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Abstract

Purpose: Pancreatic adenocarcinoma (PAAD) is characterized by low antitumour immune cell infiltration in an
immunosuppressive microenvironment. This study aimed to systematically explore the impact on prognostic
alternative splicing events (ASs) of tumour immune microenvironment (TIME) in PAAD.

Methods: The ESTIMATE algorithm was implemented to compute the stromal/immune-related scores of each
PAAD patient, followed by Kaplan-Meier (KM) survival analysis of patients with different scores grouped by X-tile
software. TIME-related differentially expressed ASs (DEASs) were determined and evaluated through functional
annotation analysis. In addition, Cox analyses were implemented to construct a TIME-related signature and an AS
clinical nomogram. Moreover, comprehensive analyses, including gene set enrichment analysis (GSEA), immune
infiltration, immune checkpoint gene expression, and tumour mutation were performed between the two risk
groups to understand the potential mechanisms. Finally, Cytoscape was implemented to illuminate the AS-splicing
factor (SF) regulatory network.

Results: A total of 437 TIME-related DEASs significantly related to PAAD tumorigenesis and the formation of the
TIME were identified. Additionally, a robust TIME-related prognostic signature based on seven DEASs was
generated, and an AS clinical nomogram combining the signature and four clinical predictors also exhibited
prominent discrimination by ROC (0.762 ~ 0.804) and calibration curves. More importantly, the fractions of CD8 T
cells, regulatory T cells and activated memory CD4 T cells were lower, and the expression of four immune
checkpoints—PD-L1, CD47, CD276, and PVYR—was obviously higher in high-risk patients. Finally, functional analysis
and tumour mutations revealed that aberrant immune signatures and activated carcinogenic pathways in high-risk
patients may be the cause of the poor prognosis.
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Immunotherapy

Conclusion: We extracted a list of DEASs associated with the TIME through the ESTIMATE algorithm and
constructed a prognostic signature on the basis of seven DEASs to predict the prognosis of PAAD patients, which
may guide advanced decision-making for personalized precision intervention.
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Background
Pancreatic adenocarcinoma (PAAD) is a gastrointestinal
cancer with a bleak prognosis, accounting for almost as
many deaths (466000) as cases (496000) among 185
countries in 2020 [1, 2]. As a silent tumour, only ap-
proximately 20% of PAAD patients with a resectable
tumour can be diagnosed at an early stage due to the ab-
sence of typical clinical manifestations and sensitive
screening regimens [3], resulting in a poor five-year
overall survival rate of 5-8% [2, 4, 5]. Once PAAD pa-
tients develop metastatic disease, the median overall sur-
vival decreases to 6 months even with state-of-the-art
treatment [6]. Thus, the development of screening strat-
egies and therapeutic options remains an unmet need.
Although the advent of next-generation sequencing
technologies has enabled characterization of the molecular
characteristics of PAAD [7], comprehensive analyses of
the tumour immune microenvironment (TIME) to im-
prove our understanding of tumour heterogeneity and to
explore novel biomarkers for early diagnosis, prognostica-
tion, and targeted therapies have been insufficient [8].
Although considerable progress have been achieved in
studies on PAAD genomic and immune landscapes and
have recently fostered the exploitation of targeted
therapies, they have only benefited a small number of
patients [9]. According to the results of some clinical
trials, pathway-specific targeted therapies have failed to
provide clinically significant benefits for PAAD patients
[6]. In addition, combining chemotherapy with immune
checkpoint blockade therapy has been very successful in
breast, lung, and gastric cancers [10, 11] but not in
PAAD. Among the most immune-resistant cancers, dual
checkpoint blockade targeting T cell inhibition, includ-
ing CTLA-4 and PD-L1, also showed unsatisfactory
results [12]. Although the reasons are not entirely clear,
diverse and complex TIMEs containing not only PAAD
cells but also immune cells, stromal cells, and bone
marrow-derived cells may be responsible for the poor
efficacy of targeted therapies [13]. More importantly,
PAAD shows an immunologically “cold” TIME charac-
terized by typical myeloid cell infiltration without CD8+
T cells [14], and eliminating immunosuppressive cells
and elements within the TIME may resolve this
conundrum [15]. Therefore, a compressive understand-
ing of TIME complexity and heterogeneity, as well as
biological interactions between PAAD cells and TIME

components, may help to elucidate chemoresistance and
explore novel diagnostic and therapeutic targets.

