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Aims The detection of white-coat hypertension/white-coat uncontrolled hypertension (WCH/WUCH) with out-of-office 
blood pressure (BP) monitoring is time- and resource-consuming. We aim to develop a machine learning (ML)-derived 
prediction model based on the characteristics of patients from a single outpatient visit.

Methods 
and results

Data from two cohorts in Taiwan were used. Cohort one (970 patients) was used for development and internal valid-
ation, and cohort two (464 patients) was used for external validation. WCH/WUCH was defined as an office BP of ≥140/ 
90 mmHg and daytime ambulatory BP of <135/85 mmHg in treatment-naïve or treated individuals. Logistic regression, 
random forest (RF), eXtreme Gradient Boosting, and artificial neural network models were trained using 26 patient para-
meters. We used SHapley Additive exPlanations values to provide explanations for the risk factors. All models achieved 
great area under the receiver operating characteristic curve (AUROC), specificity, and negative predictive value in both 
validations (AUROC = 0.754–0.891; specificity = 0.682–0.910; negative predictive value = 0.831–0.968). The RF model 
was the best performing (AUROC = 0.884; sensitivity = 0.619; specificity = 0.887; negative predictive value = 0.872; 
accuracy = 0.819). The five most influential features of the RF model were office diastolic BP, office systolic BP, current 
smoker, estimated glomerular filtration rate, and fasting glucose level.

Conclusion Our prediction models achieved good performance, underlining the feasibility of applying ML models to outpatient po-
pulations for the diagnosis of WCH and WUCH. Further validation with other prospective data sets should be consid-
ered in the future.
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Graphical Abstract

Two cohorts were used for model development after splitting and external validation respectively. With oversampled training set, four algorithms were 
developed through the process of feature ranking with SHapley Additive exPlantions values, feature selection, and threshold tuning under five-fold cross- 
validation. Models were then evaluated by variant metrics. Present study demonstrated the feasibility of applying machine learning models to outpatient 
population for the identify of white-coat hypertension and white-coat uncontrolled hypertension. ANN, artificial neural network; AUROC, area under 
the receiver operating characteristic curve; DBP, diastolic blood pressure; LR, logistic regression; NPV, negative predictive value; PPV, positive predictive 
value; RF, random forest; ROC, receiver operating characteristic; SBP, systolic blood pressure; Sen, sensitivity; SHAP, SHapley Additive exPlanations; 
Spe, specificity; WCH/WUCH, white-coat hypertension/white-coat uncontrolled hypertension; XGboost, eXtreme Gradient Boosting.

Keywords Machine learning • Hypertension • Risk prediction • White-coat hypertension • White-coat uncontrolled 
hypertension

Introduction
White-coat hypertension (WCH) refers to patients whose blood 
pressure (BP) is elevated in the medical environment, but typically 
maintains a normal ambulatory or home BP.1,2 Approximately 10– 
30% of patients attending clinics due to high BP have WCH.3

Originally limited to untreated individuals, the concept of WCH 
has been generalized to individuals treated with antihypertensive 
drug(s) in which their BP fails to reach specified therapeutic targets, 
termed as white-coat uncontrolled hypertension (WUCH).2,4

Unlike the higher definite risks of cardiovascular disease (CVD) and 
all-cause mortality in individuals with masked hypertension or sustained 
hypertension (SH), the prognostic value of WCH/WUCH remains con-
troversial.5–7 Current guidelines do not recommend the initiation or in-
tensification of antihypertensive drug therapy for patients with WCH/ 
WUCH.1,2 To prevent unnecessary treatment, it is recommended to 
screen for WCH before diagnosing hypertension and initiating pharma-
cological therapy.1,2,8 Having high variability of office BP, having elevated 
BP without evidence of target organ damage (TOD) or CVD, or 
pseudo-resistant hypertension are also recommended as clinical indica-
tions to diagnose WCH/WUCH.9

For the diagnosis of WCH/WUCH, the combined use of office BP 
monitoring and out-of-office BP monitoring, including 24 h ambula-
tory BP monitoring (ABPM) and home BP monitoring (HBPM), is re-
quired.1,2 ABPM, which has fewer measurement errors and provides 
nocturnal readings,2 is stated to be more desirable to screen for 
WCH than HBPM.1 However, ABPM is more time- and 
resource-consuming.10

The possibility of early identification of WCH/WUCH based on 
the clinical characteristics of a single outpatient visit is still unknown. 
Therefore, we aimed to derive new diagnostic machine learning (ML) 
prediction models to detect patients with WCH/WUCH in clinical 
settings. The developed models may facilitate enhanced diagnosis 
of WCH/WUCH.

