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Abstract

Primary clear cell renal cell carcinoma (ccRCC) genetic heterogeneity may lead

to an underestimation of the mutational burden detected from a single site

evaluation. We sought to characterize the extent of clonal branching involving

key tumor suppressor mutations in primary ccRCC and determine if genetic

heterogeneity could limit the mutation profiling from a single region assess-

ment. Ex vivo core needle biopsies were obtained from three to five different

regions of resected renal tumors at a single institution from 2012 to 2013. DNA

was extracted and targeted sequencing was performed on five genes associated

with ccRCC (von-Hippel Lindau [VHL], PBRM1, SETD2, BAP1, and KDM5C).

We constructed phylogenetic trees by inferring clonal evolution based on the

mutations present within each core and estimated the predictive power of

detecting a mutation for each successive tumor region sampled. We obtained

47 ex vivo biopsy cores from 14 primary ccRCC’s (median tumor size 4.5 cm,

IQR 4.0–5.9 cm). Branching patterns of various complexities were observed in

tumors with three or more mutations. A VHL mutation was detected in nine

tumors (64%), each time being present ubiquitously throughout the tumor.

Other genes had various degrees of regional mutational variation. Based on the

mutations’ prevalence we estimated that three different tumor regions should

be sampled to detect mutations in PBRM1, SETD2, BAP1, and/or KDM5C with

90% certainty. The mutational burden of renal tumors varies by region sam-

pled. Single site assessment of key tumor suppressor mutations in primary

ccRCC may not adequately capture the genetic predictors of tumor behavior.
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Introduction

The incidence of renal cell carcinoma (RCC) continues to

rise in the United States among all racial and ethnic

groups. There are ~65,000 new cases and over 13,000

deaths per year due to kidney cancer [1]. RCC encom-

passes a family of tumors, each with distinct histology,

variable metastatic potential, and genetic landscape result-

ing in diverse growth kinetics and responses to treatment

[2]. The most common RCC subtype is clear cell

(ccRCC), which accounts for 54% of all renal cortical

tumors but 90% of those that ultimately metastasize [3].

Although molecular mechanisms involved in the patho-

genesis of ccRCC have recently been identified leading to

the development of targeted therapy with improved sur-

vival compared to cytokines and chemotherapeutic agents,

eventually tumors develop resistance leading to disease

progression [4]. Additionally, there are highly variable

interpatient responses to systemic therapy, which has lead

to growing interest in personalized treatment regimens

based on the molecular tumor profiles.

A substantial obstacle to appropriate selection of preci-

sion therapies is intratumor genetic heterogeneity. Geno-

mic studies in breast, liver, pancreas, and kidney tumors

have revealed regionally diverse mutational landscapes in

primary tumors as well as metastatic sites and sites of

local recurrence after treatment [5–8]. The notion that a

tumor’s genetic landscape has regional variability may

help to expose the etiologies of treatment failure and drug

resistance [9]. Personalized medicine strategies typically

rely on a single site evaluation to direct therapy [10]. A

single site assessment, however, may underestimate the

mutational burden within a tumor and thus, presents an

obstacle for selecting the appropriate treatment options.

This also presents a challenge for the validation of bio-

markers using single region molecular profiling [11].

Tumor initiation in ccRCC is thought to be due to func-

tional loss of chromosome 3p [12]. Although the most fre-

quently altered gene in this locus is von-Hippel Lindau

tumor suppressor (VHL), there does not appear to be any

association with mutation status to tumor aggressiveness

and clinical outcome, making VHL a poor prognostic bio-

marker. Other tumor suppressors involved in epigenetic

regulation have been implicated in ccRCC tumorigenesis,

as evidenced by three large-scale multiplatform sequencing

studies [13–15]. These studies confirmed recurrent muta-

tions in the chromatin-modulating genes polybromo 1

(PBRM1) [16], SET domain containing 2 (SETD2) [17,

18], BRCA1-associated protein-1 (BAP1) [19], and lysine

(K)-specific demethylase 5C (KDM5C) [17] in kidney can-

cer. We and others have reported the associations of

PBRM1, SETD2, BAP1, and KDM5C mutations with

advanced stage, grade, and tumor invasiveness [20, 21],

and discovered that SETD2 and BAP1 mutations are asso-

ciated with lower cancer-specific survival rates [21, 22].

The strong linkage between these chromatin-modulating

genes and tumor behavior, along with the increasing

importance of epigenetic regulation in cancer, suggest

these genes may be valuable biomarkers and detection of

their mutation status may aid in clinical decision making

[23–25].
In this study, next-generation DNA sequencing was

performed on multiple tumor regions in primary

ccRCC’s, targeting coding regions of key tumor suppres-

sor genes with known associations to ccRCC. From these

data, evolutionary phylogenetic trees were constructed

and the predictive power of additional sampling taken in

a single renal tumor was inferred using statistical models.

