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Abstract

Background: Functional genomics employs several experimental approaches to investigate gene functions. High-
throughput techniques, such as loss-of-function screening and transcriptome profiling, allow to identify lists of
genes potentially involved in biological processes of interest (so called hit list). Several computational methods exist
to analyze and interpret such lists, the most widespread of which aim either at investigating of significantly
enriched biological processes, or at extracting significantly represented subnetworks.

Results: Here we propose a novel network analysis method and corresponding computational software that
employs the shortest path approach and centrality measure to discover members of molecular pathways leading to
the studied phenotype, based on functional genomics screening data. The method works on integrated
interactomes that consist of both directed and undirected networks – HIPPIE, SIGNOR, SignaLink, TFactS, KEGG,
TransmiR, miRTarBase. The method finds nodes and short simple paths with significant high centrality in
subnetworks induced by the hit genes and by so-called final implementers – the genes that are involved in
molecular events responsible for final phenotypic realization of the biological processes of interest. We present the
application of the method to the data from miRNA loss-of-function screen and transcriptome profiling of terminal
human muscle differentiation process and to the gene loss-of-function screen exploring the genes that regulates
human oxidative DNA damage recognition. The analysis highlighted the possible role of several known myogenesis
regulatory miRNAs (miR-1, miR-125b, miR-216a) and their targets (AR, NR3C1, ARRB1, ITSN1, VAV3, TDGF1), as well as
linked two major regulatory molecules of skeletal myogenesis, MYOD and SMAD3, to their previously known
muscle-related targets (TGFB1, CDC42, CTCF) and also to a number of proteins such as C-KIT that have not been
previously studied in the context of muscle differentiation. The analysis also showed the role of the interaction
between H3 and SETDB1 proteins for oxidative DNA damage recognition.

Conclusion: The current work provides a systematic methodology to discover members of molecular pathways in
integrated networks using functional genomics screening data. It also offers a valuable instrument to explain the
appearance of a set of genes, previously not associated with the process of interest, in the hit list of each particular
functional genomics screening.

Keywords: Network analysis, Molecular pathway, Centrality, Loss-of-function screening, Muscle differentiation, DNA
repair
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Background
Functional genomics employs diverse experimental ap-
proaches to investigate gene functions. High-throughput
techniques, such as loss-of-function screening and transcrip-
tome profiling, allow the identification of specific sets of
genes involved in biological processes of interest (so called
hit list of genes). Genome-wide loss-of-function screenings
exploit gene knock-down or knock-out at the scale of whole
genomes. In the context of such screens, RNA interference
[1–6], or CRISPR [7–9] libraries are systematically tested in
cell-based assays specific to biological function of interest
leading to the identification of the regulator genes [10]. Tran-
scriptome profiling aims at profiling mRNA expression
levels, e. g. in 2 or more conditions, and at identifying those
genes that are up or down regulated. The most widespread
techniques for transcriptome profiling are DNA microarrays
and RNA-seq techniques [11, 12].
Numerous computational methods for interpretation

of functional genomics data sets, inferring molecular
machinery underlying a given biological process, have
been developed in the past decade, and can be roughly
grouped into two categories. The first category encom-
passes pathways analysis methods, aiming at searching
for statistical enrichment of genes with annotated bio-
logical process or molecular functions. The classical rep-
resentatives of the pathways analysis methods are Over
Representation Analysis (ORA) methods, which use a
statistical test to assess the enrichment of a list of genes
in an annotated biological process, molecular function
or canonical pathway. The most commonly used statis-
tical tests are based on the hypergeometric, Fisher’s
exact, chi-square, or binomial tests [13]. Several im-
provements of the standard ORA were developed, in-
cluding functional class scoring approaches that aim at
detecting coordinated changes in pathways [13] and
topology-based approaches that consider pathway top-
ology, connectivity and interactome information [14, 15].
The second category is network analysis methods