Methods
Source of data and participants
The data for this study were derived from two cohorts. Cohort one was 
a nationwide prospective study of patients with hypertension. The study 
design and methods used on cohort one have been previously independ-
ently described.11 The inclusion and exclusion criteria of cohort one are 
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listed in Supplementary material online, Material S1. A total of 1039 pa-
tients were enrolled from 2004 to 2005 from six medical centres in 
Taiwan. Among them, 69 patients who did not have complete ABPM 
data were excluded. Cohort two was a single-centre prospective cohort 
study of patients with hypertension. The study design and methods used 
on cohort two have been previously independently described.12 The in-
clusion and exclusion criteria of cohort two are listed in Supplementary 
material online, Material S2. A total of 575 patients were enrolled be-
tween February 2012 and November 2021 from the Taipei Veterans 
General Hospital. Among them, 111 patients who did not have complete 
ABPM data were excluded.

This study was performed in accordance to the tenets of the 
Declaration of Helsinki. The study protocol was approved by the ethics 
committee of the Taipei Veterans General Hospital. Written informed 
consent was obtained from all participants before data collection.

Study design
Data from cohort one was used to develop prediction models for iden-
tifying patients with WCH/WUCH and for internal validation. Data from 
cohort two was used for external validation. A flowchart of the study is 
shown in Figure 1.

Outcome definition
WCH and WUCH were defined as having an office BP of ≥140/90 mmHg 
and a daytime ambulatory BP of <135/85 mmHg (definition A) in antihy-
pertensive treatment-naïve and treated individuals, respectively. To ex-
plore whether our evaluation results were robust against varying 
definitions of WCH/WUCH using different BP indices, we further defined 
WCH and WUCH as having an office BP of ≥140/90 mmHg, 24 h 
ambulatory mean BP of <130/80 mmHg, daytime ambulatory BP of 
<135/85 mmHg, and night-time ambulatory BP of <120/70 mmHg 
(definition B) in antihypertensive treatment-naïve and treated individuals, 
respectively (see Supplementary material online, Table S1).

Candidate predictors
In total, 65 and 47 variables collected at baseline were considered for 
analysis in cohort one and two, respectively (see Supplementary 
material online, Table S2). The data collection protocol is described in 
Supplementary material online, Material S3. Based on the literature re-
view,6,7,13,14 26 parameters that were routinely used as clinical markers, 
related to WCH/WUCH, and available in the external validation set 
were selected as candidate predictors (Figure 1), including (i) categorical 
variables (yes vs. no): male sex, current smoking status, angiotensin- 
converting enzyme inhibitor/angiotensin receptor blocker, beta-blocker, 
calcium channel blocker (CCB), thiazide, spironolactone, and alpha- 
blocker use; (ii) continuous variables: age, body mass index (BMI), 
waist-to-hip ratio (WHR), office systolic BP (SBP), office diastolic BP 
(DBP), office pulse pressure, total cholesterol (TC), triglyceride (TG), 
high-density lipoprotein-cholesterol (HDL-C), low-density 
lipoprotein-cholesterol, estimated glomerular filtration rate (eGFR), cre-
atinine, sodium, potassium, alanine aminotransferase, uric acid, fasting 
glucose, and aldosterone.

Model development
Logistic regression (LR), random forest (RF), eXtreme Gradient Boosting 
(XGboost), and artificial neural network (ANN) were used as classifiers. 
All models were developed using Python (version 3.9.10, Python 
Software Foundation). The libraries and modules that were used are 
listed in Supplementary material online, Table S3.

The model development pipeline is illustrated in Figure 1. Splitting co-
hort one data was done randomly into training and test sets in a 0.7/0.3 

ratio in a stratified manner so that the ratio of events (patients with 
WCH/WUCH) to non-events (patients without WCH/WUCH) in 
each split was identical to that of the entire data set. Missing continuous 
variable were filled in with the means of all available values for the same 
variable in the training set (three missing in cohort one and 66 missing in 
cohort two). All numerical variables in the data set passed to each model, 
no matter the training, test, or external validation sets, were scaled by 
subtracting the mean and then dividing by the standard deviation (SD) 
of the data set used to train each model.

We tuned the hyperparameters with a grid search in the LR and RF 
models and with a random search in the XGboost and ANN models. 
This was done by obtaining the uppermost area under the receiver 
operating characteristic curve (AUROC) in the LR, XGboost, and 
ANN models, and by obtaining the lowest out-of-bag score in the 
RF model. Features were ranked by importance based on SHapley 
Additive exPlanations (SHAP) values.15 Supervised feature selection 
was carried out to achieve the highest AUROC. We established a 
confusion matrix and calculated the F1 score ( = 2 × precision × recall

precision+recall ) 
while threshold-moving. The optimal probability threshold that 
yielded the largest F1 score was defined and published in the final 
models.

