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Pathogenic bacteria have the ability to sense their versatile environment and adapt
by behavioral changes both to the external reservoirs and the infected host, which,
in response to microbial colonization, mobilizes equally sophisticated anti-infectious
strategies. One of the most important adaptive processes is the ability of pathogenic
bacteria to turn from the free, floating, or planktonic state to the adherent one and
to develop biofilms on alive and inert substrata; this social lifestyle, based on very
complex communication networks, namely, the quorum sensing (QS) and response
system, confers them an increased phenotypic or behavioral resistance to different
stress factors, including host defense mechanisms and antibiotics. As a consequence,
biofilm infections can be difficult to diagnose and treat, requiring complex multidrug
therapeutic regimens, which often fail to resolve the infection. One of the most promising
avenues for discovering novel and efficient antibiofilm strategies is targeting individual
cells and their QS mechanisms. A huge amount of data related to the inhibition of
QS and biofilm formation in pathogenic bacteria have been obtained using the well-
established gram-positive Staphylococcus aureus and gram-negative Pseudomonas
aeruginosa models. The purpose of this paper was to revise the progress on the
development of antibiofilm and anti-QS strategies in the less investigated gram-negative
ESKAPE pathogens Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter
sp. and identify promising leads for the therapeutic management of these clinically
significant and highly resistant opportunistic pathogens.

Keywords: ESKAPE, microbial biofilms, intercellular communication, quorum sensing inhibitors, quorum
quenching, personalized therapy

INTRODUCTION

Many international organizations have declared antibiotic resistance (AR) to be a global public
health concern, requiring concerted action plans to tackle this problem and to decrease its huge
social, medical, and economic burden (Michael et al., 2014; Spellberg et al., 2016).

The emergence of AR strains is favored by microbiostatic substances, which only inhibit
microbial multiplication, but also by the improper administration of microbicidal drugs with
respect to dose interval and active concentration (Vrancianu et al., 2020a,c). Some of the multiple
negative consequences of AR are the unprecedented increase in infectious disease frequency, illness
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duration, morbidity and mortality rates, as well as associated
costs and failure of performing medical procedures requiring
effective antibiotic prophylaxis and treatment, such as organ
transplantation, cancer therapy, major surgery, management
of preterm babies, and use of implanted medical devices
(Laxminarayan et al., 2013; Weist and Diaz Högberg, 2014).

A pivotal but still underestimated contribution to the
dimension of AR problem is brought by microbial biofilms
developed on cellular/tissue substrates or medical devices (Lazãr
and Chifiriuc, 2010; Pircalabioru and Chifiriuc, 2020). These
microbial communities or biofilms represent a form of existence
with a particular architecture and behavior, different from that
of single, free-floating, or planktonic cells living in citadels
challenging to conquer (Lazãr and Chifiriuc, 2010; Lazar, 2011),
which is also more advantageous for bacteria, mainly due to
the intercellular communication and sense of their density
inside biofilms and exhibiting high phenotypic resistance (or
tolerance) to high doses of antimicrobial agents. According to
the National Institutes of Health (Bethesda, MD, United States),
biofilm-associated infections (BAIs) are involved in the etiology
of 70 – 80% of human infections (Bjarnsholt et al., 2005;
Lazar, 2011). In 2000, the CDC (Center for Disease Control,
United States) stated that BAIs are one of the seven major
healthcare safety challenges for the medical community, which
has to find solutions for reducing catheter-associated infections
as well as hospitalization and mortality from respiratory tract
infections that occur in long-term care patients (Thomas et al.,
2006; Rice, 2010).

One of the most important traits ensuring the success
of pathogenic strains in establishing persistent infections is
their intricate and very complex communication systems,
involving group-specific or interchangeable signaling molecules,
used to coordinate growth, virulence, as well as bacteriocins
and antibiotics production (González and Keshavan, 2006;
Jayaraman and Wood, 2008; Lazar, 2011; Stoica et al., 2016).
The most studied intra-, interspecies, and even interkingdom
communication system is the quorum sensing (QS) and
response mechanism, mediated by small chemical signals,
called autoinducers (AIs). If at the beginning of the 1990s
the QS mechanism was known only for Vibrio fischeri and
Vibrio harveyi (Fuqua et al., 1994) and is considered an
“interesting but esoteric“ mechanism of gene regulation, only
a few years later, using a lux-based reporter gene screening
model, it was described in most gram-negative bacteria (Passador
and Iglewsi, 1995). QS metabolites are produced by both
prokaryotic and eukaryotic cells for one-way, two-way, or
multiway communication (Jayaraman and Wood, 2008; Kendall
and Sperandio, 2014), in response to bacterial population changes
and environmental cues (e.g., starvation, hypoxia, low iron
availability) (Lee and Zhang, 2015; Ha et al., 2018). It has
been shown that pathogenic QS molecules could alter the
host microbiota and also interfere with host cell signaling
pathways (Curutiu et al., 2013; Vogt et al., 2015). Moreover,
bacterial pathogens can recognize and utilize various mammalian
molecules, such as hormones (epinephrine and norepinephrine),
interleukins, and signaling peptides (Freestone et al., 2000;
Curutiu et al., 2013). The most common types of AIs used

by gram-negative bacteria in intraspecies communication are
the N-acyl homoserine lactones (AHLs) (Watson et al., 2002),
while gram-positive bacteria use autoinducing peptides (AIPs)
(Jayaraman and Wood, 2008).

Among many important advantages offered by QS to bacterial
pathogens, there is the ability to colonize and/or invade the host,
as well as to develop biofilms on natural tissues (skin, mucosa,
endothelial epithelia, and teeth) or medical devices (central
venous catheters, peritoneal, urinary catheters, dental materials,
cardiac valves, intrauterine contraceptive devices, contact lenses,
and other implants) (Lazãr and Chifiriuc, 2010) and, thus, to
persist in the host.

Quorum sensing signaling is involved in key points of the
biofilm development (initiation, matrix formation, maturation,
and detachment) and modulates collective phenotypes
responsible for biofilm structure, such as surface motility
and the production of exopolysaccharides (EPSs) and other
adhesins (Hooshdar et al., 2020). Currently investigated
approaches for BAI control include (i) bacteriophages
(Neguţ et al., 2014), (ii) mechanical debridement of biofilms
by ultrasound and surgical procedures, (iii) biophysical
approaches to facilitate drug penetration and/or delivery
inside biofilms (infrared and light pulsing, direct-current
electrical stimulation, ultrasound and alternating electric fields,
etc.) (Kim, 2016), (iv) drug delivery systems (Kasimanickam
et al., 2013), (v) local delivery of antibiotics (including the
revived ones, such as colistin) in high concentrations for
a long period of time (e.g., catheter locks, intratracheal
locks, etc.) (Chauhan et al., 2012), (vi) antipathogenic
(antivirulence) molecules, (vii) new types of vaccines using
cells with the adhesive phenotype (Lazar, 2011), (viii)
matrix dispersing/degrading/destabilizing agents [enzymes,
anti-EPS antibodies, nucleic acid binding proteins, and
ethylenediaminetetraacetic acid (EDTA)] (Kolderman et al.,
2015), (ix) targeting non-growing dormant and persister
biofilm cells (Conlon et al., 2013), and (x) development of
modified biomedical devices, resistant to microbial adhesion and
colonization (Abdelghany et al., 2019).