Previous studies have sought to delineate the special
correlation between alternative splicing events (ASs) and
the formation of the TIME of cancer cells [16]. ASs are
some of the most important forms of mRNA processing
at the posttranscriptional level, and approximately 94%
of human genes are modified by ASs [17, 18]. Abnormal
forms of ASs may cause structural and functional
variation at the protein level, which drives a variety of
malignant phenotypes, including those related to the
angiogenesis, invasiveness, and chemoresistance of tu-
mours [19, 20]. More importantly, numerous ASs have
recently been determined to be neoantigens suitable for
immunotherapy [21]. In addition, ASs can also regulate
immunocytolytic mechanisms and affect the level of im-
mune cell infiltration [22]. Although Lu et al. and Rong
et al. systematically analysed prognostic AS events and
their regulatory mechanisms in PAAD, neither study
started from the perspective of the TIME. Therefore, we
further investigated the underlying regulatory mecha-
nisms between ASs, the TIME and prognosis in PAAD.

In this research, we utilized the ESTIMATE algorithm
to evaluate the abundance of stromal and immune cells
in PAAD patients by calculating corresponding scores
and generated Kaplan—Meier curves to determine prog-
nostic significance among patients with different stro-
mal/immune scores. According to the differentially
expressed ASs (DEASs) identified from the perspective
of the TIME, we developed and validated a prognostic
signature and an AS clinical nomogram. Moreover, com-
prehensive analyses were performed with respect to
functional annotation, tumour mutation, immune infil-
tration, immune checkpoint gene expression, and AS-
splicing factor (SF) networks were generated to identify
the molecular mechanisms underlying the TIME and
immunotherapy.

Method and materials

Data acquisition and preprocessing

RNA sequencing data of PAAD patients were obtained
from the TCGA database (https://tcgadata.nci.nih.gov/
tcga/), and corresponding clinical characteristics were
extracted from the cBioPortal database. A total of 177
PAAD patients with complete RNA sequencing data
and available survival information were enrolled in
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this study. Information on seven types of ASs was ac-
quired from the TCGA SpliceSeq database [23], and
the percent spliced in (PSI) value was applied to
quantify them. To ensure the rigor of the study, only
ASs with average PSI values larger than 0.05 were se-
lected. Finally, 174 PAAD patients with appropriate
AS data were included.

Exploring the prognostic value of the stromal/immune
scores of PAAD patients

Tumour cells promote various biological behaviour
changes through direct or indirect interactions with stro-
mal cells and immune cells, including inhibiting apop-
tosis, proliferation, angiogenesis, and immune tolerance
[24]. To determine the proportions of stromal and im-
mune cells in PAAD patients, stromal/immune scores
were computed from the RNA sequencing data using
the ESTIMATE algorithm. Moreover, we further investi-
gated the association between stromal/immune scores
and the prognosis of PAAD patients by classifying pa-
tients into high/low-stromal/immune score groups using
X-tile software, which was utilized to infer the first-rank
cut-off values of continuous variables for survival analysis.
Subsequently, Kaplan—Meier (K-M) survival analyses were
performed to assess the clinical significance of stromal/
immune scores.

Profiling differentially expressed ASs (DEASs) according to
stromal/immune scores

To identify tumour-related ASs from the perspective
of the TIME, differential analyses were performed
based on the PSI values of ASs between PAAD
patients in the low-stromal and high-stromal score
groups and low-immune and high-immune score
groups with the “limma” package. Considering that
the PSI values of ASs, which ranged from 0 to 1,
were relatively small, expression differences were
assessed according to the relaxed standard of log2-
fold change (log2FC). Only ASs with a false discov-
ery rate (FDR) <0.05 and |log2 FC|>0.5 were deter-
mined to be differentially expressed ASs (DEASs). As
the DEASs were identified between the different
stromal/immune score groups, including upregulated
ASs and downregulated ASs, we generated two Venn
plots to screen valuable TIME-related DEASs that
were upregulated or downregulated in the high-
stromal and high-immune score groups. Accordingly,
Upset plots were utilized to illustrate the interactive
sets between the seven types of DEASs, as well as
ASs before selection, including Alternate acceptor
site (AA), Exon skip (ES), Retained intron (RI),
Alternate terminator (AT), Mutually exclusive exon
(ME), Alternative donor site (AD), and Alternate
promoter (AP) [25] (Fig. 2C).
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Functional annotation analysis

To further investigate the underlying mechanisms, the
“Metascape” website tool was used (http://metascape.
org/) for functional annotation analysis, which involved
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG). Results with an adjusted P value
< 0.05 were identified, and the top 20 important terms in
both GO and KEGG analyses were visualized.