In the process of hyperparameter optimization, feature selection, and 
threshold-moving, we performed five-fold cross-validations on the train-
ing set, in which the synthetic minority oversampling technique was used 
to equalize the number of events and non-events.16 The test and external 
validation sets were always independent of the training and tuning pro-
cesses during the development of the models.

Performance metrics
A confusion matrix was tallied after setting a classification threshold for 
the binary classifier. Probability metrics [sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), and accuracy] 
and ranking [AUROC and average precision (AP)] aspects were used 
to evaluate overall performance.

Model explanation
SHAP values were used to quantify the association of a feature with 
the outcome of a single participant, which was calculated to provide 
attribution values for each feature within the RF model. SHAP sum-
mary and partial dependence plots for each predictor variable were 
constructed.

Statistical analysis
Continuous variables were expressed as means ± SD. Categorical vari-
ables were expressed as frequencies and proportions. Comparisons be-
tween cohort one and two were performed using unpaired Student’s 
t-tests, Mann–Whitney U tests, and χ2 tests for continuous parametric 
variables, continuous non-parametric variables, and categorical variables, 
respectively. One-way ANOVA or Mann–Whitney U tests were used to 
compare continuous variables. χ2 or Fisher’s exact tests were used to 
compare categorical variables between the training and test sets. 
Spearman’s rank correlation coefficients were calculated for the 26 can-
didate predictors. Data were analysed using SPSS software (version 21.0, 
SPSS Inc., Chicago, IL, USA) or RStudio (version 1.3.1056, RStudio, PBC, 
Boston, MA, USA). Statistical significance was defined as a two-sided 
P-value of < 0.05.

Sensitivity analyses
Several sensitivity and subgroup analyses were performed to better 
understand the generalizability of the developed models and statistical 
interactions. First, definition B of WCH/WUCH was applied. Second, 
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Figure 1 A flowchart of the study. The data set used in each step is indicated as coloured columns on the right side. Five-fold cross-validation was 
performed, respectively, in hyperparameter optimization, feature selection, and threshold-moving process. Twelve, five, thirteen, and six features 
were selected as final predictors in the LR, RF, XGboost, and ANN models, respectively, which are written in descending order of importance. ACEI/ 
ARB, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker; ALT, alanine aminotransferase; ANN, artificial neural network; 
Anti-HTN, anti-hypertensive; BMI, body mass index; BP, blood pressure; CCB, calcium channel blocker; DBP, diastolic blood pressure; eGFR, es-
timated glomerular filtration rate; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; LR, logistic regression; 
NPV, negative predictive value; PP, pulse pressure; PPV, positive predictive value; PR, precision-recall; SMOTE, synthetic minority oversampling tech-
nique; RF, random forest; ROC, receiver operating characteristic; SBP, systolic blood pressure; TC, total cholesterol; TG, triglyceride; UA, uric acid; 
WHR, waist-to-hip ratio; XGboost, eXtreme Gradient Boosting.
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we conducted age stratification for subjects aged <50 years and those 
aged ≥50 years. Finally, subgroup analyses for inclusion scenarios 
were performed, such as individuals with a BMI of ≥27 kg/m2 or fasting 
glucose level of ≥100 mg/dL.17 We estimated sensitivity, specificity, PPV, 
NPV, accuracy, AUROC, and AP (see Supplementary material online, 
Material S4).

Results

Baseline characteristics of participants
The clinical and biochemical characteristics of the study participants 
are shown in Table 1. In cohort one, all participants were aged 20–50 
years and had BMI ≤35 kg/m2. In cohort two, there were 358 
(77.2%) participants aged >50 years and 12 (2.6%) participants hav-
ing BMI >35 kg/m2.

A total of 970 participants were included in cohort one, of which 
79 (8.1%) had a confirmed diagnosis of WCH/WUCH according to 
definition A. Characteristics of the participants in the training and test 
sets were similar, except for higher potassium levels (4.1 vs. 
4.0 mmol/L; P = 0.046) and lower CCB usage (36.8 vs. 43.9%; 
P = 0.039) in the test set vs. the training set. While participants in 
the training set were taking more spironolactone than those in the 
test set (1.0 vs. 0.0%; P = 0.082), it was not statistically significant.

A total of 464 participants were included in cohort two, of which 
118 (25.4%) had a confirmed diagnosis of WCH/WUCH according 
to definition A. Most of the participant characteristics were different 
between the two cohorts, including the proportion of WCH/ 
WUCH in each. A heatmap showing Spearman’s correlation coeffi-
cients with significance levels of pairwise comparisons between the 
variables is presented in Supplementary material online, Figure S1.