The disruption of bacterial QS by QS inhibitors (QSIs)
represent a promising approach for fighting BAIs (Davies
et al., 1998; Chandra Kalia, 2013; Fong et al., 2018). As
most of the described QS signaling systems include two-
component systems (TCS), namely, the AI (QS molecule)
and the receptor, also known as response regulator
(RR), which impacts on the transcription of target genes
(Papenfort and Bassler, 2016), the QS modulation strategies
follow one of two directions: (i) interference with signal
generation and (ii) signal reception (Zhao et al., 2020). Both
directions cluster various approaches and are summarized
in Table 1. However, in some situations, the AI (i.e., AI-
3) can bind to a sensor kinase (SK), instead of an RR
(Kim et al., 2020).

Numerous in vitro and in vivo experimental data (Brackman
et al., 2011) on biofilm formation and antibiofilm unconventional
strategies were reported (Roy et al., 2018), but their efficiency
and safety need to be validated in clinical studies. The
local delivery of QSIs in biofilms seems to be a promising

Frontiers in Microbiology | www.frontiersin.org 2 July 2021 | Volume 12 | Article 676510

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-676510 July 29, 2021 Time: 14:51 # 3

Lazar et al. Molecular Modulation in ESKAPE Pathogens

TABLE 1 | Mechanisms of quorum sensing modulation in Gram negative bacteria.

Main approach Mechanism Type/Target Result References

Signal generation Inhibition of the AI synthesis LuxI inhibitor Inhibition of AHL synthesis Chan et al., 2015

SAM (S adenozyl methionine) inhibitor Inhibition of AI-2 synthesis Taylor et al., 2009

Signal reception Degradation of the AI Lactonases Open the ring of AHLs –
inactive AI

See-Too et al., 2018

Acylases Cut the lateral acyl chain of
AHLs – inactive AI

Utari et al., 2017

Receptor antagonists Structural/functional AI antagonists Inhibition of receptor
activation

Chen et al., 2011

Signal trapping Clathrate compound AI sequestration Taylor et al., 2009

Suppression of LuxI/LuxR production Interference RNA Interference with the
translation of LuxI/LuxR
mRNA by non-coding small
RNA

Chambers and Sauer,
2013

lead, allowing a quick assessment of therapeutic efficiency.
Therefore, developing appropriate local delivery systems and
ways would be of most importance in future research. Despite
the huge amount of data, only a few of the available QSIs
are reaching the stage of clinical studies and, eventually, the
bedside, and sometimes they have been approved for other
biological activities, such as antimicrobial (e.g., azithromycin,
which inhibits the alginate synthesis; vegetal extracts; natural
compounds, which can also act as QSIs in subinhibitory
concentrations) or antitumoral agents (Saurav et al., 2016;
Rémy et al., 2018). There are also few patents using lactonase
or acylase QSIs, proposed mainly as antibiofouling agents
(Lee et al., 2013).

From the most challenging resistant species, known
as ESKAPE (Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter species), and then changed
to ESCAPE (E. faecium, S. aureus, Clostridium difficile,
A. baumannii, P. aeruginosa, and Enterobacteriaceae), the
gram-negative bacilli are the most problematic because of
the lack of novel classes of antimicrobial agents efficient
against these multiple- (MDR), extended (XDR), and
pan-drug resistant (PDR) strains. From February 2017,
these emerging MDR bacteria are also listed as critical
in the WHO (World Health Organization) priority
pathogen list for the research and development of new
antimicrobials1.

The most known investigated biofilm regulators
and their described mechanisms for Klebsiella sp.,
Acinetobacter sp., and Enterobacter sp., which are less
investigated MDR ESKAPE agents, are presented in
Table 2.

Biofilm-associated infections often involve ESKAPE
pathogens as etiological agents. Therefore, the purpose
of this paper is to reveal and discuss the progress on
the development of antibiofilm and anti-QS strategies in
the less investigated gram-negative ESKAPE pathogens,

1https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_
25Feb-ET_NM_WHO.pdf?ua=1

such as A. baumannii, K. pneumoniae, and Enterobacter
sp., and their potential contribution to the personalized
control of infections produced by these emerging
opportunistic pathogens.

QS SIGNALING AND MICROBIAL
BIOFILMS IN Acinetobacter sp.,
Klebsiella sp., AND Enterobacter sp.

Among the most dangerous threats concerning infection control
gathered under the acronym ESKAPE, some of them are less
investigated than the well-known QS experimental models, such
as P. aeruginosa and S. aureus. However, the increasing incidence
in the etiology of hospital-acquired infections and BAIs as well
as the multiple intrinsic and acquired resistance mechanisms of
the gram-negative species from the ESKAPE group, Acinetobacter
sp., Klebsiella sp., and Enterobacter sp., justify the urgent need for
the development of novel and effective antimicrobial strategies to
target them. Table 3 summarizes some of the recent approaches
investigated for BAI management in A. baumannii, Klebsiella sp.,
and Enterobacter sp.

Acinetobacter spp. is one of the hospital “superbugs,”
considered today the most important nosocomial pathogen
and the first priority on the WHO pathogen list requiring
novel antibiotics, mainly due to its tolerance to desiccation,
MDR mechanisms, and ability to develop medical device BAIs.
Biofilm-forming ability seems to be much higher in clinical
than in environmental isolates. The ability of A. baumannii
clinical strains to form biofilms on abiotic substrata and
epithelial cells increases their genetic resistance. Thus, at least
92% of the biofilm-forming nosocomial isolates seem to be
MDR (Babapour et al., 2016), while an increased detection
rate and expression of the blaPER-1 gene encoding for beta-
lactam resistance were recorded in biofilm-forming isolates (Lee
et al., 2008; Gaddy and Actis, 2009). It was reported that
CarO and OmpA outer membrane proteins are interacting
physically with the OXA-23 carbapenemase, leading to an
enhanced carbapenem resistance by cumulating non-enzymatic
and enzymatic resistance mechanisms (Chopra et al., 2013).
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TABLE 2 | Mechanisms of known biofilm signals and regulators in A. baumannii, Klebsiella sp., and Enterobacter sp.

