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Abstract: Chronic Myeloid Leukaemia is a myeloproliferative disorder driven by the t

(9;22) chromosomal translocation coding for the chimeric protein BCR-ABL. CML treat-

ment represents the paradigm of molecular therapy of cancer. Since the development of the

tyrosine kinase inhibitor of the BCR-ABL kinase, the clinical approach to CML has

dramatically changed, with a stunning improvement in the quality of life and response

rates of patients. However, it remains clear that tyrosine kinase inhibitors (TKIs) are unable

to target the most immature cellular component of CML, the CML stem cell. This review

summarizes new insights into the mechanisms of resistance to TKIs.
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Introduction
Chronic Myeloid Leukaemia (CML) is the paradigm of bench-to-bedside transla-

tional research.1–6 CML was among the first cancers to be clearly associated with a

genetic lesion, namely the Philadelphia Chromosome, able to generate the chimeric

BCR-ABL protein. A plethora of studies with cellular and murine models7 con-

verged on the assumption that one single oncogenic gene - BCR-ABL - can drive a

potent leukaemogenic signal.3 For this reason, BCR-ABL has been intensively

studied as a perfect druggable target, leading to the development of imatinib,

which quickly raised the clinical arena.8 CML remains the most successfully treated

disease with a TKI,9 while in other cancers, responses to other specific TKIs are

less pronounced. Therefore, understanding the unique biological features of CML

should provide new insights into the management of other cancers. In this respect,

resistance to TKIs has been generally considered a consequence of the insensitivity

of cancer stem cells to these drugs10 and, therefore, CML remains a perfect battle-

field to investigate biological behaviours of these elusive cells.11 A lot of evidence

has clearly demonstrated that CML stem cells remain unaffected by BCR-ABL

TKIs, as extensively reviewed.10,12–14 In particular, TKIs are able to enter CML

stem cells, to inhibit BCR-ABL, but are not able to promote their apoptosis.14

The resistance of CML stem cells to TKIs is a very challenging issue that has

been investigated in great depth over the years.15 Resolving this problem may not

affect CML patients,16 who highly benefit from TKI therapy, but may significantly

improve our knowledge on leukaemia stem cells, and may improve cancer therapies

in general, specifically in those tumours where kinase inhibitors or other molecular

approaches fail to achieve convincing clinical results.

This review focuses on mechanisms that affect CML stem cells.
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Cooperating Oncogenes
For many years, various groups have focused their attention

on different pathways that may cooperate with BCR-ABL

or may act independently from BCR-ABL in promoting

resistance of CML stem cells to TKIs. Here, we will review

the most well-known pathways.

NF-kB
The contribution of the NF-kB signalling pathway has

been intensively investigated in CML, and in many other

cancers.17 NF-kB is a transcriptional pathway able to

promote various biological processes, favouring cell

growth, survival, metastatization and resistance to

chemotherapy.18 The most common form of NF-kB is

the heterodimer p65/p50, which becomes entrapped in

the cytoplasm by the IkB-alpha protein, therefore blocking

its transcriptional activity. Upon stimulation, the IkB-alpha

protein is phosphorylated at serine residues by the IKK-

kinase complex, promoting its proteosomal degradation,

and enabling NF-kB to shuttle into the nucleus. Various

studies have attributed an essential role for NF-kB in

BCR-ABL-mediated signalling,19,20 as we have also

recently reviewed.17

Besides playing a pivotal role in the bulky population

of CML cells, NF-kB has been also investigated in the

stem cell compartment. In particular, two groups have

shown that CML stem cells are able to produce and secrete

both transforming growth factor-β (TGF-β)21,22 and

tumour necrosis factor-α (TNF-α),23 which - in turn -

support the survival status of the same cells. While these

observations suggest that NF-kB can play a remarkable

role in stem cells, it is not known whether NF-kB inhibi-

tors may play a specific role in promoting CML stem cell

eradication.