Model specification and feature selection
The tuned hyperparameters are presented in Supplementary 
material online, Table S4. A matrix plot for the RF model is shown 
in Supplementary material online, Figure S2, revealing the top five 
out of 26 parameters that considerably contributed to the model. 
Specifically, office DBP, office SBP, current smoker, eGFR, and fasting 
glucose level. A plot showing model performance vs. complexity is 
shown in Supplementary material online, Figure S3. The selected pre-
dictors for each final model are shown in Figure 1 and Supplementary 
material online, Table S5. The optimal probability thresholds for the 
LR, RF, XGboost, and ANN models were 0.51, 0.50, 0.46, and 0.48, 
respectively. Supplementary material online, Figures S4 and S5 include 
decision tree plots of the RF and XGboost models. Performance me-
trics of the four models in the training set were presented in 
Supplementary material online, Table S6.

Model performance—internal validation
For the receiver operating characteristic (ROC) curve and precision- 
recall (PR) curve analyses (Figure 2A and C), the RF model achieved 
the greatest AUROC (0.891), and AP (4.2 times compared with 
the baseline) among the four models. Performance metrics compar-
ing the four models are shown in Table 2. The highest overall per-
formance was achieved in the RF model, with a specificity of 0.906, 
NPV of 0.953, and accuracy of 0.873. However, the PPV was very 

low in all models. A confusion matrix for the RF model is presented 
in Supplementary material online, Table S7.

Model performance—external validation
Both ROC and PR curve analyses revealed reliable performance 
among the four models with no significant differences from the in-
ternal validation (Figure 2B and D). The RF model exhibited the great-
est AUROC (0.884) and AP (25.9 times compared with the baseline). 
The highest overall performance was also achieved in the RF model, 
with a specificity of 0.887, NPV of 0.872, and accuracy of 0.819 
(Table 2). A confusion matrix for the RF model is reported in 
Supplementary material online, Table S7.

Model explanation
To identify the features that influenced the prediction model the 
most, we conducted a SHAP summary plot of the RF model 
(Figure 3). This plot depicts how high and low feature values were re-
lated to the SHAP values in the training set. Partial dependence plots 
were used to understand how a single feature affects the output of 
the RF model (see Supplementary material online, Figure S6).

Sensitivity analyses
The sensitivity analyses presented in Table 3 show how the perform-
ance of the RF model when using the alternative WCH/WUCH by def-
inition B, was similar to that by definition A (AUROC of 0.831, 
specificity of 0.802, NPV of 0.955, and accuracy of 0.787 in the external 
validation set). The performance of the RF model in subgroup analysis 
based on (i) age ≥50 years (n = 368), (ii) BMI ≥27 kg/m2 (n = 177), 
(iii) fasting glucose ≥100 mg/dL (n = 204), and (iv) fasting glucose 
≥100 mg/dL, or age ≥50 years, or BMI ≥27 kg/m2 (n = 425) was similar 
to that of the main model (AUROC of 0.855–0.899, specificity of 
0.860–0.888, NPV of 0.842–0.874, and accuracy of 0.785–0.821) 
(Table 3; Supplementary material online, Material S5).

Discussion
We developed and validated four ML algorithms using 26 clinical and 
biochemical patient parameters obtained during single outpatient vis-
its to predict WCH/WUCH. All models exhibited relatively high 
AUROC, specificity, NPV, and accuracy. Among them, the RF model 
had the best overall performance, with the greatest AUROC and AP 
values. This presents a novel method to complement WCH/WUCH 
screening in both outpatient and public health settings.

Evidence to date suggests that WCH carries a higher cardiovascu-
lar (CV) risk when compared with normotension.4,18,19 Aside from 
increased CV risk, studies have shown that WCH is also associated 
with TOD, such as end stage renal disease in non-dialysis chronic kid-
ney disease patients.20 Moreover, the risk of progression to SH is sig-
nificantly higher in patients with WCH.21 In order to avoid CVD, 
TOD, and progression to SH, enhanced efficient and cost-effective 
methods are required for the early identification of WCH.

Identifying WUCH is also an important issue. Previous studies 
have identified that individuals with WUCH are prone to 
out-of-office hypotension when exposed to overtreating.22

However, a meta-analysis conducted by Huang et al. found that nei-
ther the risk of CV events nor total mortality increased in association 
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Table 1 Baseline characteristics and the proportion of WCH/WUCH

Cohort 1 Cohort 2  
(n = 464)

P-valued P-valuee

Training set  
(n = 679)

Test set  
(n = 291)

All (n = 970)

Demographic data
Age, mean (SD), years 41.1 (7.2) 40.9 (7.1) 41.0 (7.2) 61.0 (14.2) 0.583 <0.001c

Male sex, no. (%) 466 (68.6%) 198 (68.0%) 664 (68.5%) 266 (57.3%) 0.856 <0.001c

BMI, mean (SD), kg/m2 26.5 (3.4) 26.6 (3.5) 26.5 (3.4) 26.1 (3.7) 0.657 0.065
WHR, mean (SD), % 87.4 (6.0) 88.0 (6.3) 87.6 (6.1) 91.0 (7.3) 0.182 <0.001c