Microorganism Biofilm signals and regulators Mechanisms References

Acinetobacter sp. – Csu assembly system composed from pilin
subunits CsuA/B, CsuA, CsuB, and CsuE and
transport proteins CsuC and CsuD

– OmpA (Outer membrane protein A)
– Biofilm-associated protein (Bap)
– β-lactamase blaPER-1
– pil operon, codifying for type IV pili, pap operon,

and prpABCD operon codifying also for pili
– Poly-β-(1,6)-N-acetylglucosamine (PNAG)

– biofilm formation, adherence to the inert surfaces in many
biofilm forming Acinetobacter baumannii strains,

– biofilm formation, adherence of the strains to inert surfaces and
host cells,

– adherence to bronchial cells and for biofilm structure integrity,
– increases adherence to the substratum,
– involved in adherence and biofilm formation,
– extracellular polysaccharide; function as intercellular adhesin

within the biofilm.

Brossard and Campagnari,
2012; Yang et al., 2019;
Colquhoun and Rather,
2020

– AbaI/R QS system
– BfmRS two component system
– AdeRS, GacSA two component systems
– cyclic di-GMP

– regulate biofilm formation,
– biofilm master regulator, involved in regulation of csu operon

and genes important for virulence and desiccation tolerance,
– regulates pili synthesis, motility, biofilm formation,
– regulate signaling in biofilms.

Ahmad et al., 2020;
Colquhoun and Rather,
2020

Klebsiella sp. – type 3 fimbriae (subunit MrkA, a
chaperone-usher system MrkBC, the fimbrial
tip adhesin MrkD, and MrkF)

– CPS (capsular polysaccharides)
– second messenger cyclic-di-GMP (c-di-GMP)
– MrkH and MrkI transcriptional activators

(encoded by mrkHIJ gene clusters)
– MrkI
– histone-like nucleoid-structuring protein (H-NS),

CRP
– ferric uptake regulator (Fur)
– RcsAB (a two-component regulator of capsule

synthesis)
– IscR (iron-sulfur cluster regulator)
– AI-2 interspecies QS system

– mediate stable adherence in biofilm,
– involved in cell-to-cell communication and biofilm architecture,
– biofilm regulation by control of type 3 fimbrial production

(decrease concentration of c-di-GMP decreased the expression
of the mrkABCDF preventing the synthesis of the type 3
fimbriae),

– control c-di-GMP dependent phenotypes,
– act as functional c-di-GMP phosphodiesterase and conduct to

hydrolysis of c-di-GMP repressing type 3 fimbriae expression
and biofilm formation,

– control of type 3 fimbriae expression,
– type 3 fimbriae expression, capsula and biofilm formation in

K. pneumoniae,
– regulate transcription of galF gene (controlling the biosynthesis

of capsular polysaccharide) by binding to the galF promoter
DNA,

– modulate the iron-acquisition system and attachment,
– regulate biofilm formation and LPS synthesis in K. pneumoniae

biofilm by increase in the expression of two
LPS-synthesis – related genes, wbbM and wzm.

Johnson et al., 2011;
Piperaki et al., 2017
De Araujo et al., 2010;
Johnson et al., 2011; Lin
et al., 2017; Peng et al.,
2018; Zhang et al., 2021

Enterobacter sp. – ’curli fimbriae ’
– the second type VI secretion system (T6SS-2)
– mRNA expression level of csgA and csgD

genes (curli biogenesis genes).

– protein extracellular fibers involved in host cell adhesion and
invasion, control the formation and architecture of E. cloacae
biofilms, modulate adherence to abiotic and biotic surfaces,

– regulate biofilm formation in Enterobacter sp.

Mezzatesta et al., 2012;
Soria-Bustos et al., 2020
Soares et al., 2016

Recent genomic studies highlight the presence of much
greater virulence determinants in A. baumannii than previously
thought. The virulence genes, including those involved in biofilm
formation and the current progress in developing antibiofilm
agents in A. baumannii-derived infections, are summarized by
Eze et al. (2018). The success of A. baumannii in host colonization
mainly depends on its adherence capacity, but other virulence
factors are also incriminated. These include: K1 capsular
polysaccharides, surface antigen protein 1, outer membrane
porins (which are involved in adhesion, biofilm formation, and
drug resistance), Bap (biofilm-associated protein), inflammatory
cytokine induction molecules (Eze et al., 2018; Harding
et al., 2018), iron transport systems and siderophores (such
as acinetobactin), poly-(1-6)-N-acetylglucosamine (PNAG,
which is one of the most important structures for biofilm
formation correlated with higher resistance), activation of
phosphomannomutase/phosphoglucomutase (algC) gene
[encoding for alginate and lipopolysaccharide (LPS) during
biofilm development and correlated with the MDR level],
type I chaperone-usher pilus system (Csu pili) regulated by

QS (which is critical for the adherence to inert substrata),
LHp2_11085 factor involved in adherence to inert and cellular
substrata, and A1S_0114 regulatory gene of surface proteins and
pili-assembly system expression (Shin et al., 2009; Xiang et al.,
2012; Zarrilli, 2016; Álvarez-Fraga et al., 2017). The enormous
adaptability of resistant strains, supported by the acquisition
and dissemination of resistance and virulence markers, renders
it a dangerous opportunistic pathogen, particularly in the case
of immunosuppressed patients from the intensive care units
(Vrancianu et al., 2020b,c).

The QS system in Acinetobacter sp. has been described as
homologous to the LuxR receptor (AbaR) and LuxI synthase
(AbaI) system from V. fischeri. However, phylogenetic studies
indicate that its QS genes (abaI and abaR) were acquired
horizontally from Halothiobacillus neapolitanus (Bhargava et al.,
2010, 2015a). More than 63% of the Acinetobacter spp. analyzed
strains produced more than one AHL (≥C10), including N-
(3-hydroxydodecanoyl)-L-homoserine lactone (OH-dDHL). The
QS mechanism plays an important role in Acinetobacter spp.
motility, expression of multidrug efflux pumps, and biofilm
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TABLE 3 | Recent approaches for BAIs management in A. baumannii, Klebsiella sp., and Enterobacter sp.