Establishment of the TIME-related signature on the basis
of DEASs

To illustrate OS-related DEASs in PAAD patients, we
utilized univariate Cox regression analysis to mine
DEASs with clinical significance. For the identified OS-
related DEAS, we implemented LASSO regression
analysis to select the most appropriate candidates with
the “glmnet” package [26]. Finally, based on the optimal
OS-related DEASs in the LASSO analysis, we established
a TIME-related prognostic signature using the multivari-
ate Cox proportional risk model. The risk score of indi-
vidual PAAD patients was calculated using the following
equation:

riskScore = Z B;*PSI of DEAS;

i=1

Here, “ f5; 7 is the regression coefficient of DEAS;, and
PSI of DEAS, is the PSI value of DEAS,;.

To assess the performance of the signature, the me-
dian risk score was considered to be a uniform cut-off
threshold to categorize the PAAD patients into two risk
groups (high risk vs. low risk). Then, we generated K-M
survival curves to graphically demonstrate OS between
the two groups. Furthermore, time-dependent receiver
operating characteristic (ROC) curves for predicting
PAAD patients’ clinical outcomes at 1-3years were
employed to verify the performance of the signature.

Independence test of the TIME-related signature and
nomogram construction

PAAD patients with complete clinical predictors were
enrolled to evaluate the independence of the TIME-
related signature, which included sex, age, tumour
size, tumour grade, margin status, radiotherapy, N
stage, T stage, and AJCC stage. For this purpose, we
implemented univariate and multivariate Cox regres-
sion analyses to mine independent predictors. The
TIME-related signature and clinical characteristics
with P<0.05 in the multivariate analysis were incor-
porated into nomogram establishment with the “rms”
package. Then, time-dependent ROC and calibration
curves at 1-3years were generated to visualize the
discrimination of the AS clinical nomogram.
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Splicing correlation network construction

Splicing factors (SFs), which play a vital role in regulat-
ing ASs, were obtained from the SpliceAid2 database
[27]. In total, data on 385 SF expression levels were
extracted from the RNA sequencing of PAAD patients.
Then, Pearson correlation analysis was implemented to
identify the underlying regulatory mechanisms between
OS-related DEASs and SFs. To develop a rigorous regu-
latory network, we set strictly restricted conditions of
R>0.8 and P <0.0001 to denote a statistically significant
relationship. In addition, to better illustrate the relation-
ships between SFs and OS-related DEASs, the AS-SF
network was constructed by Cytoscape [28].

Evaluation of tumour mutation, immune infiltration, and
immune checkpoint gene expression between the low-
risk and high-risk groups

Two waterfall plots were generated to demonstrate gen-
etic mutations in the low-risk and high-risk groups with
the “maftools” packages. Moreover, to understand the
immune characteristics between different risk groups,
we utilized the “CIBERSORT” package to determine the
fractions of 22 infiltrating immune cell types, and only
PAAD patients with significant results (P<0.05) were
identified. Meanwhile, the expression levels of 15 im-
mune checkpoint genes considered targets for cancer
immunotherapy were extracted from the RNA-
sequencing data. Then, Wilcoxon analysis was employed
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to compare the infiltration levels of the 22 immune cell
types and the expression levels of the 15 immune check-
point genes between different risk groups. In addition,
significantly differentially expressed cells/genes were in-
cluded in correlation analyses with riskScores for deeper
exploration.

Statistical analysis

All statistical analyses were implemented in R (version
4.0.2), and a P value <0.05 (two-sided) was regarded as
statistically significant with the exception of the selection
of rigorous DEAS-related SPs (P < 0.0001).