which use molecular interaction networks as a support-
ing information [16]. Such methods can help to find
functionally related biological components in a func-
tional genomics data set. This can be achieved in several
ways: by introducing network-based scoring methods
using e. g. “guilt by association” principle and informa-
tion from both network topology and screening results
[17]; by introducing the use of the connectivity of sub-
graphs of protein-protein interaction networks [18]; by
using network neighbor information [19]; by performing
functional analysis that relies on assessing the clustering
of selected nodes on the network [20]; by extracting the
largest connected component of a subnetwork that is
created from the optimal number of the top-ranked
genes [21]. Another way to use molecular interaction
networks is to find significantly enriched subnetworks

within a functional genomics data set. Even manual in-
vestigation of such subnetworks can give biologically
meaningful results [22, 23]. The molecular interactions
networks can be integrated with other types of biological
information to achieve higher network specificity: with
canonical pathways [24, 25]; with different types of regu-
latory interactions [25–27]. Moreover, subnetworks can
be analyzed for finding functional modules [28, 29].
Here we present a novel network analysis method to

analyze functional genomics data sets. The method uses
the results of functional screening data to elucidate
members of molecular pathways that contribute to the
studied phenotype. In contrast to other network analysis
methods that work on the level of subnetworks, our
method searches for short paths and separate nodes spe-
cific to a biological system. Moreover, it shows how hit
genes can be associated with these specific paths and
nodes. The method works on an integrated interactome
(network of molecular interactions) of an organism
under investigation. The main theoretical assumption
underlying the algorithm is that an observed phenotypic
effect of a gene knockdown/knockout, measured as a
read-out of a loss-of-function screen, is a sum of the ef-
fects of the gene silencing on all molecular pathways in-
fluencing the realization of the phenotypic effect. This
hypothesis explains the appearance in the hit list of each
particular loss-of-function screen of a set of genes, previ-
ously not associated with the process under investiga-
tion, because a knockdown of each of these genes can
trigger several particular molecular pathways, specific for
this biological system. On the other hand, the method,
built based on this hypothesis, is able to determine a set
of the most important pathways in a particular biological
system, using the list of hit genes from a genome-wide
loss-of-function screen.
According to this theory, the shortest paths from all

hit genes to so called final implementers (the genes that
are involved in molecular events responsible for final
phenotypic realization) are built within the integrated in-
teractome network, and the corresponding subnetwork
is extracted.
Next, centrality scores for each node (respective each

linear path) in the subnetwork are calculated as the
number of the shortest paths that pass through the node
(respective the number of the shortest paths for which
linear paths are subpaths). Then, the statistical signifi-
cance of each centrality score is assessed by comparing
it with centrality scores in subnetworks built from the
shortest paths for randomly generated hit lists preserving
the degree distribution of the initial hit list. We
hypothesize that the nodes and the linear paths with sta-
tistically significant centrality score can be considered as
putative members of active molecular pathways leading
to the studied phenotype.
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The method works with the shortest paths approach
to find connections between hit genes and final imple-
menters. It can be expected that this approach can yield
incomplete molecular paths especially if biologically
meaningful molecular paths are long since current inter-
actomes are known to be incomplete and contain false-
positive interactions. In this case, high centrality scores
will highlight those segments (nodes and linear paths)
that are parts of many shortest paths between different
pairs of the hit genes and the final implementers which
increases the likelihood that particular segment is spe-
cific to the studied phenotype.
Additionally, we demonstrate that being initially created

for the analysis of loss-of-function screening results, the
method can be well applied for analysis of the results ob-
tained by other high-throughput approaches such as tran-
scriptome profiling. Although, it should be noted that the
main drawback of the transcriptome profiling is that this
technique does not discriminate the mRNAs that are
causal and consequential to the phenotype. Also, we show
that if the current knowledge cannot provide the list of
final implementers of the process investigated by screen-
ing, the program can use a list of hit genes as a list of final
implementers, and that putative molecular pathways ob-
tained by this way have good confidence.
We illustrate the application of the method to the ana-

lysis of the results of loss-of-function screening and
transcriptome profiling of terminal muscle differenti-
ation, and of the results of loss-of-function screening of
a DNA repair process.