Approach Microorganism Mechanism/Effect References

Bacteriophages Klebsiella sp. The ZCKP1 phage reduces biofilm biomass via soluble
exopolysaccharide depolymerase, that has the ability to
disrupt the capsule of Klebsiella, rendering it more
susceptible to antibacterial agents

Taha et al., 2018

Siphoviridae phage Z reduces the biofilm biomass after 24
and 48 h

Jamal et al., 2015

Phage vB_KpnS_Kp13 drastically reduces the biofilm
biomass (by ∼73%) after 48 h

Horváth et al., 2020

Acinetobacter baumannii The vB_AbaM_ISTD phage (Myoviridae family) reduces
planktonic and biofilm-associated viable bacteria in a
time-dependent manner

Vukotic et al., 2020

The bacteriophage vB_AbaM-IME-AB2 infected and
disrupted the biofilm

Liu Y. et al., 2016

E. cloacae/E. asburiae The highly virulent bacteriophage N5822, isolated from an
environmental source, reduced a preformed static host
biofilm, and inhibited the formation of new biofilm by up to
90%

Nair et al., 2019

Low-frequency ultrasound
(LFU)

K. pneumoniae The treatment has increased the antimicrobial effect of with
antimicrobial agents (meropenem, tigecycline, fosfomycin)
in biofilm M-LFU (multiple –LFU) increased the duration of
the synergistic effect as compared with S-LFU (single –LFU)

Liu et al., 2020

LFU A. baumannii LFU in combination with colistin and vancomycin may be
useful in treating pan-resistant infections

Liu X. et al., 2016

Photodynamic inactivation
(PDI) combined with
chitosan

A. baumannii A notable decrease of the number of viable biofilm cells Fekrirad et al., 2021

Cathodic voltage controlled
electrical stimulation
(CVCES)

A. baumannii The treatment has significantly reduced the
implant-associated colony forming units (CFU) by over 91%
and bone-associated CFU by over 88%

Ehrensberger et al., 2016

DNase I Dispersin B Klebsiella pneumoniae,
Acinetobacter baumannii

Biofilm-disrupting activity Fleming and Rumbaugh,
2017

Synthetic, modified
antimicrobial peptide 1018

A. baumannii,
K. pneumoniae,
Enterobacter sp.

Degradation of the (p)ppGpp bacterial stringent response
signal

de la Fuente-Núñez et al.,
2015; Wang et al., 2015;
Wolfmeier et al., 2018

DJK-5, DJK-6 synthetic,
D-enantiomeric,
protease-resistant peptides

Formulation of imipenem
and silver NP

A. baumannii Eradicated biofilms Hendiani et al., 2015

Nanostructured Graphene-
and Hexagonal Boron
Nitride-Coated Surfaces

Enterobacter cloacae Reduced biofilm formation Zurob et al., 2019

development (Figure 1). However, little is known about the
cascade of genes associated with various mechanisms controlled
by the QS system in A. baumannii (López et al., 2017). Iron
limitation seems to regulate the expression of virulence and QS
factors in A. baumannii clinical strains, including the biofilm
development capacity (Kim H. W. et al., 2013; Modarresi et al.,
2015). In their turn, the QS signaling molecules could chelate
iron, inducing the occurrence of the stress response (Minandri
et al., 2016). This could explain the persistence of A. baumannii
biofilms in iron-depleted environments. Siderophores can chelate
iron, zinc, copper, and other metals, interfering thus with the
activity of antibiotics and host molecules while modulating the
oxidative stress (Figure 1).

Studies related to the inhibition of QS in Acinetobacter are
limited. The lack of QSIs for this clinically significant pathogen

is a mounting concern, especially with the increasing frequency
of MDR strains (Subhadra et al., 2016).

Klebsiella pneumoniae is a versatile opportunistic pathogen,
exhibiting many virulence features, allowing it to colonize
different inert substrata, including the urinary catheters, such
as fimbriae (of type 1 and 3), capsular polysaccharides, factors
involved in aggregative adhesion, and siderophores (Stahlhut
et al., 2012; Vuotto et al., 2014; Paczosa and Mecsas, 2016). If in
the preantibiotic era K. pneumoniae was considered an important
etiological agent of community-acquired (CA) infections (such as
severe pneumonia in debilitated patients), presently, because of
its high resistance to last-resort antibiotics, such as carbapenems
and colistin, the spectrum of K. pneumoniae infections has
broaden, including CA and healthcare-associated life-threatening
infections (Lederman and Crum, 2005). K. pneumoniae is
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FIGURE 1 | Quorum sensing signaling in Acinetobacter baumannii.

involved in 5–7% of all healthcare-associated infections (Clegg
and Murphy, 2016). K. pneumoniae uses QS TCSs to control
the host–pathogen interactions and to coordinate the virulence
and the AR mechanisms, including the rapid development of
biofilms on abiotic surfaces (Balestrino et al., 2005; Srinivasan
et al., 2012; Tiwari et al., 2017). The QS system in K. pneumoniae
is mediated by the AI-2 AI encoded by a homolog of luxS
from V. harveyi (Figure 2), and also by N-octanoyl homoserine
lactone (C8-HSL) and N-3-dodecanoyl-L-homoserine lactone
(C12-HSL) (Balestrino et al., 2005; Yin et al., 2012). Mutations
in luxS are correlated with an increased expression of two LPS
synthesis-related genes, wbbM and wzm, also involved in biofilm
formation (Sun et al., 2016). Recent data confirm the involvement
of the AI-2 QS system in the expression of LPS and PNAG
biosynthesis, as well as biofilm development of an extensively
drug-resistant K. pneumoniae clinical isolate (Chen et al., 2020;
Figure 2).

Enterobacter genus, especially through its two most prominent
species, Enterobacter aerogenes and Enterobacter cloacae, is
a versatile nosocomial pathogen with serious implications in
respiratory and urinary tract infections (Sanders and Sanders,
1997). Unfortunately, little is known about quorum control and
pathogenesis in this group of bacteria. Most of the available
data come from food-associated studies. It uses C4 and C6-
HSLs as QS signaling molecules (Yin et al., 2012; Lau et al.,
2013), encoded by a LuxR homolog, which has been found

to negatively regulate bacterial adhesion and biofilm formation
(Shankar et al., 2013). AI-2-mediated QS has also been suggested
to play a role in intercellular communication within Enterobacter
spp. (Figure 3), as Lsr-type receptors have been found in strains
of Enterobacter cancerogenus, E. cloacae, and Enterobacter mori
(Rezzonico et al., 2012; Tay and Yew, 2013). The AI-3 activity,
initially reported in enterohemorrhagic E. coli O157:H7, was
also detected in E. cloacae isolated from normal microbiota
(Reading and Sperandio, 2006).

A recent study documented the cloning and characterization
of a transcriptional regulator, luxR homolog from Enterobacter
asburiae, as well as the functionality and specificity of EasR
protein in response to different AHL signaling molecules to
activate gene transcription from QS target promoters (Figure 3).
However, further genome-wide comparative transcriptomics are
needed to elucidate the possible roles of QS, especially in the
pathogenicity of different Enterobacter spp. (Lau et al., 2020;
Figure 3).

BIOFILM AND QS MODULATORS IN
Acinetobacter, Klebsiella, AND
Enterobacter

As BAIs produced by ESKAPE pathogens are currently very
difficult to treat, the modulation of key molecular mechanisms
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FIGURE 2 | AI-2 dependent QS signaling in Klebsiella sp. SAM, S-adenosyl methionine; DPD, 4,5-dihydroxy-2,3-pentanedione.