Hedgehog Pathway
Among the many pathways able to modulate stem cell

maintenance, hedgehog signalling undoubtedly plays a

pivotal role.24 Three Hedgehog homologues, namely

Desert (DHH), Indian (IHH) and Sonic (SHH), bind to

the hedgehog receptor - Patched (Ptc) - promoting cell

proliferation and survival in a complex mechanism.

While the DHH and IHH pathways have been found to

be deregulated in various tumours, SHH signalling has

been found to be altered in CML and in leukaemia pro-

genitor cells. Targeting this signalling pathway offers a

chance to eliminate CML stem cells, while sparing normal

haematopoietic stem cells (HSC).25 However, to our

knowledge, to date, no data from clinical trials have been

published with Hedgehog inhibitors in the CML context.

Beta-Catenin
The Wnt/β-catenin pathway is, historically, a major stem

cell pathway, able to modulate both quiescence and main-

tenance, as extensively reviewed.26 It was demonstrated

that β-catenin is involved in various aspects of CML

biology, including maintenance of CML stem cells, thus

promoting the study of the beta-catenin pathway as a

druggable pathway in CML.27

PP2A
The tumour suppressor PP2A has been extensively studied

in the context of CML stem cells. In particular, BCR-ABL

was shown to inhibit the phosphatase activity of PP2A and

its reactivation was found to be associated with a marked

growth suppression and apoptosis induction.28

Remarkably, a PP2A activator named FTY720 (2-

amino-2-[2-(4-octylphenyl)ethyl]-1,3-propanediol hydro-

chloride) displayed potentially relevant implications from

a therapeutic standpoint.29,30 Similar conclusions were

achieved with the clinically validated PP2A inhibitors

LB100 and LB102.31

Additional Pathways
Various signal transduction pathways have been shown to

modulate BCR-ABL signalling8,32 and to promote resistance

to TKI in a BCR-ABL independent manner. Among them,

the CK233,34 and Alox535 pathways, along with others, were

also associated with the possibility of specific inhibition. It

should, however, be noted that most of these pathways have

not been investigated in CML stem cell settings.

Tumour Suppressors

While no tumour suppressors have been consistently found

mutated or deleted in the chronic phase of CML, in recent

years, various tumour suppressors have been found to be

functionally inactive in CML, as we have previously

reviewed.36 Identifying inactive tumour suppressors and the

mechanisms of inactivation may open new therapeutic oppor-

tunities. Indeed, restoring the function of an inactive tumour

suppressor may represent a strong pro-apoptotic signal.

PML
The promyelocytic leukaemia (PML) tumour suppressor

protein is an essential component of nuclear bodies and is
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involved in various cellular processes. PML has been

shown to play an important role in regulating CML stem

cells.37 PML is a key regulator of the quiescence of these

cells, irrespective of the BCR-ABL signal. The relevance

of these observations has been associated with the ability

of arsenic trioxide to target PML to degradation. Arsenic

trioxide has been demonstrated to promote the exit of

CML stem cells from the quiescent status, rendering

these cells susceptible to apoptosis. For this rational, clin-

ical trials are still ongoing.