Results

Stromal/immune scores are associated with the prognosis
of PAAD patients

The flow chart of this study is shown in Fig. 1. In total,
177 PAAD patients with complete survival information
and transcriptome data were enrolled, including 145
(81.92%) with pancreatic ductal adenocarcinoma (PDAC),
4 (2.26%) with pancreatic colloid carcinoma, 1 with pan-
creatic undifferentiated carcinoma, and 27 (15.26%) with
other PAAD types, and their characteristics and clinical
data are shown in Table 1. Overall, the stromal score of
the cohort ranged from - 1463.77 to 1929.31, and the im-
mune score was distributed between -1026.21 and
2944.98. According to the X-tile (Supplementary Fig. 1),
we divided patients into high/low-stromal score groups
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Table 1 Clinicopathologic characteristics of patients with PAAD
Whole cohort (n=177)

Characteristics

Gender
Male 97 (54.80%)
Female 80 (45.20%)
Age
<65 81 (45.76)
265 96 (54.24%)
Grade
G1-2 125 (70.62%)
G3-4 50 (28.25%)
Unknow 2 (1.13%)
Histology type
Pancreatic ductal adenocarcinoma 145 (81.92%)
Pancreas colloid carcinoma 4 (2.26%)
Pancreas undifferentiated carcinoma 1 (0.56%)
Other subtype 27 (15.26%)
T stage
TIHI 31 (17.51%)
TIH-IV 144 (81.36%)
Unknow 2 (1.13%)
N stage
NO 50 (28.25%)
N1 122 (68.93%)
Unknow 5 (2.82%)
AJCC Stage
Il 166 (93.79%)
-1V 9 (5.08%)
Unknow 2 (1.13%)
Survival status
Dead 92 (51.98%)
Alive 85 (48.02%)

(cut-off value: -318.43) and high/low-immune score
groups (cut-off value: 188.30). Then, K-M survival curves
implied that patients with lower stromal scores (n =18)
presented a favourable survival time compared to patients
with higher stromal scores (7 =159) (P =0.026) (Fig. 2B).
In addition, the 18 patients in the low-immune score
group also presented a better survival probability than the
159 patients in the high-immune score group (P =0.019)
(Fig. 2A). Generally, the above results indicated that stro-
mal and immune scores are both significantly related to
the clinical outcomes of PAAD patients.

Identification of DEASs in PAAD from the perspective of
the TIME

As displayed in Fig. 2C, seven types of ASs were ex-
tracted from TCGA-SpliceSeq to identify potential ASs
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related to the formation of the TIME. From the perspec-
tive of immunity, the differential analysis between the
low-immune score group (n = 18) and the high-immune
score group (n = 156) revealed 1147 DEASs (Supplemen-
tary Table 1), including 548 upregulated DEASs and 599
downregulated DEASs (Fig. 3A-B). For stromal cells, 718
corresponding DEASs between the low-stromal score
group (n=17) and the high-stromal score group (n=
157) were identified (Supplementary Table 2), including
424 upregulated DEASs and 294 downregulated DEASs
(Fig. 3C-D). Notably, intersecting DEASs, which were
interpreted as either upregulated in both the high-
immune and high-stromal score groups or downregu-
lated in both the low-immune and low-stromal groups,
were identified to be the most relevant genes associated
with the TIME and prognosis of PAAD. Thus, 235 com-
monly upregulated DEASs and 202 commonly downreg-
ulated DEASs were mined, as shown in Venn diagrams
(Fig. 3E-F). To intuitively illustrate the distribution char-
acteristics of ASs and their mutual intersections, two
UpSet plots were generated, including one before
screening (Fig. 3G) and one after screening (Fig. 3H).
Interestingly, ES events were the most frequent events
before screening, and the numbers of AP and AT events
associated with TIME formation were the highest. In
summary, 437 candidate TIME-related DEASs were sig-
nificantly associated with the OS of PAAD patients and
warrant further research.

Functional enrichment analysis

The results of GO and KEGG annotation analyses are
displayed in Fig. 4A-B. We found that the top 20 results
of the GO analysis included actin filament base process,
cell-matrix adhesion, cell-substrate junction, regulation
of cell adhesion, protein domain-specific binding,
protein domain-specific binding, guanyl-nucleotide ex-
change factor activity, small GTPase-mediated signal
transduction, positive regulation of hydrolase activity,
regulation of cellular protein localization, and cell adhe-
sion molecule binding (Fig. 4A), the dysregulation of
which are pivotal factors in carcinogenesis and progres-
sion. In addition, KEGG pathway analysis also revealed
some tumour-related and immune-related pathways, in-
cluding the Ras signalling pathway, the T cell receptor
signalling pathway, human immunodeficiency virus 1
infection, the JAK-STAT signalling pathway, the MAPK
signalling pathway, autophagy, the PPAR signalling
pathway, and the TNF signalling pathway (Fig. 4B). The
results indicated that TIME-related DEASs may serve
as important intermediaries in PAAD tumorigenesis,
and stromal and immune cell dysfunction can indirectly
or directly affect the biological activity of PAAD cells,
including proliferation, apoptosis inhibition, and
immune tolerance.
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Construction of the TIME-related prognostic signature
based on DEASs