Results
MiRNA loss-of-function screen and transcriptome
profiling of human muscle differentiation process
The screening data from the study by A. Polesskaya
et al. [30] was taken as the hit list for terminal human
skeletal muscle differentiation process. In this study,
genome-wide miRNA loss-of-function screening on a
late differentiating human muscle precursor cell line
(LHCN) was performed in a two-step approach. The pri-
mary screening was done in duplicate with a miRNA
antisense inhibitors (Locked Nucleic Acids, LNA) library
targeting 870 miRNAs and a readout assay that detects
Myosin Heavy Chain (MHC) positive and multinucle-
ated myotubes. Those miRNAs whose depletion resulted
in differences to the negative control ≥2 standard devi-
ation (SD) were selected for confirmation in the second-
ary screen. A total of 63 miRNAs (Table S1) whose
depletion resulted in differences to the negative control
≥2 SD were confirmed in the secondary screen.
The transcriptome profiling data from the study by J.

Kropp et al. [31] was taken as the second hit list for ter-
minal human muscle differentiation process. Transcrip-
tome profiling for proliferation and late differentiation

stages in LHCN cell line was performed using Affymetrix
Human Gene 1.1 ST arrays [31]. A total of 571 genes
(Table S2) were found to be differentially expressed genes
with at least 2-fold change between late differentiation
and proliferation stage.
As a list of final implementers of the process of human

muscle differentiation were taken the proteins respon-
sible for activation, inhibition, facilitating of fusion of
myotubes and for the maturation of muscle fibers.
Namely, we have selected two major regulatory cyto-
kines that control the muscle size in vivo and in vitro
(MSTN and IGF2), three key cytoskeletal proteins that
form the contractile apparatus (ACTA1, MYH1, MYLP
F), and six plasma membrane-associated proteins (ARF6,
CD81, CD9, CDC42, EHD2, MYOF) that have been
shown to control the skeletal muscle fusion by a number
of different mechanisms [32–39]. Taken together, these
final implementers represent key molecular mechanisms
of terminal muscle differentiation.
We found 2609 shortest paths of 4 types of length (from

2 to 5 interactions) from each miRNA in the hit list from
loss-of-function screening to each protein in the list of final
implementers. The subnetwork constructed from these
paths consists of 1063 nodes (384 of which are genes) and
2710 edges without duplicated edges. The centrality score
and the p-value were calculated for each node and path in
the subnetwork according the procedure described in the
Methods section. 521 paths of length of 3 to 4 interactions,
with centrality score ≥ 3 and 519 nodes with centrality
score ≥ 3 were found at the false discovery rate (FDR) of
0.25. Analysis of the paths with high centrality scores had
highlighted a possible role for a number of nuclear recep-
tors (AR, NR3C1) in skeletal muscle differentiation, as well
as suggested functions in myogenesis for such proteins as
arrestin (ARRB1 and 2), intersectin (ITSN1), the Rho GTP
exchange factor VAV3, and the teratocarcinoma-derived
growth factor (TDGF1). Interestingly, while the IGF1 regu-
latory role in myogenesis is very well studied, our approach
allowed us to include the arrestin proteins in these path-
ways, and thus to elaborate the known IGF1 network in
skeletal muscle differentiation. The MEF2D, p300, CCND1
functions in differentiation have been abundantly demon-
strated, and their presence among the results serves as a
proof of efficiency of the analysis.
We found 47,714 shortest paths of 4 types of length

(from 1 to 5 interactions) from each gene in the hit list
from transcriptome profiling to each protein in the list
of final implementers. The subnetwork constructed from
these paths consists of 2847 nodes and 13,032 edges
without duplicated edges. The centrality score and the
p-value were calculated for each node and each path in
the subnetwork. 905 paths of length of 3 to 4 interac-
tions and centrality score ≥ 3 and 149 nodes with cen-
trality score ≥ 3 were found at the FDR of 0.25. There

