseline and week 12 posttreat-
ment for all subjects in the study. A prespecified 30% increase in
BSLA from baseline to week 12 was used to identify subjects
with progressive disease (PD). Subjects with <30% increase or
decrease in BSLA were categorized as nonprogressive disease
(non-PD). For evaluation as a prognostic factor, the dataset
was dichotomized about the median baseline BSLA. Figure 2
shows examples of bone scans with lesions semiautomatically
segmented in red and changes in BSLA computed from baseline
to week 12. The examples reflect PD (an increase in lesion
burden) and non-PD (stable and reduction in lesion burden).

2.4 Sitatistical Analysis

BSLA was evaluated as a prognostic factor, predictive bio-
marker, and a surrogate outcome biomarker. Subjects were
grouped as PD versus non-PD and multivariate Cox regression
was used to test whether (1) baseline BSLA and (2) early

A -
1 i
. 3 '
" i
. ] .
Week 12 Baseline Week 12

(Non-PD: BSLA -73%)

Fig. 2 Example cases with lesions segmented in red and BSLA change assessment.
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Fig. 3 Kaplan-Meier plots for low BSLA (<200 cm?) versus high
BSLA (>=200 cm?) as (a) prognostic factor and (b) predictive
biomarker.

changes in BSLA (12 weeks posttreatment) were predictive of
overall survival. Landmark survival analyses were used to assess
early changes. Kaplan—-Meier plots and hazard ratios were used
to evaluate differences among groups defined by the BSLA
biomarker.

3 Results

3.1 Prognostic and Predictive Biomarker Evaluation

Median BSLA at baseline was 219 cm?. BSLA <200 cm? at
baseline was a prognostic factor for delaying progression
(HR = 0.6 and p = 0.003) and predictive of longer survival
(HR =04 and p <0.001). Figure 3 shows Kaplan—Meier
plots of the proportion of subjects surviving a given number
of days beyond baseline when separated into groups based
on the baseline BSLA score.

Figure 3(a) shows BSLA as a prognostic factor including
all subjects, both treatment and control groups. It shows that
subjects with low baseline BSLA scores (<200 cm?) have
a better overall prognosis in terms of survival time.

Figure 3(b) shows BSLA as a predictive biomarker with sub-
jects separated into treatment and control groups. It shows that
subjects with high baseline BSLA scores (> = 200 cm?) can be
predicted to experience treatment benefit relative to controls
(red versus brown survival curves). Subjects with low baseline

Journal of Medical Imaging

011017-4

Table 1 Median survival in days after week 12, with number of sub-
jects in each group (adjusting for baseline BSLA score <200 cm?).

Median (+IQR)
survival after week 12
(N = number of subjects)

PD by BSLA Non-PD by BSLA

Placebo group 186 (+221) days 170 (£222) days

(N = 45) (N = 26)
Treatment group 260 (+254) days 392 (+311) days
(N = 65) (N =61)
All 228 (+242) days 378 (+327) days

(N = 111) (N = 87)

o
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o
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(\! -
o
o
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O T T T T
0 200 400 600 800
Days after week 12
— —— Control, no PD Control, PD
————— Treated,noPD —-——-—- Treated, PD

Fig. 4 Survival plots for non-PD versus PD by BSLA at week 12 in
control (placebo) and treatment groups after adjustment of baseline
BSLA score <200 cm?.

BSLA scores undergoing treatment (<200 cm?) can be pre-
dicted to have a better survival outcome than those with high
BSLA scores. Subjects with low baseline BSLA scores have
a relatively good overall prognosis, irrespective of whether
they are treated (blue and black survival curves).

3.2 Early Surrogate Outcome Evaluation

Overall survival rates between PD and non-PD groups were sta-
tistically different (HR = 0.64 and p = 0.007). Subjects with-
out PD by BSLA at week 12 had longer survival than subjects
with PD: median 398 days versus 280 days (378 days versus
228 days after adjustment for baseline BSLA <200 cm?).
Similar differences were seen within the treatment and placebo
groups (see Table 1). The corresponding Kaplan—Meier survival
curves are shown in Fig. 4, and multivariate Cox regression
analysis for survival is shown in Table 2.