Early diagnosis of cancers and detection of underlying
targets remain essential problems in clinical practice,
and ASs in the TIME may serve as biomarkers with
prognostic value in PAAD. Therefore, we further ex-
plored the potential prognostic significance of DEASs
identified in the above study. First, among 437 intersect-
ing DEASs, 183 DEASs were determined to be signifi-
cantly related to the OS of PAAD patients by univariate
Cox regression analysis (Supplementary Table 3).
Subsequently, we performed LASSO regression analysis
(Supplementary Fig. 2), and 16 optimal OS-related
DEASs were identified. Ultimately, multivariate Cox
analysis was implemented, and seven DEASs were uti-
lized to establish a TIME-related prognostic signature

(Supplementary Table 4). Additionally, riskScores were
calculated based on the seven DEASs (riskScore = 2.125*
NUMB|28,294|ES - 3.606* RSRC2|24,970|ES + 3.509*
TMC6|43,753|AP - 2.466* CASP8|56,814|AP - 1.678*
TRIO|71,582|AP - 1.706* ZC4H2|89,317|AP -2.743*
COMMD5|85,672|AP), and PAAD patients were classi-
fied into high- and low-risk groups based on the median
value. As shown in Fig. 5A, compared with the patients
in the high-risk group (n = 87), the patients in the low-
risk group (n=87) presented a significantly lower inci-
dence of death and favourable OS. Furthermore, the
time-dependent ROC curves demonstrated that the
AUCs of the TIME-related prognostic signature for
evaluating 1-, 2-, and 3-year OS were 0.785, 0.742, and
0.759, respectively (Fig. 5B), indicating that the signature
can serve as a precise predictive tool. To visually show
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differences in riskScores and the expression levels of the
seven DEASs between different risk groups, riskScore
plots, survival plots, and expression heatmaps (Fig. 5C-
E) were generated. Additionally, considering that histo-
logically different PAAD types arising from different
cells may present differing prognoses, we further evalu-
ated the predictive power of the signature in patients
with pancreatic ductal adenocarcinoma (PDAC). As
shown in Supplementary Fig. 3A-B, the AUCs of PDAC
patients for predicting 1-, 2-, and 3-year OS were 0.773,
0.703, and 0.695, respectively, and KM survival curves
also revealed that high-risk PDAC patients had a worse
prognosis.

Development of the AS clinical nomogram integrating

the TIME-related signature and clinical parameters

To further understand the prognostic significance of the
AS signature for clinical application, univariate and
multivariate Cox regression analyses were implemented.
As displayed in Fig. 6A, the Cox analyses revealed that
in addition to the riskScore being one of the

independent prognostic parameters for PAAD patients,
age, N stage, and margin status were also independent
OS-related factors. Subsequently, on the basis of four in-
dependent variables, a quantitative AS clinical nomo-
gram was constructed for the risk assessment of survival
in newly diagnosed PAAD patients (Fig. 6B). The C-
index was 0.755 (95%CI = 0.694 ~ 0.816). Similarly, the
ROC curves showed that the AUCs of the nomogram
were 0.804, 0.804 and 0.762 at 1, 2, and 3 years (Fig. 6C),
respectively, which were significantly higher than those
for the single TIME-related prognostic signature. More-
over, the calibration curves for the 1- to 3-year OS prob-
abilities for PAAD patients also indicated good
consistency between the nomogram-predicted outcome
and the actual result (Fig. 6D-F). Similarly, we also tested
the predictive power of the nomogram in PDAC patients
(Supplementary Fig. 3C-D). Compared with the low-risk
group patients, PDAC patients in the high-risk group
presented an extremely poor prognosis, and the AUCs
were 0.801, 0.780, and 0.707 at 1, 2, and 3 years, respect-
ively. These results suggested that the comprehensive
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Fig. 4 Functional enrichment analysis of 437 candidate DEASs. A Bar graph of the 20 most significant terms from GO functional annotation. B Bar

AS clinical nomogram exhibited a stable and robust abil-
ity to evaluate the prognosis of PAAD patients.