PTEN
PTEN is a tumour suppressor involved in regulating various

cellular processes, such as the maintenance of genomic stabi-

lity, cell survival, migration, proliferation and metabolism.38

While originally described as a phosphatase, able to depho-

sphorylate PIP3, it also displays phosphatase-independent

functions. HSC rely on functional PTEN, as extensively

studied.39,40 In addition, PTEN integrity is mandatory in

CML.41 The involvement of PTEN in CML is strictly con-

nected to its correct cellular compartmentalization. We

observed that, while in CML progenitor cells PTEN is mostly

expressed in the cytoplasm, in the CML stem cell compart-

ment, PTEN is retained in the nuclear pool.42 Regulating

PTEN compartmentalization depends on a functional PML/

HAUSP network, which is maximized in the stem cell com-

partment. Shuttling of PTEN is indeed associated with

changes in cellular behaviours of various cancers.42,43 PTEN

cellular compartmentation can be modulated by arsenic -tri-

oxide, which affects the PML/HAUSP network, as we pre-

viously described. More recently, strategies for targeting the

Enhancers of zeste homologue 2 (EZH2), a core catalytic

subunit of polycomb repressive complex (PRC2) were

shown tomodulate PTEN expression in the stem cell compart-

ment, with important therapeutical implications.44

FoxO
Forkhead box subgroup O (FoxO) is a family of tran-

scription factors (TFs) that play an essential role in

regulating cancer stem cells.45 As described for PTEN

and p53, FOXOs are mainly deregulated through func-

tional modification of cellular compartmentalization. It

has been widely demonstrated that inhibition of FoxO1

and 3a, through cytoplasmic shuttling, supports the

growth and inhibition of cell death in CD34+ CML

cells. Conversely, leukaemia-initiating cells (LICs) are

enriched in FoxO3a nuclear localization mediated by a

decrease in Akt phosphorylation.46,47

Morgana
Morgana/chp-1 plays an essential role in mouse embryonic

development, involved in the regulation of centrosome dupli-

cation and genomic stability.18,48 Morgana binds to ROCKI

and ROCK II, favouring inhibition of ROCKII kinase activ-

ity. Recently, we have demonstrated that morgana ± mice

developed a fatal myeloproliferative disorder, resembling

atypical CML.49 In an extended analysis, we also demon-

strated that some CML patients may also display reduced

morgana protein levels in the most immature cellular com-

partment. Therefore, ROCK activity was increased in these

patients with a reduced response to TKI treatment.

TP53
TP53 is one of the most studied and well-known tumour

suppressors.50,51 The role of p53 in CML was originally

assessed when searching for genetic inactivation. TP53 was

indeed discovered to bemutated/deleted in a fraction of CML

blast crisis.52 However, it was also clear that the role of p53

in cancer is more complex, including functional inactivation

through delocalization and post-translational modifications.

P53 has been shown to be functionally inactivated

through direct binding with IkB-alpha in the CML

context.53 More recently, by investigations with proteo-

mics, transcriptomics and network analyses, p53 was

shown to be deregulated in the stem cell compartment,

together with c-Myc.54 Pharmacological modulation of

both p53 and c-Myc levels has been associated with a

marked induction in CML stem cell apoptosis.

Epigenetics And Modifiers

Histone deacetylase inhibitors (HDACi) are epigenetic

modifiers that, in vitro, promote growth arrest and apoptosis

of myeloid tumour cells.55 For this reason, many HDACi

have been tested in CML and in CML stem cells,56 and

various trials have been designed to test HDCA in associa-

tion with TKI. To our knowledge, no relevant data have,

however, been published following these trials.

Yet, epigenetic reprogramming remains a challenging

topic in CML stem cells, as recently observed with

EZH2.57 Taken together, these data suggest that further

investigations are necessary to identify the best epigenetic

modifiers in CML and the best combinatorial approach.

CML Stem Cell Metabolism

Cellularmetabolism reprogramming is an emerging hallmark

for cancer survival and cancer stem cell biology.58 While

normal cells use glucose to produce energy by mitochondrial
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oxidative phosphorylation, cancer cells have been shown to