Current smoker, no. (%) 164 (24.2%) 68 (23.4%) 232 (23.9%) 22 (4.7%) 0.793 <0.001c

Office BP parameters
Office SBP, mean (SD), mmHg 126.4 (14.6) 125.5 (14.3) 126.1 (14.5) 131.3 (16.6) 0.352 <0.001c

Office DBP, mean (SD), mmHg 85.3 (11.3) 84.1 (12.6) 84.9 (11.7) 81.8 (10.5) 0.163 <0.001c

Office PP, mean (SD), mmHg 41.1 (9.9) 41.3 (9.5) 41.2 (9.8) 49.5 (14.4) 0.761 <0.001c

Antihypertensive drug usage
ACEI/ARB, no. (%) 292 (43.0%) 118 (40.5%) 410 (42.3) 307 (66.2%) 0.478 <0.001c

Beta-blocker, no. (%) 305 (44.9%) 132 (45.4%) 437 (45.1%) 109 (23.5%) 0.899 <0.001c

CCB, no. (%) 298 (43.9%) 107 (36.8%) 405 (41.8%) 344 (74.1%) 0.039c <0.001c

Thiazide, no. (%) 109 (16.1%) 48 (16.5%) 157 (16.2%) 89 (19.2%) 0.864 0.366

Spironolactone, no. (%) 7 (1.0%) 0 (0.0%) 7 (0.7%) 6 (1.3%) 0.082 0.169
Alpha-blocker, no. (%) 16 (2.4%) 6 (2.1%) 22 (2.3%) 21 (4.5%) 0.778 0.062

Biochemical profiles
TC, mean (SD), mg/dL 194.7 (34.6) 198.3 (37.2) 195.8 (35.4) 184.0 (30.8) 0.161 <0.001c

TG, mean (SD), mg/dL 164.4 (112.0) 170.1 (112.7) 166.1 (112.2) 127.7 (80.4) 0.465 <0.001c

HDL-C, mean (SD), mg/dL 45.5 (11.9) 45.3 (12.5) 45.4 (12.1) 49.0 (13.1) 0.825 <0.001c

LDL-C, mean (SD), mg/dL 124.9 (30.8) 128.3 (32.7) 126.0 (31.4) 111.8 (27.1) 0.131 <0.001c

Creatinine, mean (SD), mg/dL 0.8 (0.2) 0.8 (0.2) 0.8 (0.2) 0.9 (0.2) 0.955 0.966

Biochemical profiles (continued)
eGFR, mean (SD), mL/min/1.73 m2 129.9 (38.5) 128.1 (37.8) 129.4 (38.3) 87.2 (19.4) 0.499 <0.001c

Sodium, mean (SD), mmol/L 141.2 (2.7) 141.4 (2.5) 141.3 (2.6) 140.9 (2.4) 0.239 0.021c

Potassium, mean (SD), mmol/L 4.0 (0.3) 4.1 (0.3) 4.0 (0.3) 3.9 (0.6) 0.046c <0.001c

ALT, mean (SD), U/L 27.4 (19.2) 27.9 (19.4) 27.6 (19.3) 26.1 (16.4) 0.747 0.371
UA, mean (SD), mg/dL 6.6 (1.7) 6.7 (1.7) 6.6 (1.7) 6.0 (1.5) 0.296 <0.001c

Fasting glucose, mean (SD), mg/dL 98.1 (9.4) 98.1 (8.7) 98.1 (9.2) 100.7 (18.4) 0.993 <0.001c

Aldosterone, mean (SD), pg/mL 223.7 (109.5) 232.9 (144.4) 226.5 (121.0) 122.6 (31.6) 0.327 <0.001c

Ambulatory BP parameters
24 h SBP, mean (SD), mmHg 123.4 (12.4) 122.9 (11.6) 123.2 (12.2) 121.5 (11.4) 0.603 0.029c

24 h DBP, mean (SD), mmHg 82.8 (9.5) 81.9 (9.5) 82.6 (9.5) 73.1 (8.3) 0.176 <0.001c

Daytime SBP, mean (SD), mmHg 126.1 (13.0) 125.9 (12.1) 126.1 (12.7) 123.4 (11.7) 0.790 0.001c

Daytime DBP, mean (SD), mmHg 85.2 (10.0) 84.3 (9.8) 84.9 (9.9) 74.7 (8.5) 0.211 <0.001c

Night-time SBP, mean (SD), mmHg 114.3 (12.9) 113.3 (12.4) 114.0 (12.8) 117.0 (12.9) 0.258 <0.001c

Night-time DBP, mean (SD), mmHg 75.1 (9.8) 74.0 (10.4) 74.7 (10.0) 69.4 (9.3) 0.130 <0.001c