Pathway and immune signature enrichment analyses and
GSEA

To explore the underlying biological activities and im-
mune signatures involved in the heterogeneity between
different risk groups, 597 differentially expressed genes
(DEGs) were identified (P<0.05 and |log2FC|>1)
(Supplementary Table 5). These DEGs were mainly
enriched in “WT vs. PPARG KO LN TREG DN”, “MEM-
ORY vs. NAIVE CD8 TCELL IL7 IL4 UP”, “IMMATURE
CD4 SING POSITIVE vs. DOUBLE POSITIVE THYMO-
CYTE UP”, “CLASSSICALY ACTIVATED vs. TYPE 2 AC-
TIVATED MACROPHAGE DN”, “NABA MATRISOME
ASSOCIATED”, “IN VIVO NTREG vs. IN VITRO ITREG

UP”, “VIVO NTREG vs. IN VITRO ITREG UP”, “DEC205
POS DC vs. BCELL UP”, “MATURE vs. INTMATURE
NKCELL UP”, and “UNTREATED vs. IL12 TREATED
ACT TCELL UP”, with immune-associated signatures ac-
counting for most results (Fig. 7A). Furthermore, GSEA de-
termined that several cancer hallmarks were significantly
higher in the high-risk groups, including Mtorcl signalling,
Myc targets v1, mitotic spindle, protein secretion, TGE-
beta signalling, and G2M checkpoint (Fig. 7D). These data
may provide novel insights into the biological activities as-
sociated with TIME-related DEASs.

Evaluation of tumour mutation and immune
characteristics between different risk groups
The tumour mutation burden (TMB) has a vital role in
tumour occurrence and progression and affects the
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immunotherapy response and prognosis of PAAD [29].
According to mutation data, 118 PAAD patients had
mutated genes, and the top five mutated genes were
TP53, KRAS, TTN, MUCI16, and SMAD4 (Fig. 8A).
Additionally, somatic interactions among the top 20 mu-
tated genes were generated (Fig. 8B). Then, we com-
pared the most frequent somatic mutations between
different risk groups. As displayed in Fig. 8C and D,
among the top five mutated genes, the mutation fre-
quencies of TP53 (68% vs. 39%), KRAS (67% vs. 36%),
CDKN2A (25% vs. 9%), and SMAD4 (21% vs. 15%) were
higher in the high-risk group, indicating that patients in
the high-risk group were more suitable for immune
checkpoint blockers (ICBs) to achieve a better prognosis.

A comprehensive understanding of different tumour
immune phenotypes plays an essential role in predicting
immunotherapeutic responsiveness [14]. Thus, we evalu-
ated the infiltration levels of 22 types of immune cells in

the TIME and the expression of 15 immune checkpoints
between the low- and high-risk groups (Supplementary
Figs. 4 and 5). Overall, most immune checkpoints and
infiltrating immune cells were not significantly different.
However, the infiltration levels of CD8 T cells (P<
0.0001), activated CD4 memory T cells (P =0.029), and
regulatory T cells (P=0.0187) were higher in the low-
risk group (Fig. 8E), which indicated that activated T
cells in the TIME could inhibit the biological activity
and growth of tumour cells, leading to a favourable
prognosis. For the five significant immune checkpoints
between the two risk groups, the high-risk group had
higher expression levels of CD276, PVR, CD47, and PD-
L1 and tended to have a positive response to specific
ICBs (Fig. 8 H), which was consistent with the mutation
pattern results. In addition, the associations between
riskScores and the three significant T cell types, includ-
ing CD8 T cells (R =-0.37, P <0.0001), activated memory
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CD4 T cells (R=-0.16, P=0.081), and regulatory T cells
(R=-0.27, P=0.0026) (Fig. 8F), and five immune check-
point genes, including CD47 (R=0.32, P<0.0001),
CD276 (R =0.34, P<0.0001), LAG3 (R=-0.11, P=0.13),
PD-L1 (R=0.31, P<0.0001), and PVR (R=0.21, P=
0.0059) (Fig. 8G), were analysed. The results revealed
that the TIME-related prognostic signature is also

promising and effective for recognizing patients’ re-
sponse to immunotherapy.