Rubanova et al. BMC Genomics          (2020) 21:632 Page 3 of 12



are 12 miRNAs among these 149 nodes. Three of them
(hsa-mir-125b, hsa-mir-133a, hsa-mir-145) are the hit
miRNAs in the loss-of-function screen. Five miRNAs
with the highest centrality score are hsa-mir-125b, hsa-
mir-371, hsa-mir-216a, hsa-mir-1, has-mir-224. These
miRNAs, except for hsa-mir-371, were shown to be in-
volved in muscle differentiation and/or proliferation
[40–43]. Moreover, almost half of the 12 miRNAs are
known to participate in terminal muscle differentiation,
and potential roles in myogenesis could be predicted for
other miRNAs in this list because they regulate cellular
proliferation (such as miR-132, miR-145 or miR-224), as
well as cardiac hypertrophy (miR-378). Interestingly, the
majority of these miRNAs were not found in the original
loss-of-function screen, most likely due to the redun-
dancy of miRNA family members. Indeed, as the miR-
NAs of the same family share the seed sequence, an
efficient loss-of-function screen should have contained
not only individual miRNA inhibitors, but also the inac-
tivators of whole miRNA families, in order to avoid false
negative results. In this sense, our analysis of these data
has been important in supplementing a group of miRNA
targets that could have been overlooked. This possibility
is highlighted by the presence of known myogenesis
regulatory miRNAs (miR-1, miR-216a) in the list result-
ing from the analysis, whereas they have not been picked
up by the original experimental screen.
The analysis of paths allowed identification of poten-

tially novel pathway in regulation of myogenesis, the
clathrin-coated pathway regulatory protein AP2M1, and
the EH-domain protein EHD2, which links the clathrin
coated transport to actin cytoskeleton, and also binds to
myoferlin, a factor promoting myotube fusion. Together
with integrin subunits ITGA4 and ITGB1, the extracellu-
lar matrix component fibronectin (FN1), and the protein
chaperon HSP90, these proteins indicate a possible in-
volvement of specific protein transport pathways in ter-
minal myogenic differentiation. In addition, there is a
possibility of involvement of beta-catenin (CTNNB1), C-
KIT and PRKC in these processes. It should be noted that
these three regulatory factors, while extensively studied in
a multitude of biological models, have never been shown
to be specifically implicated in skeletal myogenesis. Two
major regulatory molecules of skeletal myogenesis,
MYOD and SMAD3 (Fig. 1 a, b), have been highlighted,
together with their previously known muscle-related tar-
gets (TGFB1, CDC42, CTCF). Also, they are linked to
such proteins as C-KIT, that have not been previously
studied in the context of muscle differentiation.
Next, we compared the lists of nodes and the lists of

paths from two experiments. We found 37 nodes and 20
paths common for both loss-of-function screening and
transcriptome profiling. Among the nodes with the high-
est centrality score, two – IGF1R, E2F1 – have been

suggested to play key roles in the growth, development,
and differentiation of skeletal muscle [44–46]. The path
with the highest score consists of CDKN1A, MDM2,
TCAP, MSTN proteins. The interaction between MDM2
and TCAP is known to be important for cardiac hyper-
trophy [47], it was also shown that TCAP controls secre-
tion of MSTN [48]. Our analysis shows that this path
might be activated by the depletion of hsa-mir-17, hsa-
mir-106a, hsa-mir-125a, hsa-mir-145, hsa-mir-93 (Fig. 1c).
It can also be noted that not only androgen receptor (AR),
but also the estrogen receptor ESR1 can play a role in hu-
man skeletal myogenesis. Interestingly, specific integrins
(ITGB1) and adaptor proteins (CRKL) have also been
found, confirming the importance of certain membrane/
adherence structures. Strikingly, both the receptor of acti-
vated C kinase (RACK1), and the inhibitor of this kinase
(YWHAB, a 14–3-3 protein), as well as multiple other
protein-processing enzymes (casein kinase CSNK1A, acti-
vator or protein secretion CHRM3) were found by the
analysis, attracting the attention to the role of protein me-
tabolism in myogenesis. It was also very interesting to see
the chromosome breakpoint generation factor FRA11B
among these potential novel factors that might impact on
the differentiation of human myoblasts. This comparison
has shown potentially novel paths originating from well-
known actors in muscle differentiation (such as IGF1R -
RACK1 - CD81); and vice versa, has shown that previously
unknown potential regulators of myogenesis, such as
YWHAB or FRA11B, can act upon proteins that are well
known to regulate myotube hypertrophy and/or fusion
(IGF1R, CD81).
The fact that the comparison resulted only in a few