Methods

Clinical samples

Ex vivo 18 and 20 gauge core needle biopsies 2 cm in

length were obtained from three to five geographically

different, nonnecrotic, regions of primary renal tumors to

capture the known high-genomics heterogeneity of ccRCC

that were resected via partial or radical nephrectomy at a

single institution from October 2012 to June 2013. All

patients had signed informed consents for tissue utiliza-

tion, and our institutional review board had approved the

study. DNA was extracted for next-generation sequencing.

Sequencing and mutation analysis

Targeted sequencing of the coding regions for five genes

with known associations to RCC (VHL, PBRM1, SETD2,

BAP1, and KDM5C) was performed using a Miseq desktop

sequencer (Illumina, San Diego, CA). Base Space (https://

basespace.illumina.com/home/index) was used for quality

control, trimming, and mapping. The median coverage

across all samples was 9509, with 98% of targeted regions

covered >1009. An adopted GATK mutation calling pipe-

line with the following computational steps was applied:

(1) marking duplicates (2) local realignment around indels

(a list of known indel sites from Miller data set and 1000

Genome were used as targets for realignment) (3) base

quality score recalibration through known sites from

Miller data, 1000 Genome, and dbSNP (4) variant calling

through HaplotypeCaller and UnifiedGenotyper.

All missense, nonsense, and indel mutations were

included in our analysis if present in at least 5% of reads

with a minimum sequencing coverage of 10. Single base

pair mutations were excluded from analysis if present in

germline SNP database (dbSNP). Additionally, all synony-

mous mutations were excluded from final analysis.
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All traces were manually reviewed by A. S., using Inte-

grative Genomics Viewer (Broad Institute of Massachu-

setts Institute of Technology and Harvard, Cambridge,

MA). All missense variants detected in less than all cores

within a tumor or detected with a coverage <109 were

validated by repeat polymerase chain reaction (PCR)

amplification and Sanger resequencing of unamplified

diagnostic DNA with the exception of known VHL point

mutations from the COSMIC database or VHL frameshift

mutations. Furthermore, among all the mutation reads,

all are far above five reads of the same mutations within

individual tumors, except the BAP1 L709F missense

mutation at four reads.

Phylogenetic tree construction

Mutations were defined as “shared” or “nonshared” based

on the number of cores they were present in within a sin-

gle tumor. A shared mutation is a mutation detected in

all cores within a single tumor. A nonshared mutation is

a mutation absent in at least one core. Phylogenetic trees

were constructed by inferring clonal evolution. This was

done by fitting the observed mutations present within

each core into a single tree for each tumor.

Estimating predictive power of each biopsy

In order to calculate the predictive power of each subse-

quent biopsy, the intratumor mutation prevalence,

defined as the proportion of tumor cells with a mutation,

was estimated for each gene. This was accomplished by

calculating the proportion of all biopsies with a mutation

in that gene across all patients who have at least one

biopsy with the mutation. The underlying assumptions

for this estimate are that (1) biopsies are independent

and randomly distributed within the tumor and (2)

patients without the detected mutation in at least one of

the biopsies do not have that mutation. We then used

binomial distribution and the estimated intratumor muta-

tion prevalence for each gene to calculate probability of

detecting a mutation in that gene as a function of total

number of biopsies. We focused our analysis on genes

PBRM1, SETD2, BAP1, and KDM5C because of their

known association with ccRCC prognosis.

Results

Mutation frequencies

We obtained a total of 47 ex vivo biopsy cores on pri-

mary renal tumors from 14 patients with ccRCC. Table 1

lists the clinicopathologic characteristics of all tumors.

The median patient age was 52.5 (IQR 46.0–57.8) and the

median tumor size was 4.5 cm (IQR 4.0–5.9 cm). The

median follow-up on our cohort was 7.6 months. Due to

our relatively short follow-up time, we chose not to

extrapolate any conclusions on patient outcomes and

heterogeneity.

The overall mutation rates for each studied gene are

represented in Figure 1. The most prevalent gene harbor-

ing a mutation was VHL, which was present in 9/14

patients (64%). The chromatin modulators PBRM1,

SETD2, BAP1, and KDM5C were present in five (36%),

three (21%), three (21%), and four (29%) patients,

respectively. When compared to mutation frequencies

identified in three other large-scale sequencing studies

[13–15], we detected a greater mutational burden across

all genes.

A similar rate of VHL mutations was observed when

we assessed the mutational burden of each individual

core, revealing mutations in 29/47 cores (62%). The

mutation rates of the chromatin modulator genes

decreased when assessed by each core taken. Specifically,

there was a PBRM1 mutation detected in 13/47 cores

(28%), a SETD2 mutation in 7/47 cores (15%), a BAP1

mutation in 6/47 cores (13%), and a KDM5C mutation

in 6/47 cores (13%).