4 Discussion

As a prognostic and predictive biomarker, the BSLA can facili-
tate patient management and prospective determination of those
most likely to benefit from a given therapy, rather than begin-
ning a therapy and waiting months to see if the disease pro-
gresses or not, which is particularly problematic for advanced
prostate cancer. Specifically, subjects with high BSLA should be
treated (low BSLA has a relatively good prognosis regardless of
whether treated or not). In addition to using the median baseline

Jan-Mar 2018 « Vol. 5(1)
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Table 2 Multivariate Cox regression for survival.

Coefficient HZ (+SE) p-value 95% CI
Treatment 0.49 (+0.11) 0.002 [0.32, 0.76]
Baseline BSLA <200 cm?  0.34 (+0.09) <0.001  [0.20, 0.58]
Interaction between 2.15 (+£0.70) 0.019 [1.14, 4.08]
treatment and BSLA

Non-PD 0.64 (£0.11) 0.007 [0.46, 0.88]

BSLA (50th centile) as a prognostic cut point, we performed
a sensitivity analysis by testing the 33rd and 67th centiles.
Both of these also gave statistical significance as a prognostic
factor, indicating that definitions of “low” and “high” baseline
BSLA are likely to be robust.

Table 2 shows that treatment and non-PD are factors in
lowering the hazard ratio, i.e., having longer survival. This is
reflected in the Kaplan—Meier curves of Fig. 4; the treated,
non-PD subjects have the longest survival times and the control,
PD subjects the shortest. As a surrogate outcome measure, the
BSLA can be used in clinical trials to speed up drug develop-
ment by determining utility without waiting for survival. This
can be particularly useful in adaptive designs and dose-ranging
studies.!” It can thus be used to develop and evaluate new
mCRPC therapies more quickly.

In this study, we dichotomized subjects based on PD only
(i.e., PD versus non-PD, rather than responders versus nonres-
ponders) to obtain similar numbers of subjects in each of the two
groups. However, BSLA also allows classification of subjects as
responders to therapy (reduction in BSLA of 30% or more)
as described in Ref. 10. In a previous study,'> BSLA was
used to group subjects into responders and nonresponders with
significant differences hazard ratio (HR 0.47, 95% CI 0.28 to
0.79, and p = 0.005). We did not form a separate responder
group in this study since the number of such subjects was
relatively low.

As described in the Introduction, BSI was originally evalu-
ated as a prognostic biomarker. More recently, changes in BSI
have also been investigated retrospectively, with various cut
points for BSI groupings being explored rather than prespeci-
fied. In a mCRPC cohort, Reza et al.” found that an increase
in BSI at follow up of at most 0.30 had a significantly longer
median survival time than those with an increase of BSI >0.30.
They note that retrospective design (choice of BSI cut point) was
a limitation. In another mCRPC cohort®® in which a different
cut point of not >20% increase from BSI baseline was applied,
they found that the group had a significantly longer time to
progression in bone than those who had a BSI increase
>20% during treatment. These studies differ from ours in that
we prespecified the criteria for disease progression of 30% or
more increase in BSLA and then applied it prospectively to
this and other new cohorts to demonstrate robustness across
different therapeutic protocols.

The focus of this paper has been on clinical validation of
an existing algorithm already adopted in trials. However, as
more data are becoming available, there will be an opportunity
to update parameters in the algorithm, such as the intensity
thresholds and response/progression cut points, and to include
more advanced classifiers to further improve performance.
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For example, the currently used 30% cut point for progres-
sion/response was set conservatively in a small developmental
set such that all control subjects had BSLA changes less than
this threshold,'® and, as further reproducibility studies are per-
formed, we may be able to reduce the threshold and increase the
sensitivity of the biomarker. Because the initial developmental
set was relatively small, the subsequent larger clinical validation
studies, such as Ref. 16 and this one in a different drug treat-
ment, are particularly important to show that the current algo-
rithm in use in clinical trials provides an effective surrogate for
overall survival.

5 Conclusion

BSLA is calculated semiautomatically from bone scans and
provides a quantitative and objective treatment response
assessment. Baseline BSLA and early changes posttreatment
were found to be predictive of overall survival in patients
with mCRPC. BSLA has now been demonstrated to be an
early surrogate outcome for overall survival in different prostate
cancer drug treatments.
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