number of paths might indicate, that although these ex-
perimental systems study one biological process, they
characterize the biological machinery at two different
levels: transcriptional (transcriptome) and post-
transcriptional (miRNAs).
We also found that 22 paths from the analysis of tran-

scriptome profiling have miRNAs hits from the loss-of-
function screening and 260 paths from the analysis of
loss-of-function screening have hit genes from the tran-
scriptome profiling on them. These are the paths from
the analysis of transcriptome profiling that pass through
hsa-mir-125b which controls IGF2 gene and the paths
that pass through hsa-mir-145 that control TRIP10 pro-
tein which, according to OMIM database, has highest
expression in skeletal muscle [49] and interacts with
CDC42 protein. Also, when analyzing these paths, one
can notice the factors participating in at least three
major cellular pathways, that, however, have not been
extensively studied in skeletal muscle differentiation.
These factors include beta-transduction repeat contain-
ing protein (BTRC), which has a strong impact on both
beta-catenin and NF-kappa B signaling, as well as the
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Fig. 1 Subnetworks for human muscle differentiation process. Hit genes in miRNA loss-of-function screen are in dark blue, hit genes in
transcriptome profiling are in orange, final implementers are in pink, intermediate genes and proteins are in white. a SMAD3-hsa-mir-145
subnetwork. b SMAD3, MYOD1 subnetwork. c MDM2-TCAP subnetwork
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p53-related protein TP73, and, finally, the protein LRIG1
that has a strong negative effect on the expression of
epidermal growth factor receptor. These pathways repre-
sent promising new directions to follow in order to fur-
ther understand the mechanics of skeletal myogenesis.

Gene loss-of-function screen to identify genes regulating
human oxidative DNA damage recognition
OGG1 is a DNA glycosylase that initiates the repair of 8-
oxoG, a major base modification induced by oxidative stress.
The induction of 8-oxoG results in the recruitment of
OGG1 and the subsequent enzymes of the Base Excision Re-
pair (BER) pathway to chromatin to perform repair [50–52].
A “druggable” loss of function siRNA screening (only genes
from druggable part of the genome were targeted), using 3
independent siRNAs per gene, was performed on genetically
engineered HeLa cells that stably express OGG1-GFP fusion
protein [53–55]. The intensity of chromatin-bound OGG1-
GFP was measured after inducing DNA damage. 18 of the
obtained hit genes (Table S3) for which inactivation led to
an impairment of recruitment were selected for further
analysis.
All 18 hit genes were used as a list of final implemen-

ters, since little is known about the proteins involved in
the recruitment of OGG1 to chromatin. The analysis was
performed in the protein-protein human interactome.
We identified 4876 shortest protein-protein paths

(from 1 to 4 interactions) going from each gene product
in the hit list to each gene product in the list of final im-
plementers. The subnetwork constructed from these
paths consists of 381 nodes and 1764 edges without du-
plicated edges. The centrality score and the p-value were
calculated for each node and path in the subnetwork ac-
cording to the procedure described in the Method sec-
tion. 396 paths with centrality score 3 of length of 3
interactions and no nodes were found at the FDR of
0.25.
Although no nodes were found at the selected FDR, we ex-

amined the full list of nodes to see whether nodes with high
centrality were shown to be associated with DNA damage rec-
ognition process. Indeed, among nodes with the highest cen-
trality score are ten H3 proteins: HIST1H3A, HIST1H3B,
HIST1H3C, HIST1H3D, HIST1H3E, HIST1H3F,
HIST1H3G, HIST1H3H, HIST1H3I, HIST1H3J. It is known
that DNA damage is associated with higher level of chromatin
mobility [56–58] and it was shown recently that the increase
in chromatin mobility is governed by the proteasome-
mediated degradation of core histones [59]. Other proteins
with high centrality score are SETDB1 – a member of the
SET1 family of proteins; WDR5 – a core component of SET1
family complexes [60]; TP53BP1 – a binding partner of the
tumour suppressor protein p53. SETDB1 and WDR5 are as-
sociated with post-translational histone modifications which
allow recruitment of the chromatin-associated proteins and