WCH/WUCH by definition Aa, no. (%) 55 (8.1%) 24 (8.2%) 79 (8.1%) 118 (25.4%) 0.939 <0.001c

WCH/WUCH by definition Bb, no. (%) 17 (2.5%) 8 (2.7%) 25 (2.6%) 45 (9.7%) 0.825 <0.001c

ACEI/ARB, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker; ALT, alanine aminotransferase; BMI, body mass index; BP, blood pressure; CCB, calcium channel 
blocker; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; PP, pulse 
pressure; SBP, systolic blood pressure; TC, total cholesterol; TG, triglyceride; UA, uric acid; WCH/WUCH, white-coat hypertension/white-coat uncontrolled hypertension; WHR, 
waist-to-hip ratio; XGboost, eXtreme Gradient Boosting. 
aWCH/WUCH by definition A: office BP ≥140/90 mmHg and daytime ambulatory BP <135/85 mmHg. 
bWCH/WUCH by definition B: office BP ≥140/90 mmHg and 24 h ambulatory mean BP <130/80 mmHg and daytime ambulatory BP <135/85 mmHg and night-time ambulatory BP 
<120/70 mmHg. 
cDifferences were considered significant when P < 0.05. 
dP-value between the training set and test set. 
eP-value between the cohort one and cohort two.



White-coat hypertension prediction using machine learning                                                                                                                         565

Figure 2 Comparison of the AUCs among machine learning models for WCH/WUCH prediction by definition A. RF yielded the greatest AUCs. 
The grey dashed line represents baseline AP, which is defined by the total number of events over the total number of data in the data set. ‘Times’ 
refers to the AP value of each individual model divided by the baseline AP. (A) ROC curves and AUROCs for internal validation. (B) ROC curves and 
AUROCs for external validation. (C ) PR curves and APs for internal validation. (D) PR curves and APs for external validation. ANN, artificial neural 
network; AP, average precision; AUC, area under the curve; AUROC, area under the receiver operating characteristic curve; CI, confidence interval; 
LR, logistic regression; PR, precision-recall; RF, random forest; WCH/WUCH, white-coat hypertension/white-coat uncontrolled hypertension; 
XGboost, eXtreme Gradient Boosting.
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with WUCH.18 Evidently, a prediction model aiding in the identifica-
tion of patients with WUCH could potentially reduce unnecessary 
treatment intensification.9

Previous studies have shown the potential benefits of ML in the 
field of arterial hypertension. However, the application of ML in 
hypertension diagnosis or classification is still limited.23 To the best 
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Table 2 Performance metrics among the developed models for WCH/WUCH prediction by definition Aa

Model Sensitivity  
(95% CI)

Specificity  
(95% CI)

PPV (95% CI) NPV (95% CI) Accuracy (95% CI)

Internal validation LR 0.625 (0.431–0.819) 0.734 (0.681–0.787) 0.174 (0.094–0.255) 0.956 (0.928–0.984) 0.725 (0.674–0.776)
RF 0.500 (0.300–0.700) 0.906 (0.871–0.941) 0.324 (0.173–0.475) 0.953 (0.927–0.979) 0.873 (0.835–0.911)

XGboost 0.458 (0.259–0.658) 0.910 (0.876–0.944) 0.314 (0.160–0.468) 0.949 (0.922–0.976) 0.873 (0.835–0.911)

ANN 0.750 (0.577–0.923) 0.682 (0.626–0.738) 0.175 (0.101–0.248) 0.968 (0.943–0.993) 0.687 (0.634–0.741)
External validation LR 0.695 (0.612–0.778) 0.821 (0.780–0.861) 0.569 (0.489–0.650) 0.888 (0.853–0.922) 0.789 (0.752–0.826)

RF 0.619 (0.531–0.706) 0.887 (0.854–0.921) 0.652 (0.564–0.740) 0.872 (0.837–0.907) 0.819 (0.784–0.854)

XGboost 0.458 (0.368–0.548) 0.910 (0.880–0.940) 0.635 (0.533–0.738) 0.831 (0.793 − 0.869) 0.795 (0.759–0.832)
ANN 0.814 (0.743–0.884) 0.769 (0.724–0.813) 0.545 (0.472–0.619) 0.924 (0.893–0.954) 0.780 (0.742–0.818)

ANN, artificial neural network; CI, confidence interval; LR, logistic regression; NPV, negative predictive value; PPV, positive predictive value; RF, random forest; WCH/WUCH, 
white-coat hypertension/white-coat uncontrolled hypertension; XGboost, eXtreme Gradient Boosting. 
aWCH/WUCH by definition A: office BP ≥140/90 mmHg and daytime ambulatory BP <135/85 mmHg.