FIGURE 3 | Quorum sensing signaling in Enterobacter sp. All three AIs have been reported to function in Enterobacter sp. (AI-1, AI-2, and AI-3).

of biofilm development, including the QS signaling, represents a
very promising alternative in handling such infections (Lazar and
Chifiriuc, 2011).

Below, we present the results of different studies that have
reported the use of natural and synthetic compounds or other
mechanical, physical, or biological strategies to modulate QS
and inhibit biofilm development in Acinetobacter, Klebsiella, and
Enterobacter species.

Antibiotics and Antiseptics
When used in specific amounts, antibiotics could act as
intermicrobial signaling agents, impacting on the biofilm

homeostasis, motility, and type three secretion system (TTSS)
(Linares et al., 2006). Subinhibitory concentrations of antibiotics
modulate the QS mechanism, in contrast to bactericidal effects
observed at high concentrations (Rémy et al., 2018). Some
antibiotics (i.e., streptomycin, gentamicin, and myomycin),
utilized in subinhibitory concentrations, have been found to
inhibit QS signaling in A. baumannii. Streptomycin can act as
an antagonist of AbaR and inhibits QS in A. baumannii by
downregulating the abaI gene, encoding for the AI synthase,
resulting in the corresponding decrease in 3-oxo-C12-HSL
production (Saroj and Rather, 2013). It has been shown that
subinhibitory concentrations of trimethoprim-sulfamethoxazole
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completely inhibit the pilin expression in A. baumannii,
disrupting the biofilms formed on inert substrata and promoting
a planktonic lifestyle, with bacterial cells more susceptible to
antimicrobial agents (Harding et al., 2018).

In catheter-associated A. baumannii infections, the
combination of colistin–levofloxacin [at 400 × minimum
inhibitory concentration (MIC) each] or a combination
of colistin/tigecycline/levofloxacin at 400 × MIC with
clarithromycin (200 mg/ml) and/or with heparin (1,000 U/ml) as
lock solutions proved to be therapeutically effective against BAIs
(Ozbek and Mataraci, 2013). Tigecycline, imipenem–rifampicin,
and colistin–rifampicin (Song et al., 2015), as well as sulbactam–
tigecycline and meropenem–sulbactam, proved to be effective
against A. baumannii biofilms, decreasing the biofilm mass and
thickness (Wang et al., 2016).

In associated wound infections, drug-resistant A. baumannii
forms biofilms, which are very recalcitrant to topical antibacterial
agents. However, when associated with ambroxol, a respiratory
mucus secretolytic agent, the topical antibacterial agents
proved to be effective against wound-associated BAIs
(Huang et al., 2012).

A number of Food and Drug Administration (FDA)-
approved drugs with different pharmacological activities,
including erythromycin (antibiotic), chloroquine (antimalarial),
levamisole (antiparasitic), and propranolol (adrenergic blocker),
were recently proven to interfere with QS and virulence in
MDR A. baumannii clinical isolates. These drugs repressed the
expression of abaI gene in vitro and showed significant virulence
repression in A. baumannii, both in vitro and in vivo, expressed
by improved mice survival rates. In addition, molecular docking
studies against AbaI and AbaR proteins of QS system in
A. baumannii revealed the potential inhibition of QS by these
drugs (Seleem et al., 2020).

Oxidizing biocides, such as sodium hypochlorite and
hydrogen peroxide (Ceni et al., 2020) proved to be more efficient
against biofilms than non-oxidizing ones (e.g., sulfathiazole,
glutaraldehyde) (Shakeri et al., 2007), with single species
Acinetobacter biofilms proving to be more susceptible than
polymicrobial ones (Runci et al., 2016).

Natural QS Modulators
Quorum sensing inhibition was first observed in natural habitats
(Pietschke et al., 2017). The QSIs were synthesized either by
other organisms to protect from pathogenic bacteria or by
bacteria to gain a survival advantage (Saurav et al., 2017). The
concept of QS modulators includes numerous types of natural
or synthetic molecules, but also phages and cells, like quorum
quenching (QQ) bacteria.

The natural QSIs are used as a backbone to obtain synthetic
QSIs. As antipathogenic drugs, the QSIs could be used either to
treat or prevent infections and synergize with current antibiotics
and anti-infectious immune effectors (Romero et al., 2012; Tang
and Zhang, 2014; Pietschke et al., 2017).

QSIs agents are diverse, such as exogenous AI-2, the AIP type
I, RNAIII-inhibiting peptide, benzamide–benzimidazole “M64”
derivative (Starkey et al., 2014), or plant/microbial-derived
compounds, i.e., essential oils (Saviuc et al., 2015), usnic and

barbatic acids—lichen secondary metabolites (Francolini et al.,
2004; Chifiriuc et al., 2007; Grumezescu et al., 2015), 6-gingerol
(Kim H. A. et al., 2015; Kim H. S. et al., 2015), solenopsin A,
catechin, ellagic acid derivatives, curcumin, diterpenoide lactone
14-alpha-lipoyl and rographolide (Zeng et al., 2011), ajoene
(Jakobsen et al., 2012), patulin and penicillic acid isolated from
Penicillium sp. (Rasmussen et al., 2005a,b), probiotic culture
supernatants and purified compounds (Ditu et al., 2011; Cotar
et al., 2013), and enzymes (Bacillus spp.-derived lactonase) (Kiran
et al., 2011). Natural QSIs represent an ecological and intelligent
way to fight microbial pathogens efficiently without exhibiting
the side effects normally associated with antibiotics.

Microbial metabolites produced by drinking water bacteria
proved to inhibit Acinetobacter calcoaceticus biofilms (Simões
et al., 2008). The 5-episinuleptolide, a natural compound isolated
from Sinularia leptoclados inhibited the A. baumannii biofilm
development as well as the MDR A. baumannii strains by
decreasing the poly-PNAG expression (Tseng et al., 2016). There
are reports on utilizing several natural compounds as QSIs that
interfere with AHL receptors in A. baumannii, including patulin,
clavacin, vanillin, and alliin (Cady et al., 2012). Linalool, a
major compound Coriandrum sativum essential oil, flavonoids
from Glycyrrhiza glabra, and Salvia glutinosa essential oil have
been shown to exhibit QSI as well as anti-A. baumannii
virulence and biofilm activity (Bhargava et al., 2015b; Alves
et al., 2016; Tutar, 2016; Shaaban et al., 2019). Vegetal QSIs
have also been proposed to be used as natural food preservatives
to prevent opportunistic food-borne infections. Petunidin, a
dark-red or purple water-soluble pigment found in many red
berries (an O-methylated anthocyanidin of the 3-hydroxy type)
at sub-MIC values, drastically reduced the EPS production in
K. pneumoniae, the antibiofilm effect being much enhanced when
acting synergistically with conventional antibiotics. Molecular
modeling studies predicted that petunidin induces changes in the
3D structure of the LasR receptor protein, suggesting that it acts
as an effective competitive inhibitor of QS signaling through the
LasR receptor pathway (Gopu et al., 2015). The essential oil from
cumin seeds reduced biofilm formation in K. pneumoniae, but
without any direct connection with QS pathway inhibition.