Figure 2 illustrates the number of unique mutations

observed in each tumor. Three tumors had no detectable

mutations, four tumors had only one mutation, and the

remainder of tumors had two or more mutations. Of

note, both tumors harboring four or more mutations

were advanced stage.

Genetic branching

We observed intratumor genetic branching patterns of

multiple complexities, ranging from a single shared muta-

tion to a shared mutation and multiple nonshared muta-

tions within a tumor.

Table 1. Clinicopathologic characteristics of patients with renal

tumors.

Patients N = 14

Median age (IQR) 52.5 (46.0–57.8)

Median tumor size (cm) (IQR) 4.5 (4.0–5.9)

Histology (%)

Clear cell 14 (100%)

Grade (%)

1–2 5/14 (36%)

3–4 9/14 (64%)

Stage (%)

I–II 8/14 (57%)

III–IV 6/14 (43%)

Neoadjuvant Tx 0/14 (0%)
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Figure 3A depicts the phylogenetic trees of tumors con-

taining a single shared mutation only. Of these three

tumors, each of them contained a single mutation in the

VHL coding region.

There were four tumors containing at least two shared

mutations (Fig. 3B). Amongst this group, VHL was the

most commonly mutated gene (4/4 tumors), followed by

PBRM1 (3/4 tumors). This is consistent with previous

findings that PBRM1 mutations likely represent the sec-

ond genetic event in tumor initiation after loss of VHL

[22].

There were three tumors containing both shared and

nonshared mutations (Fig. 3C). The regional mutational

diversity was unique in each tumor. These three tumors

had the highest degree of genetic complexity among the

whole cohort and of note were all pathologic stage T3a.

The tumor with the most mutated genetic landscape con-

tained a shared SETD2 mutation and four nonshared

mutations (in genes KDM5C, BAP1, and PBRM1). This

tumor also contained two distinct mutations in BAP1,

each detected in different cores.

Another branching pattern observed was one of nonsh-

ared mutations only (Fig. 3D). There was a single tumor

containing a nonshared KDM5C mutation.

Last, there were three tumors with no mutations

detected (Fig. 3E).

Heterogeneity of mutations

The five genes sequenced exhibited unique patterns of

mutation prevalence. As shown in Figure 4, some genes

had a propensity to be mutated in all cores while others

tended to be absent in at least one core. For example,

when VHL mutations were present, they were identical

and ubiquitous in all core samples, likely reflecting an

early event in tumorigenesis. In contrast, when PBRM1,

SETD2, BAP1, or KDM5C mutations were present, they

were present in all cores 60%, 33%, 33%, and 25% of the

time, respectively.

Predictive power of each subsequent biopsy

Figure 5A shows the probability of detecting a prognostic

gene mutation based on each successive biopsy taken.

Based on our cohort (n = 14), we estimate that among

patients harboring a mutation in PBRM1, SETD2, BAP1,

or KDM5C, the mutation would be present in 75%, 70%,

58%, and 55% of the tumor, respectively. Thus, based on

the binomial calculation, in order to detect a mutation in

PBRM1, SETD2, BAP1, and/or KDM5C with 90% cer-

tainty, a tumor would need to be genetically profiled in

at least three locations.

Similar plots demonstrating prediction power for suc-

cessive sampling sites were constructed using estimated

mutation prevalences from a sequencing study by Gerlin-

ger et al. [26]. In this study, the authors performed

whole-exome sequencing on up to 10 regions in primary

ccRCC’s. These data provided us with an independent

cohort to compare with our findings. As shown in Fig-

ure 5B, the estimated mutation prevalences for BAP1,

SETD2, and PBRM1 mutations were 41%, 53%, and

69%, respectively, compared to our cohort which was

58%, 70%, and 75%, respectively. Of note, we did not

include KDM5C in the supplementary analysis since this

mutation was only detected in one tumor in the inde-

pendent cohort and had a near ubiquitous prevalence in

that tumor. As expected, the lower estimated mutation

prevalence in this 10 patient cohort yielded a slightly

lower prediction power per sampling site. For example,

a minimum of three samples would be necessary to

detect a SETD2 or PBRM1 mutation with 90% certainty,

but five samples would be necessary to detect a BAP1

mutation.
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Discussion

In this study, we investigated the intratumor mutational

heterogeneity present in the most common genes associ-

ated with ccRCC. The geographic distribution of shared

and nonshared mutations obtained from core needle

biopsies enabled us to derive common ancestry and clonal

evolution within a primary tumor. We illustrated these

evolutionary changes with phylogenetic trees, which ran-

ged from simple and nonbranching to complex trees with

multiple branches. We then calculated the minimum

number of tumor regions necessary to sample when

searching for critical gene mutations.