Construction of the AS-SF regulatory network

To investigate whether DEASs are regulated by particular
SFs in PAAD, we first identified 48 pairs of interactions be-
tween six SFs and 10 DEASs (Supplementary Table 6). A
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correlation plot was drawn to illustrate concrete correlation
coefficients among 48 pairs of interactions between different
risk groups (Supplementary Fig. 6A), and the AS-SF regula-
tory network is visualized in Supplementary Fig. 6B.

revealing

Interestingly, we found that one SF can regulate different
ASs, and some ASs can also be regulated by different SFs,
complex
relationships.
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Discussion

Tumours are a complex mixture of malignant cells, stro-
mal cells, and immune cells that usually have substantial
levels of intratumour and intertumour heterogeneity. In
addition to these cells, the TIME also includes a com-
bination of tumour-promoting and antitumour signals
that can be used to develop effective immunotherapies
[30]. However, the failure of immunotherapy to improve
the prognosis of PAAD might be explained by both the
high molecular heterogeneity of this disease and low im-
mune activation [31]. The immunosuppressive nature of
the PAAD TIME is characterized by inhibition of ef-
fector T cells or antigen-presenting cells and a strong
barrier created by tumour cells to exclude immune cells
[32-34]. In recent years, ASs, which are regarded as the
mechanisms by which pre-mRNA is edited to acquire
mature mRNA, have been found to have significant rela-
tionships with TIME formation. Therefore, performing a
comprehensive analysis of ASs is a promising strategy
for characterization of the TIME and elucidation of the
role of ASs in immunotherapy and prognosis prediction.

Our study is the first to report that PAAD patients with
different abundance levels of stromal cells and immune
cells showed significantly different prognostic outcomes.
Based on the TIME-related DEASs, a prognostic signa-
ture showing independent predictive ability and an AS
clinical nomogram were established for precise prognos-
tic predictions. In addition, we determined that the sig-
nature built from the perspective of the TIME has good
performance in assessing the tumour mutation burden,
immune cell infiltration, especially CD8 T cells, the ex-
pression levels of five immune checkpoint genes, and the
response to immunotherapy.

Tumour-stromal extracellular matrix interactions are
critical in PAAD pathophysiology, and more advanced
TIME studies are needed to better understand the
mechanisms of PAAD [35]. With the aim of elucidating
the potential effect of the TIME on PAAD cells, we im-
plemented the ESTIMATE algorithm to infer the pro-
portions of stromal and immune cells and calculated
corresponding scores. To explore the role of ASs in the
context of the TIME and prognosis of PAAD, 437
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TIME-related DEASs were obtained. Functional annota-
tion analysis determined that DEASs were primarily in-
volved in actin filament base processes, cell-matrix
adhesion, cell-substrate junctions, regulation of cell adhe-
sion, negative regulation of intracellular signal transduc-
tion, and small GTPase-mediated signal transduction, the
dysregulation of which may lead to the occurrence and
progression of PAAD [36, 37]. Continuous cell-cell and
cell-matrix interactions maintain the TIME; thus, fully un-
derstanding the latent mechanisms underlying DEASs
helps to overcome hurdles in immunotherapeutic strat-
egies. Moreover, the KEGG pathway analysis also implied
that TIME-related DEASs may have clinical application
potential in PAAD. To achieve constant proliferation,
PAAD cells need a continuous RAS signalling pathway
and MAPK signalling pathway. Any mutations that inacti-
vate GTPase constitutively activate Ras signalling and in-
duce PAAD progression [38]. The recruited and activated
MAPK signalling pathway elements lead to the inflamma-
tion, apoptosis, proliferation, and carcinogenesis of pan-
creatic cells [39]. Increasing evidence has revealed that the
infiltration and preferential accumulation of tumour
antigen-specific T cells in PAAD are crucial to PAAD cell
clearance and long-term remission [40].