Lactonases are natural enzymes able to degrade AHL-type AIs.
Two clusters of AHL lactonases were described in prokaryotes:
AiiA and AttA. The AiiA lactonase has been shown to decrease
the number of E. cloacae cells during early biofilm formation in
continuous biofilm models, while flagellin and outer membrane
protein expressions were downregulated (dos Reis Ponce et al.,
2012; Kim I. H. et al., 2013). AttA cluster was described in
K. pneumoniae and regulates the fermentative metabolism and
virulence in this bacterium (Sun et al., 2016).

Engineered and natural lactonases (e.g., a thermostable
engineered mutant of phosphotriesterase-like lactonase from
Geobacillus kaustophilus, with enhanced catalytic activity on
different AHLs ranging from 6 to 12 carbons) induced
a significant decrease in A. baumannii-associated biofilm
development (Chow et al., 2010, 2013, 2014). The large AHL
spectrum of these enzymes proves their promising potential to
fight infections associated with various gram-negative bacteria
using AHL-mediated QS signaling. It has also been reported
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by Zhang et al. (2017) that the recombinant enzyme, MomL,
is also able to degrade QS molecules, and thus reducing the
biofilm formation and increasing the in vitro susceptibility of
biofilm cells to different antibiotics of some Acinetobacter sp.
strains and of P. aeruginosa PAO1. However, the results were
strain dependent, and when this enzyme was tested against
polymicrobial biofilms and wound-associated biofilm infections,
it was ineffective, probably due to the fact that the in vivo
conditions could affect the stability of the enzyme and its
penetration through the biofilm matrix (Zhang et al., 2017).

Antimicrobial peptides (AMPs) are considered promising
candidates for developing antimicrobial and anti-inflammatory
agents and an example of how the natural antimicrobial strategies
from the living world could be exploited or mimicked to
create effective antimicrobial drugs (Aminov, 2010). It was
demonstrated that the AMP LL-37 disrupted the structure of
A. baumannii biofilms at low concentrations of 2.5 µg/ml
(Shin et al., 2009). Also, a natural AMP complex (defensin,
cecropin, diptericin, and proline-rich peptide families that are
produced during bacterial infections) from the blow fly maggot
Calliphora vicina has been proven to be active both on the
cellular and matrix components of A. baumannii biofilms, at
the same time lacking toxicity toward human immune cells
(Gordya et al., 2017). Magainin 2 AMP has been proven to
be an effective treatment for A. baumannii infections (Kim
et al., 2018). Many other AMPs, such as CAMEL (a hybrid
AMP consisting of cecropin from Hyalophora cecropia and
melittin from Apis mellifera), pexiganan, cecropins identified in
Musca domestica, and myxinidin isolated from Myxine glutinosa,
revealed antibiofilm activity against resistant A. baumannii
strains (Han et al., 2017). Natural AMPs can be a starting
point for the biosynthesis of AMPs with similar functions, being
an attractive therapeutic option for preventing and controlling
A. baumannii BAIs (Vrancianu et al., 2020a).

Synthetic Modulators
Antagonists of diguanylate cyclase enzyme that synthesize c-di-
GMP, a second messenger signal essential for biofilm formation,
were proven to inhibit QS and biofilm formation in A. baumannii
(Sambanthamoorthy et al., 2014). Recently Subhadra et al. (2016)
reported the efficacy of virstatin, a small organic molecule, as
an inhibitor of biofilm formation and motility in A. baumannii
and Acinetobacter nosocomialis, acting by inhibiting the anoR/I
signaling pathway (Subhadra et al., 2016). Various non-native
AbaR ligands inhibited AHL-mediated QS and, subsequently,
A. baumannii surface motility and biofilm formation (Stacy et al.,
2012). One of the strongest AbaR antagonists (with very low
IC50 values less than 20 µM) largely contained aromatic acyl
groups, whereas the AbaR agonists closely resembled OH-dDHL
(Stacy et al., 2012). A 2-aminoimidazole-based antibiofilm agent
proved to effectively decrease biofilm development on indwelling
medical devices (Peng et al., 2011). The dihydrofolate reductase
inhibitor N2, N4-disubstituted quinazoline-2,4-diamines, has
been shown to decrease by 90% the number of biofilm-embedded
cells at concentrations similar to MIC, being more effective than
tigecycline (Fleeman et al., 2017).

Synthetic AI-2 interferes with QS modulated phenotypes
in K. pneumoniae, restoring acetoin, ethanol, and acetic acid
production in luxS knockout mutant (Sun et al., 2016).

QSI–Antibiotic Synergic Combinations
QSIs often exhibit a synergic antibiofilm activity with antibiotics
(Algburi et al., 2017). Scientists suggest using furanone
in combination with antibiotics; this approach being more
acceptable by patients (Grandclément et al., 2015). The
antivirulence compounds affecting the cell wall composition may
render bacteria more susceptible to antibiotics; therefore, the
association of antivirulence agents with current antibiotics could
be anticipated as efficient against biofilms (Escaich, 2010). The
QS-controlled bacterial adherence and colonization could be
inhibited using novel inhibitors of pili synthesis, represented by
sortases or specific inhibitors of TTSS. Synergic combinations of
antibiotics and QSIs are expected to be soon evaluated for QS
modulation in A. baumannii, Klebsiella sp., and Enterobacter sp.

Nanomaterials
Nanotechnology offers promising leads for fighting BAIs
by developing nanoantimicrobials and antibiofilm materials
and by improving the drug loading and the controlled
release of antimicrobial agents into biofilms. Numerous
nanostructured materials have been developed to target
biofilm pathogens, including the less investigated ESKAPE
gram-negative species discussed in this study. Liposomes
of different compositions proved to be efficient carriers for
ciprofloxacin and meropenem against K. pneumoniae biofilms
(Gubernator et al., 2007) and polymyxin B/clarithromycin
against A. baumannii and Acinetobacter lwoffii biofilms (Khan
et al., 2016; Halbus et al., 2017).

Gallium nitrate is a potent inhibitor of A. baumannii
biofilm formation and a disruptor of mature biofilms developed
in human serum, probably also due to iron depletion in
the multicellular communities formed by A. baumannii
(Runci et al., 2016).