Figure 3 A SHAP summary plot of the top five features of the RF model. The higher the SHAP value of a feature, the higher the probability of 
WCH/WUCH. A dot is used for each feature attribution value for the model of each participant. The dots are coloured according to the values of 
the features for the participant and accumulate vertically to depict density. The features are arranged from top to bottom in descending order of 
importance, accessed by these five features only. DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; SBP, systolic blood pres-
sure; SHAP, SHapley Additive exPlanation; WCH/WUCH, white-coat hypertension/white-coat uncontrolled hypertension.
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of our knowledge, the present study is the first to report the devel-
opment and evaluation of ML prediction models for WCH/WUCH. 
These models achieved reasonable discrimination in an external val-
idation set, highlighting the applicability of these models in outpatient 
settings.

To prevent WCH/WUCH misdiagnosis that could potentially lead 
to inappropriate treatments, the selection of our models aimed to 
optimize for higher specificity rather than sensitivity. However, it is 
also critical to achieve a balance between sensitivity and specificity. 
Consequently, although the XGboost model had the highest specifi-
city, its apparent deficiency in sensitivity made it unsuitable for 
WCH/WUCH identification (Table 2). Accordingly, the RF model 
was considered more applicable and practical for use in real-world 
settings as it has comparably high specificity and sensitivity.

Higher prevalence of WCH/WUCH may lead to a higher PPV in 
the external validation set in the present study. However, the preva-
lence of WCH/WUCH by definition A in cohort two (25.4%) was 
most similar to other reports,3,24 which implies that the performance 
of the external validation set better reflects the generalizability of our 
results. Since the participants in cohort one were significantly young-
er than those in cohort two, only 8.1% of participants in cohort one 
had WCH/WUCH by definition A. The finding is compatible with a 
previous study which reported that the prevalence of WCH in-
creases exponentially with age.25 This could potentially contribute 
to the fact that the increase of SBP with age is greater for office 
than for out-of-office BPs.26

In the present study, we included variables previously reported 
to be associated with WCH/WUCH, such as old age, female sex, 
non-smoking status, obesity, higher TC, higher TG, and lower 
HDL-C levels.6,7,13,14 In all models, office DBP, office SBP, and 
eGFR were chosen as predictors. Current smoker, TG, WHR, and 
potassium levels were chosen in three models (see Supplementary 
material online, Table S5). Office DBP, current smoker, beta-blocker 
use, and TG levels were also confirmed as independent predictors of 
WCH/WUCH in univariate and multivariate LR analysis (see 
Supplementary material online, Tables S8 and S9). However, there 
were no differences in the percentage of WCH/WUCH in female 
vs. male participants in the present study (see Supplementary 
material online, Table S10).

The kidneys are vital organs that contribute to the stability of BP. 
There are differences between eGFR in the two cohorts, which may 
be due to the inter-cohort differences in age, comorbidities, and 
medication. In the SHAP analysis of the RF model, a lower eGFR level 
was associated with an increased risk of experiencing the white-coat 
effect (see Supplementary material online, Figure S6C). A study by 
Wang et al. discovered that 24 h SBP variability increased with a de-
cline in eGFR.27 Further studies are still required to elucidate the pos-
sible mechanisms related to renal function decline and the 
development of WCH/WUCH.

In the present study, we found that smokers were less likely to ex-
perience the white-coat effect (see Supplementary material online, 
Figure S6E). Smoking is considered as an important contributing fac-
tor to SH. Nicotine, an adrenergic agonist found in cigarettes, med-
iates catecholamine and vasopressin release, which may result in 
persistently elevated BP. Therefore, smokers may present with less 
differences between out-of-office and office BPs. This finding is 
also consistent to that of a previous study.6
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Notably, we found TG levels to be another risk factor for WCH/ 
WUCH. The white-coat effect was reported to be associated with 
dysmetabolic factors.7,13,14 Johansson et al. found that dyslipidaemia 
problems in the form of higher TG and cholesterol levels were higher 
among WCH patients when compared with normotensive patients 
when analysed by age, sex, and home SBP.13 Cuspidi et al. observed 
a greater age-adjusted and sex-adjusted risk of new-onset metabolic 
syndrome in patients with WCH, identified by either office/ambula-
tory or office/home measurements.14 This indicates that there might 
be an intricate interplay between WCH and metabolic dysfunction, 
which may explain the elevated CV risk observed in WCH patients.