protein complexes [61, 62]. TP53BP1 protein is known to be
an important regulator of the cellular response to DNA
double-strand breaks [63]. The reason why none of these
nodes survived multiple testing by FDR can be explained by
the specific choice of the hit list used in the analysis. This
means that many genes important for this biological system
(OGG1 driven human oxidative DNA damage recognition
process) were not targeted in the screening, while they can be
present in the randomly generated hit lists thus yielding higher
centrality scores for these nodes and increasing their p-values.
As it shown below, this does not prevent the paths that were
found at the selected FDR to pass through some of these
nodes.
We examined the list of paths that were found at the se-

lected FDR. Figure 2 presents a subnetwork visualized
with Cytoscape software [64] for paths with centrality
score 3. Figure 2 shows that the method identified two
cohesin proteins SMC3 and SMC1A that interact with
RAD21 protein to form cohesin-RAD21 complex [65],
known to be enriched at DNA double-strand break sites
and facilitating recombinational DNA repair [66]. It also
shows possible mechanism of involvement of PSMA1,
PSMA3, PSMA4 proteins, all members of the 20S prote-
asome [67], through interaction with AURKB, Aurora
Kinase B [68], which in turn interacts with histones H3
[69]. The path ends with histones H3 – SETDB1 inter-
action. SETDB1 is a histone methyltransferase that specif-
ically methylates histone H3 [61] and is also a member of
the hit list. The arrows show the direction of the interac-
tions inferred from literature. Considering them, histones
H3 are the proteins where the signal from different mem-
bers of the hit list converges and we hypothesize that his-
tones H3 can be final implementers for this system.

Implementation
MasterPath is available as a docker container. The usage
instructions are presented in the Supplementary note 1.
The Java source code and full tables of the results pre-
sented in the paper are available at the GitHub page
https://github.com/daggoo/masterPath.

Discussion
We used two different types of networks in our work. The
first one was mixed directed and undirected network con-
structed from PPI, transcriptional, post-transcriptional
and metabolic data. The second network was undirected
PPI network. PPI networks are the most common net-
works used in network analysis, although they are known
to be incomplete and biased towards the well-studied pro-
teins. Incorporating transcriptional, post-transcriptional
and metabolic data does not solve the issues associated
with PPI networks, but adds information on direction,
positive or negative effect of interactions and gives the
ability to build heterogeneous paths.
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The bias towards highly connected nodes or paths in
the results that pass through highly connected nodes is
controlled by generating random hit lists and performing
multiple testing correction. As in Gene Set Enrichment
Analysis [70], we used FDR threshold of 0.25 for pre-
dicted paths and nodes. We consider it an appropriate
FDR threshold for an exploratory analysis which aims at
generating new hypothesis for further validation. Also,
nodes (respective paths) with higher p-values can be
considered. However, in this case, the value of a central-
ity score and corresponding p-value can reflect not only
specificity of a node (respective a path) for a biological
process but can also be biased by high connectivity or
incomplete hit gene list.
We used the following parameters for the analysis pre-

sented in this work. For the integrated network: maximum
path length to search for the shortest paths between hit
genes and final implementers (Lmax, Methods section) was
5 interactions, the paths of length 3 to 4 interactions were
examined, minimum centrality score was 3 for both paths
and nodes. For the protein-protein interaction network:
Lmax, was 4 interactions, the paths of length 2 to 3 interac-
tions were examined, minimum centrality score was 3 for
both paths and nodes. Lmax, was chosen to approximate
the average length of the shortest path in the networks
(Table S4). We aimed at searching for the longest paths
and considered paths one to two interactions shorter than
Lmax. The use of the threshold for the centrality score of 3
can help to capture those situations when the hit list and