Metallic nanoparticles (NPs) have a great potential for
antimicrobial applications, exhibiting multiple mechanisms of
action, such as membrane lesions induced by direct contact or
indirectly, by the release of free metal ions, protein inactivation,
nucleic acid damages, and release of reactive oxygen species
(ROS) (Grumezescu et al., 2015; Samrot et al., 2020; Tripathy
et al., 2020). They could also exhibit synergic action with the
host immune effectors. Metallic NPs can also be associated
with the current antibiotics or other pharmaceutically active
compounds to overcome the resistance threat, particularly in
hospital settings (Tudose et al., 2015a,b, 2016). The small size
and tailored properties of NPs seem to represent an advantage
for penetrating more efficiently the biofilm matrix (Holban et al.,
2016; Abdelghany et al., 2020). Silver NPs alone and associated
with biocides or antibiotics (imipenem) proved very active on
A. baumannii, both planktonic and biofilm growth (Hendiani
et al., 2015). Zinc oxide NPs were also reported to impact
the biofilm formation of different gram-positive and gram-
negative pathogens, being considered future nanoantibiotics
(Visinescu et al., 2015, 2018; Muzammil et al., 2018). It has also
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been shown that K. pneumoniae uropathogenic strains isolated
from complicated urinary tract infections have shown decreased
adherence to silver-treated silicone or latex catheters (Gabriel
et al., 1995). Titanium NPs also show promising antibacterial and
antiadhesive properties against A. baumannii and K. pneumoniae
strains (Ibrahem et al., 2014).

The medical device-associated infections could be prevented
by developing antiadherent materials or coatings. For example,
“biospecific polymers” coated with antiadhesive molecules or
doped with inhibitory biofilm-associated gene expression could
represent an alternative (Pascual, 2002). Urinary catheters coated
with nitrofurazone proved to have an enhanced resistance to
biofilm development by ESKAPE urinary pathogens (Johnson
et al., 2012; Zhu et al., 2019).

Biofilm Dispersal Diffusible Signal
Factors
Bacteria can induce dispersal to escape from the biofilm
macrostructure in response to a broad range of input signals.
The biofilm dispersal process is the starting point of systemic
infections since it triggers the release of bacteria into the host
(Marks et al., 2013; Guilhen et al., 2017). Therefore, knowledge
of the regulation of dispersal factors would help control the
development of BAIs and the systemic spread of bacteria.
It is known that biofilm dispersal could be triggered by (i)
environmental factors [i.e., availability of iron (Musk et al.,
2005; Glick et al., 2010), carbon source (Uppuluri et al., 2010;
Bonnichsen et al., 2015), presence of heavy metals (Petrova
et al., 2015), temperature (Nguyen et al., 2015), pH (Uppuluri
et al., 2010), and oxygen limitation (An et al., 2010)] and
(ii) bacteria and host-produced signaling molecules [i.e., AHLs,
AIPs, diffusible signal factors (DSFs) (Ueda and Wood, 2009;
Tao et al., 2010; Periasamy et al., 2012), human intestine
epithelial cell signals (Sanchez et al., 2016), and nitric oxide
(Li et al., 2013)].

Diffusible signal factors was originally found in Xanthomonas
campestris and is a new family of widely conserved QS
fatty acid signals in gram-negative bacteria, which regulate
biofilm formation, motility, virulence, and AR (Deng et al.,
2014). Studies showed that DSFs act as interspecies biofilm
regulators since, for example, DSF produced by P. aeruginosa
can disperse biofilms of other gram-negative (i.e., E. coli,
K. pneumoniae, and Proteus mirabilis), gram-positive (i.e.,
Streptococcus pyogenes, Bacillus subtilis, S. aureus), but also
yeast (Candida albicans) strains (Davies and Marques, 2009).
However, little is known regarding DSF regulation in the
development and dispersal of K. pneumoniae, A. baumannii,
and Enterobacter sp. biofilms. Recent studies showed that
DSFs and other fatty acids inhibit key virulence mechanisms,
such as planktonic growth, capsule production, and cell
adhesion and induce biofilm dispersal in K. pneumoniae
(Rahmani-Badi et al., 2014; Gupta et al., 2020; Kumar
et al., 2020). Chowdhury et al. (2021) reported a cis-2-
hexadecenoic acid (c2-HAD) DSF homolog encoding gene
(rpfF) in Enterobacter sp. This DSF was proven to control
the intestinal invasion of Salmonella sp. and control the

main virulence regulon in this microorganism (Chowdhury
et al., 2021). c2-HAD is supposed to interfere also with
the virulence of other intestinal gram-negative bacteria,
including Enterobacter species. Several mono-unsaturated
chain fatty acids that could act as DSFs were demonstrated
to affect QS communication and inhibit motility and biofilm
formation of A. baumannii clinical isolates. These fatty
acids decreased the expression of the regulator abaR from
the LuxIR-type QS system. Consequently, they reduced the
AHL production with a direct impact on biofilm dispersal
(Nicol et al., 2018).

All the strategies proposed above are based on the molecular
regulation of key phenotypes of virulence and resistance. These
approaches are preferred in recent years since researchers believe
that signaling modulation could prevent the development of
the infectious process and the selection of resistant mutants
compared to classical antibiotics. QS and biofilm control by
such molecules could not interfere with population fitness but
with some social behavior of microorganisms, which are key for
their pathogenesis.

CRISPR (Clustered Regularly
Interspaced Short Palindromic Repeat)
System
One of the most attractive leads to the fight against bacterial
resistance is the CRISPR-Cas system, first described by Ishino
et al. (1987). CRISPR-Cas is considered a bacterial immune
defense system that could specifically recognize and degrade
foreign nucleic acids. The CRISPR platform has been used
to achieve rapid genomic editing by deletions, insertions, and
point mutations, to investigate the oxidative stress (OxyR)
mechanisms, as well as the abaI gene role in biofilm formation
of A. baumannii (Wang et al., 2019; Vrancianu et al., 2020a).

Studies suggested that certain bacteria employ the Cas
proteins of CRISPR-Cas3 systems to target their own genes,
which also alters the virulence during host invasion. It seems
that numerous gram-negative bacteria use QS signaling to control
adaptive immunity through the regulation of multiple CRISPR-
Cas systems. Such interference has been revealed in Serratia
sp., Pseudomonas sp. (Høyland-Kroghsbo et al., 2017; Noirot-
Gros et al., 2019), and Salmonella sp. (Cui et al., 2020), where
the tool is currently investigated to understand QS molecular
signaling and biofilm formation. Cas3 deletion upregulated
the luxS regulated operon related to QS and downregulated
biofilm-forming-related genes in Salmonella interfering with
pathogenicity island 1 genes related to the TTSS (Cui et al.,
2020). Figure 4 shows the main phenotypes that impact on
biofilm development and could be targeted for the management
of ESKAPE infections.