increase glucose uptake and promote aerobic glycolysis,

originally described as the Warburg effect. This metabolic

shift has also been described in CML, where it appears to be

therapeutically modulated.59 The mTOR pathway has been

extensively studied as a major determinant of the anabolic

and catabolic processes in normal and cancer cells,60 and the

mTORpathway has also been intensively studied in the CML

setting.61 The kinase - AMPK - has been described as an

essential regulator of mTOR and cellular metabolism and

shown to play an important role in CML pathogenesis62 and

resistance to TKIs.63 Notably, AMPK appeared to be targe-

table in CML.64 Finally, and in agreement with the metabolic

reprogramming of CML cells, antidiabetic drugs have also

been shown to play important roles in this disease. In addi-

tion, Metformin,65,66 glitazones have been recently studied

due to their ability to target CML stem cells.67,68

microRNAs

Various microRNAs (miRNA) have been reported to play a

role in CML and, in particular, in the stem cell compartment:69

miR-126,70 miR-29a-3p, miR-494-3p and miR-660-5p,71 and

others. More recently, a challenging hsa-mir183/EGR1/E2F1

axis has been reported to directly control CML stem cell

behaviour.72 Most of these miRNAs have been extensively

reviewed elsewhere.69,73–77

Cluster Of Differentiation

Various biomarkers defined as Cluster of Differentiation

(CD) have been recognized as specifically expressed in the

stem cell compartment.78 The cytokine targeting surface

enzyme dipeptidylpeptidase-IV (DPPIV/CD26) has been

shown to be mostly expressed in the stem cell compart-

ment of CML.78–83 Interestingly, CD26 expression appears

to be associated with the expression of Polycomb BMI1

protein.84 The IL2 receptor CD25 was also shown to be

over-expressed in CML cells and - in particular - in the

stem cell compartment.85–87 While the function of most of

these biomarkers remains to be defined in the CML stem

cell population, selective expression in these cells may

offer a challenging therapeutic implication. Monoclonal

antibodies may possibly be developed to specifically target

these CD and potentially reach the stem cells of CML.

Stroma

Interaction of HSC and leukaemia stem cells with bone

marrow microenvironments is indispensable for the initia-

tion, maintenance, and progression of CML, and may also

affect the sensitivity to therapies.88 Furthermore, the role

of the stem cell niche in CML leukaemogenesis has been

investigated in-depth, highlighting the role of Cxcl12 in

the regulation of quiescence of CML.89

Autophagy

Autophagy is a process that is evolutionally conserved to

allow recycling of cytoplasmic components through the

formation of the autophagosome. These vesicles are driven

into lysosomes where they are degraded.90,91 Inhibiting

autophagy has been shown to play an important role in

cancer therapy.92 In line with these observations, autop-

hagy inhibitors have been tested as strategies to target

CML stem cells alone93 or in combination with mTOR

inhibitors61 and PARP inhibitors.94

Immune System

Aberrant immune-inhibitory responses have been observed

in CML patients at diagnosis,95 and the immune cellular

context has been shown to impact CML therapy96 and/or

affect immune surveillance.97 Similarly, TKIs have been

shown to affect the immune system.98 Various cytokines

known to play a role in the immune system, such as

CXCR2 and CXCL4, have been shown to regulate the

survival of CML stem cells.99 While further investigations

are needed in this context, these observations indicate a

pivotal role of the immune system in each phase of CML

maintenance and, therefore, suggest the variegation of

therapeutical implications. In this respect, following the

increase in the use of Chimeric Antigen Receptor - engi-

neered T cells - in the clinical scenario, it was also shown

that CAR-T directed toward IL1RAP could represent an

efficient approach for targeting CML stem cells.100 In

addition, checkpoint inhibitors have been discussed as

potential relevant targets in CML therapy.101

Parallel to the role of the immune system, the intriguing

role of inflammation (a mixture of immune system regulators

and cytokines) has also been investigated as a determinant

for CML stem cell maintenance and/or development.102

Discussion
In this review we have reported various pathways and/or

mechanisms that have been recognized to modulate CML

stem cell behaviour. For each of these pathways, specific

inhibitors have been identified, allowing the proposal of a

combinatorial therapy with TKIs with the aim of eradicating

CML stem cells. Various clinical trials have been designed

for this purpose,10 but results are still pending. Data obtained

from the clinical scenario will allow identification of
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pathways with relevant roles in the CML stem cell compart-

ment from the plethora of cooperating pathways. CML

response rates suggest that combinatorial therapies will

only be proposed to those patients resistant to TKIs; however,

deciphering mechanisms of insensitivity of CML stem cells

to TKIs may shed new light on how to efficiently treat other

cancers. It is worth noting that other Philadelphia-positive

types of Leukaemia, such as Acute Lymphoblastic

Leukaemia, are much less sensitive to BCR-ABLTKIs, and

the reason is far from being understood. Moreover, other

cancers with other active tyrosine kinases did not respond

to specific TKIs with the same efficacy described for CML.

Knowing the correct approach for targeting stem cells should

enhance the response rates in various tumours.
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