Although beta-blocker use was not selected as a predictor in the 
models, it was a significant parameter in the multivariate LR analysis 
(see Supplementary material online, Table S9). Previous studies have 
shown that compared with normotensive patients, patients with 
WCH are associated with increased peripheral sympathetic nerve 
activity, which is also seen in patients with SH.28 Another important 
factor is anxiety. Previous studies have shown that patients with anx-
iety are more likely to experience the white-coat effect.29 Although 
not routinely prescribed to reduce stress or relieve anxiety, some 
beta-blockers such as propranolol and atenolol have been used as 
off-label anxiolytics for social and performance anxiety. Patients 
with hypertension and anxiety are more likely to be prescribed beta- 
blockers to control their BP, with an additional benefit of stress relief. 
However, since they are currently not approved as standard medica-
tion for anxiety control, their significance may not be as prominent as 
it should be in the current models. Further studies are required to 
confirm the effects of beta-blockers on WCH/WUCH.

The American College of Cardiology/American Heart Association 
(ACC/AHA) guidelines define WCH/WUCH as patients with office 
BP of ≥130/80 mmHg and daytime ABPM of <130/80 mmHg or 
home BP of <130/80 mmHg.1 However, the European Society of 
Cardiology/European Society of Hypertension (ESC/ESH) guidelines de-
fine WCH/WUCH as patients with office BP of ≥140/90 mmHg and 
24 h ABPM of <130/80 mmHg and/or home BP of <135/ 
85 mmHg.2,10 We tested our models using the BP cut-offs according 
to the ACC/AHA guidelines in Supplementary material online, 
Table S11, but this achieved poorer results. This may be explained by 
the fact that the definition by the ACC/AHA offers no buffer zone for 
patients with daytime ABPM in the range of 131 − 139/81 − 89 mmHg 
unlike the ESC/ESH definition, which makes ML hard to fine tune.

Strengths and limitations
Our study has several strengths. First, through external validation of a 
different group of participants with high dissimilarity, we demon-
strated the applicability of our models to outpatient settings. 
Second, SHAP values were used to uncover the black box of ML. 
Other than raking the importance of variables, SHAP values can in-
form us on the magnitude and direction of the impact that each vari-
able has on the prediction of WCH/WUCH. Third, not only was 
ROC curve analysis used for performance evaluation, but we also 
conducted PR curve analysis. This prevents an excessively optimistic 
view of the performance provided by the ROC curve in imbalanced 
binary classification models.30 Lastly, we performed sensitivity ana-
lyses to explore whether our evaluation results were robust against 
varying BP cut-offs and inclusion scenarios.

This study also has several limitations. First, our analyses included 
relatively few participants. Data from more diverse populations, with 
better comprehensive distribution of participant characteristics, and 
a larger sample size including more untreated patients must be ob-
tained to demonstrate better transportability. Second, the data 
from cohort two came from a single centre. Multi-centred data 
should be obtained in the future to confirm the applicability of our 
model. Third, BP measurements were taken via different monitors 
in cohorts one and two. This was because Omega 1400 NBP used 
in cohort one was no longer available when cohort two was exam-
ined. However, both Omega 1400 NBP and Omron HEM-7121 are 
Taiwan Food and Drug Administration approved (license numbers 
026021 and 007137, respectively), guaranteeing the reliability of 
both devices. Fourth, we combined WCH and WUCH as outcomes 
in our models despite the differences in the pathophysiology and 
aetiology behind them. Further studies are required to develop pre-
diction models that can detect WCH and WUCH separately. Fifth, 
HBPM was not included in the diagnostic criteria for WCH/ 
WUCH, potentially indicating that some WCH/WUCH cases may 
have been missed. Sixth, the predictive ability of the models might 
be impaired by the relatively small number of events recorded in 
the patient cohorts. Seventh, the mean office SBP and DBP were 
relatively normal in the two cohorts (Table 1). However, the majority 
of participants had office SBP ≥130 mmHg or office DBP ≥80 mmHg 
(69.5% in cohort one and 72.0% in cohort two) (see Supplementary 
material online, Table S12). Furthermore, more than one-third of par-
ticipants had office SBP ≥140 mmHg or office DBP ≥90 mmHg 
(36.3% in cohort one and 37.5% in cohort two) (see Supplementary 
material online, Table S12). Although the present study demonstrated 
acceptable results in patients with relatively normal mean office BP, 
further studies are needed to confirm the applicability of the current 
models to other cohorts with different ranges of office BPs. Finally, 
some variables related to WCH/WUCH were not included in our 
study. For example, we did not collect data regarding urine metabolites 
in cohort two, and thus were unable to analyse this parameter. In the 
future, these models could be further optimized by including more 
variables, and then validated in prospective cohort studies. As such, 
we aim to provide the physicians with an easier and more user-friendly 
approach to calculate the risks by convert the current models to web 
or smartphone-based applications.

Conclusion
This study successfully demonstrated that ML prediction models are 
capable of detecting populations more prone to the white-coat ef-
fect. Patients can be assessed during a single outpatient visit, making 
the models readily applicable to clinical settings. The RF model 
yielded the best overall results and could potentially assist physicians 
in the early diagnosis of patients at higher risks of WCH/WUCH.
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