the list of final implementers contain a small subset of ele-
ments that are connected only with each other in the net-
work and thus cannot produce high centrality scores. It
should be noted that these parameters can be changed
based on the topology of the network in use.
Other important problems in network analysis are net-

work specificity for the biological system of interest and
lack of interaction information about certain members
of a hit list. We used networks that represent global hu-
man interactome with high-confidence experimentally
validate interactions in our work. Nodes that are not
present in a particular interactome (e. g. tissue specific
interactome) can be excluded from the network, based e.
g. on transcriptomic data, to create smaller but more
specific networks. On the other hand, it is typical to
have poorly studied hit genes in hit lists from functional
screens that might not be present in the network. Low
confidence or predicted interactions for such hit genes
might be added to the network in this case, which is es-
pecially important for interaction types other than
protein-protein interactions.
Most of the protein-protein interactions in our global

integrated network come from high confidence protein-
protein interactions in HIPPIE database. HIPPIE con-
tains interactions from widely used BioGRID [71], DIP
[72], HPRD [73], IntAct [74], MINT [75] databases. All
interactions in HIPPIE database have a confidence score
which is calculated as a weighted sum of several parame-
ters including number of studies in which an interaction

Fig. 2 Histones H3-SETDB1 subnetwork for oxidative DNA damage recognition screening. Hit genes are in orange, the intermediate proteins are
in white or blue depending on the centrality score. Grey arrows show the direction of interactions that were taken from literature
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was detected and the type of the experimental technique
used to detect the interaction. The confidence score al-
lows to filter out low confidence interactions. High con-
fidence interactions from other databases (e. g. String
[76]) or separate studies might be added to the network
to improve network completeness and/or specificity for
a particular biological system.
We introduced a notion of final implementer. We de-

noted a final implementer as a molecule that is involved in
events responsible for the development of the final
realization of the phenotype in the biological process of
interest. Modern molecular biology accumulated vast
amount of knowledge and such molecules are known for
some processes, e. g. caspase 3, caspase 6 and caspase 7
could be considered as final implementers for apoptosis. If
these molecules are unknown, the members of the hit list
can be used as a list of final implementers in the analysis
on the PPI network. In this case, candidates for final imple-
menters could be found by studying direction of the paths,
as we demonstrated for human oxidative DNA damage rec-
ognition process.

Conclusion
We presented a new exploratory network analysis method
that employs the shortest path approach and centrality
measure to uncover members of active molecular path-
ways leading to a given phenotype, based on the results of
functional screening. We illustrated the application of the
method to the analysis of the results of transcriptome pro-
filing and miRNA loss-of-function screening of human
skeletal muscle differentiation process and of “druggable”
loss-of-function screening of human DNA repair process.

Methods
Databases
The human integrated interactome was constructed
from 7 databases: Human Integrated Protein-Protein
Interaction rEference (HIPPIE) [77], SIGNOR [78], Sig-
naLink [79], TFactS [80], KEGG Metabolic Pathways
[81], TransmiR [82], miRTarBase [83].
All databases contain experimentally validated interac-

tions, except SignaLink database which contains a small
number of predicted miRNA-mRNA interactions. We
used only high confidence interactions from HIPPIE
database. The confidence threshold was chosen accord-
ing to HIPPIE documentation [84]. Since all the data-
bases use different types of gene ID, we converted the
ids to the HUGO gene nomenclature and used this no-
menclature to construct human integrated network. SI-
GNOR database contains some interactions that involve
phenotypes, protein families and stimuli; however, we
used only interactions between proteins, complexes and
small molecules. Table 1 summarizes the basic informa-
tion about the databases. Table S4 summarizes

topological features of the integrated networks used in
this work: integrated interactome constructed from all
databases in Table 1 and undirected protein-protein in-
teractome constructed only from HIPPIE database in
Table 1.
Integrated interactome contains both directed and un-

directed interactions. When the databases are merged to
create the integrated network, duplicate interactions are
removed. If there are both directed and undirected inter-
action between any two nodes, only directed interactions
are kept in the integrated network (Fig. 3a).