In the present study, the clinical significance of DEASs
was also explored. A TIME-related prognostic signature
based on seven DEASs was constructed and validated to
be an independent predictive tool. Some abnormally reg-
ulated genes in our prognostic signature participated in
tumour initiation and development, including NUMB,
RSRC2, TMC6, CASP8, TRIO, and COMMDS5. NUMB
endocytic adaptor protein (NUMB), a cell fate determin-
ant in asymmetric cell division, is strongly correlated
with the development and progression of pancreatic can-
cer [41]. Wang et al. reported that SRPK2 actively in-
creases cell invasion and migration and chemotherapy
resistance in oxaliplatin-treated PAAD cells [42]. RSRC2,
a tumour suppressor gene, was first found to inhibit
oesophageal cancer cell proliferation and affect survival
[43]. Liu et al. found that TRA2A can target RSRC2 AS
to confer paclitaxel resistance and promote tumour pro-
gression in breast cancer [44]. Imahorn et al. revealed a
novel TMC6/8 splice site mutation interlinked with
HPV infection and cervical cancer [45]. CASP8 plays a
significant role in the apoptosis pathway, and its abnor-
mal expression is associated with tumour cell differenti-
ation, the cancer risk, and prognosis [46]. Interestingly,
Zou et al. demonstrated that CASP8 inhibited PD-L1
expression by upregulating A20 expression and that
decreased CASP8 was associated with sensitivity to anti-
PD-L1/PD-1 immunotherapy [47]. Amplification of
TRIO and COMMDS5 proteins has also been reported in
various types of cancer, suggesting an oncogenic func-
tion [48, 49]. Hence, our TIME-related signature
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incorporating these six DEASs might be helpful for early
diagnosis and prevention in clinical practice.

Currently, PAAD is a type of tumour considered un-
suitable for immunotherapy, and low response rates have
been observed in clinical trials [6]. By resolving the
unique classes and subclasses of the TIME existing
within individual PAAD patients, the ability to predict
and direct immunotherapeutic responsiveness will be
improved, and new therapeutic targets will be identified.
In this study, we mined seven DEASs from the perspec-
tive of the TIME and constructed a prognostic signature
to evaluate the response to immunotherapy and clinical
outcomes of PAAD patients. High-risk group patients
with unsatisfying outcomes presented higher mutation
patterns and may respond positively to immunotherapy,
which is consistent with the conclusion reached by Tang
et al. [50]. Unexpectedly, our signature revealed that
high-risk PAAD patients have lower infiltration levels of
CD8 T cells, regulatory T cells, and activated memory
CD4 T cells. Previous studies determined that a lack of
CD8+ T cell infiltration in the TIME was the key to the
failure of immune checkpoint blockade as an effective
treatment for PAAD [51]. In contrast, the results implied
that high-risk patients are not suitable for immunother-
apy, which is inconsistent with the recommendation de-
duced from tumour mutation patterns. To further
investigate the molecular mechanisms underlying the
TIME of PAAD, we compared the expression levels of
15 immune checkpoint genes between different risk
groups and found the answer. High-risk patients with
significantly higher expression levels of CD276, PVR,
CD47, and PD-L1 may be more sensitive to inhibitors of
these four target genes, while low-risk patients with
higher expression of LAG3 may respond positively to
immunotherapy for this target. However, a more detailed
understanding of the cross-talk within the TIME of
PAAD and the potential mechanism of resistance to im-
munotherapy requires rigorously designed single-cell
RNA-seq studies. In general, we established a precise
prognostic prediction tool to infer tumour progression,
enhance prognostic precision, and optimize the immu-
notherapeutic effect. In addition, intricate ASs are or-
chestrated by restricted SFs, the dysregulation of which
is associated with the onset of cancers [52]. An AS-SF
regulatory network was constructed to illustrate the
transcriptional mechanism of gene regulation, providing
a novel perspective for the study of immunotherapeutic
targets and resistance mechanisms.

From the perspective of the TIME, we successfully
constructed prognostic DEASs, signatures, an AS clinical
nomogram, and regulatory networks related to tumori-
genesis, the TIME, and immunotherapy. Nevertheless,
the present study has some limitations. First, this was a
retrospective study, and all data were extracted from the
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public TCGA database. Due to the limitation of variable
AS data, our predictive models were not validated in
other databases. Second, although ESTIMATE/CIBE-
RATE algorithms can infer the infiltration levels of im-
mune and stromal cells based on bulk RNA-sequencing
data, our research cannot determine which cell types
contribute to abnormal ASs. Finally, this study provided
novel strategies for predicting and improving PAAD pa-
tients’ response to immunotherapy, but further
biological experiments and clinical trials are urgently
needed to verify the conclusions.

Conclusion

In summary, we found that PAAD patients with differ-
ent abundance levels of stromal cells and immune cells
showed significantly different prognostic outcomes and
extracted a list of DEASs associated with the TIME
through the ESTIMATE algorithm. A robust TIME-
related prognostic signature based on seven DEASs was
constructed to predict the prognosis of PAAD patients,
and the signature was significantly correlated with
tumour mutation, TIME diversity, immune checkpoint
gene expression, and the response to immunotherapy,
which may guide advanced decision-making for person-
alized precision interventions.
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