IN VIVO MODELS OF INFECTION

Animal models are crucial to developing new therapeutics and
vaccines and play critical roles in the assessment of understanding
infection. Over the years, several animal models were developed
for A. baumannii, K. pneumoniae, and Enterobacter sp.
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FIGURE 4 | Overview of the modulated phenotypes in biofilms produced by Acinetobacter, Klebsiella, and Enterobacter, which could be modulated by diverse QS
modulators, NPs, and antibiotics. Nanoparticles can inhibit the attachment and early biofilm development, being also able to deliver antibiotics, QSIs, and other
bioactive molecules in the biofilm. Phenotypes such as motility and attachment are modulated by such molecules, and this controls biofilm initiation. Maturation is
influenced by EPS inhibition and QS interference, which also impacts the metabolic changes in the biofilm such as stress response, tolerance, and persistence.
Finally, dispersion of mature biofilms could be also controlled by some molecular inhibitors controlling cell detachment.

Pneumonia mouse models have been most widely developed in
A. baumannii. However, most of the tested strains do not infect
immunocompetent mice or induce only self-limiting pneumonia
with no or very limited local and systemic dissemination. Other
studies use immunocompromised (i.e., neutropenic) mice or
treat mice with mucin or agar to increase host susceptibility
to A. baumannii and bacterial virulence (van Faassen et al.,
2007; Eveillard et al., 2010). Despite their limitation, these
mouse models are useful for investigating bacteria virulence and
the development of the infectious process. Recently, a mouse
model of A. baumannii-associated pneumonia using a clinically
isolated hypervirulent strain showed reliable reproduction of
the most relevant features of human acute pulmonary infection
and pathology (Harris et al., 2013). A similar model (Luna
et al., 2019) was utilized to analyze the efficiency of antibiotic
combinations in MDR A. baumannii pneumonia. The study
demonstrated the synergistic effects of the combination of colistin
with fosfomycin and minocycline, respectively, as therapeutic
options in carbapenem-resistant A. baumannii mouse infection
(Ku et al., 2019). Mouse models are also investigated to
reveal A. baumannii strains and clones, which are associated
with increased risk fatality and are circulating in the human
population (Nutman et al., 2020).

Caenorhabditis elegans is another model developed for
investigating A. baumannii virulence and biofilm development
in vivo. The nematode is currently the preferred model
for screening the infection, resistance, and virulence
correlations in most clinically relevant Acinetobacter species
(Cosgaya et al., 2019).

Few in vivo models were developed to study K. pneumoniae
infection. Wax moth Galleria mellonella has been utilized to study
key virulence mechanisms in Klebsiella sp., such as cell death
associated with bacterial replication, avoidance of phagocytosis
by phagocytes, the attenuation of host defense responses, and the

production of antimicrobial factors. Numerous studies support
the utility of G. mellonella as a surrogate host for assessing
infections with K. pneumoniae (Insua et al., 2013). However,
some research reports the better utility of murine models
to investigate K. pneumoniae infection and host interaction.
Along with their proven utility in the elucidation of pneumonia
mechanisms, mouse models were recently used to evaluate
K. pneumoniae gastrointestinal (GI) colonization and host-to-
host transmission. Using an oral route of inoculation and fecal
shedding as a marker for GI colonization, authors showed
that K. pneumoniae can asymptomatically colonize the GI
tract in immunocompetent mice and modifies the host GI
microbiota. A hypervirulent K. pneumoniae isolate evaluated
in that study was able to translocate from the GI tract
and cause a hepatic infection that mimicked the route of
human infection. Authors claim expression of the capsule
is required for colonization. Also, treatment with antibiotics
of infected mice led to changes in the host microbiota
and the development of a transient supershedder phenotype,
which enhanced transmission efficiency. Therefore, mouse
model can be used to determine the contribution of host
and bacterial factors toward K. pneumoniae dissemination
(Young et al., 2020).

In Enterobacter sp., in vivo models of infection are scarce.
G. mellonella larvae were recently studied to determine the
antibacterial efficacy of various drugs and proved its utility also
for the investigation of host–pathogen interactions in E. cloacae.
The study concluded that G. mellonella killing significantly
depends on the number of E. cloacae cells injected in a
dose-dependent manner. Moreover, survival can be reduced
by increasing the postinoculation temperature. Also, treatment
of lethal E. cloacae infection with antibiotics with proven
in vitro activity significantly prolonged the survival of larvae, as
compared with antibiotics to which the bacteria were resistant.
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The therapeutic benefit arising from the administration of
antibiotics was also correlated with a reduced burden of E. cloacae
cells in the hemolymph (Yang et al., 2017).

Our study highlights that G. mellonella larvae proved to be
the most investigated in vivo infection model for A. baumannii
(Jeon et al., 2019), K. pneumoniae, and Enterobacter sp. (Cieślik
et al., 2021). However, more models currently applied for other
gram-negative bacteria (i.e., Drosophila melanogaster, zebrafish,
mouse, rat) are expected to emerge in the near future in order to
enhance knowledge regarding biofilm infections determined by
less investigated emerging ESKAPE pathogens.

CONCLUSION

To the best of our knowledge, this is the first paper
focusing on the current progress in developing antibiofilm
and anti-QS strategies for fighting the less investigated gram-
negative ESKAPE pathogens: K. pneumoniae, A. baumannii, and
Enterobacter sp.

The surveyed literature reveals some promising leads for
the development of efficient strategies against these problematic
superbugs, such as combinations of QSIs and/or antibiotics
administered locally or with improved and controlled targeted
delivery by using nanocarriers. Researchers are currently
exploiting the great perspectives offered by CRISPR-Cas in
the research of BAIs. It will probably soon be applied in the
investigation of less analyzed ESKAPE pathogens.

A promising priority lead is represented by natural QSIs that
could provide an ecological approach, with great therapeutical
and preventive value, and can be used as the backbone to
obtain synthetic, non-pollutant QSIs. This approach will foster

the development of social microbiology, which will exploit the
antagonistic biological relationships for finding attractive and
intelligent anti-infectious strategies.

The development of QS modulation strategies for clinically
significant biofilm-producing pathogens such as K. pneumoniae,
A. baumannii, and Enterobacter sp. could be of mounting
importance for effectively controlling the nosocomial and CA
BAIs, especially with the continuing evolution of MDR, XDR,
and PDR strains. QS modulators are also less likely to select
for resistance and eventually would have fewer side effects
and ecotoxicity.

In vivo models are very useful to decipher molecular
mechanisms during infection and also the utility of newly
developed agents aiming to control virulence, biofilm
modulation, and resistance of less investigated ESKAPE bacteria.
More and specific infection models are expected to emerge in
the next few years.
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