MasterPATH algorithm
The following notions are used in the mechanistic model
of pathway construction. An unweighted graph G = (V,
E) represents a network of molecular interactions. V are
nodes that can be proteins, genes, small molecules or
miRNAs. E are edges that represent molecular inter-
action between the nodes. The interactions can be di-
rected or undirected. The list of the hit genes is a subset
of nodes H from V. The list of final implementers is a
subset of nodes F from V. A simple linear path p in the
graph G between a pair of nodes (v, u) is a sequence of
edges that connect v and u: p(v, u) = (v, v1), (v1, v2) ... (vk,
u) where each vi ∈ V and all vi are distinct from one an-
other. Length L of the path p(v, u) is the number of
edges in the path: p(v, u) = k + 1.
We distinguish 4 different types of paths:

1. protein-protein paths if all edges in the path
represent protein-protein interactions;

2. transcriptional paths if there exist at least one edge
in the path that represent transcriptional
interaction and all other edges represent protein-
protein interactions;

3. miRNA paths if there exist at least one edge in the
path that represent miRNA-mRNA interaction and
all other edges represent either protein-protein or
transcriptional interactions;

4. metabolic paths if there exist at least one edge in
the path that represent enzymatic reaction and all
other edges represent either protein-protein or
transcriptional interactions or miRNA-mRNA
interactions.

The algorithm of the method is the following (summa-
rized in Fig. 3b). For a given network G, hit list H, list of
final implementers F the method finds for each pair of a
hit gene and a final implementer (hi, fj) all the shortest
paths {pi} of four mentioned types of length less or equal
the maximum length Lmax (defined by the user) in the
network G. The search is done using breadth-first algo-
rithm. The direction of the interactions but not the type
of the interactions is taken into account during the
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Table 1 Number of nodes, interactions and types of interactions in databases used to construct human integrated network. PPI:
protein-protein interactions, TF: transcription factor

Database Nodes Interactions Types of nodes Types of interactions Direction of interactions

HIPPIE (high confidence) 9368 41,520 proteins PPI undirected

SIGNOR 3977 13,129 proteins, complexes, small molecules PPI,
enzymatic

directed,
undirected

SignaLink 3285 27,295 proteins, genes, miRNAs PPI,
miRNA-mRNA,
TF-gene

directed,
undirected

TFactS 2203 4312 TFs,
genes

TF-gene directed

KEGG metabolic pathways 2921 8231 proteins,
small molecules

Enzymatic reactions directed

TransmiR 324 647 TFs,
miRNAs

TF-miRNA directed

miRTarBase 2269 3511 miRNAs,
genes

miRNA-mRNA directed

Fig. 3 a Undirected interactions are not included into the integrated network during merging of databases in case directed interactions exist
between the same nodes. b Main steps of the MasterPath. Detailed description is presented in the Method section. c Direction of interactions is
taken into account when paths are found using breadth-first algorithm. Only the first two paths will be considered between nodes e and f by the
method. It should be noted that the arrow represents here only the direction of the interaction but not the effect (e.g. activation or inhibition)
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search (Fig. 3c). Then the centrality score is calculated
for each node v as the number of the shortest paths {p}
from all combinations of hit genes and final implemen-
ters that pass through the node v: c(v) = | p ∈ {p}: v ∈ p |.
The centrality score is calculated for each path q of
length of several interactions as the number of the short-
est paths {p} from all combinations of hit genes and final
implementers for which q is a subpath: c(q) = | p ∈ {pi}: q
is a subpath of p |. Centrality score c(q) for path q is
taken as 1 if all the paths that have q as a subpath are of
the same type and between the same combination of a
hit gene and a final implementer to discriminate paths
that pass through highly connected nodes. After that,
the statistical significance of the centrality scores is
assessed. 10,000 random hit lists are sampled from the
set of nodes in the network preserving or not preserving
the degree distribution of the initial hit list. The prob-
ability (p-valueNet) of getting a node v or a path q with
specific centrality score by chance is calculated as a pro-
portion of sampled hit lists for which a node or a short
path has the same or greater centrality score. Next, p-
valuesNet are adjusted for multiple testing using
Benjamini-Hochberg procedure [85].
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