This method of interpretation through regional

sequencing has been previously utilized in a report by

Gerlinger et al. in which they characterized the

complexity of clonal branching in four patients with met-

astatic ccRCC [6]. Through whole-exome sequencing and

chromosome aberration analysis of multiple spatially dis-

tinct sites within primary tumors and metastatic lesions,
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the authors elegantly demonstrated intratumor genetic

heterogeneity and constructed phylogenetic trees. In a

subsequent study by Martinez et al. [27], the authors col-

lected multiple spatially distinct ex vivo biopsies from

advanced stage ccRCC’s and analyzed copy number alter-

ations between sites. They observed a high degree of in-

tratumor variability with respect to DNA copy number

alterations. Similarly, Voss et al. [28] have demonstrated

both shared and nonshared somatic mutations and copy

number alterations among different tumor regions in pri-

mary and metastatic ccRCC. Furthermore, these tumors

exhibited convergent mutation evolution in common

molecular pathways which may explain their exceptional

response to systemic therapy targeted to that pathway. An

important distinction between our study and these previ-

ous reports is that we analyzed tumors of all stages and

did not limit sequencing to late-stage tumors only.

We detected an overall increased mutation frequency

rate among all genes when compared to other large-scale

sequencing studies [13–15], although this observation was

most prominent in genes with nonubiquitous mutations.

For example, BAP1 and KDM5C were mutated in 21%

and 29% of tumors in our cohort, respectively, compared

to 10% and 7% in the TCGA cohort [13], 8% and 4% in

the Sato et al. cohort [14], and 8% and 0% in the Guo

et al. cohort [15]. Of note, the mutation rate of these

genes per biopsy core (rather than per tumor) is more

similar to the above mentioned cohort mutation rates

(13% and 13%, respectively). This phenomenon suggests

that true mutation rates may be higher than previously

reported, particularly in genes that may become aberrant

later in tumor evolution.

Our data demonstrate that prognostic gene mutations

can be detected using core needle biopsy samples in one

region of a tumor that are not detected in adjacent

regions. The predictive power of detecting a prognostic

gene mutation increases with each successive sampling

site within a primary renal tumor. In our cohort, we esti-

mated that a minimum of three tumor regions must be

sampled to detect mutations in PBRM1, SETD2, BAP1,

and/or KDM5C with 90% certainty. The detection proba-

bility reached a plateau after four to five samples.

In contrast to our results, the Gerlinger et al. study

[26] observed saturation in detecting mutation events in

only three out of 10 patients. Through whole-exome

sequencing, they were able to capture a much larger num-

ber of unique mutations for each additional biopsy taken,

but one must keep in mind that most of these mutations

have unknown prognostic value and likely act as passen-

gers, rather than drivers. We focused our analysis on

genes with known prognostic value, thus eliminating the

background noise of passenger gene mutations. The lack

of saturation observed in the majority of the Gerlinger

et al. cohort is likely a consequence of nonsignificant

mutation events.
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when present). (B) Probability to detect a mutation with each successive biopsy based on the estimates from data in Gerlinger et al. independent

cohort (Legend shows gene name: % of tumor volume containing mutation when present).
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Similar results were obtained when we applied our sta-

tistical model to the regional mutation data on this inde-

pendent study of 10 primary renal tumors [26]. These

findings are consistent with our conclusion that three spa-

tially distinct samples must be obtained to detect a

SETD2 and/or PBRM1 mutation with 90% certainty. The

independent cohort demonstrated a slightly lower muta-

tion prevalence for BAP1, however, resulting in a detec-

tion certainty of 80% with three samples.

There are two fundamental differences between our and

the Gerlinger studies. First, we chose to sample three to five

cores to specifically address the daily issues that urological

and medical oncologists face in terms of primary tumor

heterogeneity. The clear distinction between our and the

Gerlinger studies is that only two out of 14 patients pre-

sented with metastatic disease in our cohort, whereas the

majority presented with metastatic disease in the Gerlinger

studies (4/4 metastatic in [6], 8/10 metastatic in [26]).

Future studies with larger cohorts will be required to con-

firm our findings. Second, we chose a specific five-gene set

instead of whole exomes since our pilot study focuses

on specific genes and their associated risks, whereas the

Gerlinger studies primarily focuses on tumor evolution.

An important implication of this study is that we must

question the accuracy of a single site molecular assessment

in characterizing the overall genetic landscape for renal

tumors. Single site evaluation to detect prognostic gene

mutations, even with multiple samples obtained at that site,

may lead to substantial false-negative marker assessments;

this represents an impediment to clinically relevant tissue

sampling. The presence or absence of a prognostic gene

mutation may impact the decision to perform surgical

resection or ablative therapy for a small renal mass rather

than observation. Additionally, as we enter a new era of

molecular pathway-based therapeutics, detection of gene

mutations not only plays a role in patient risk stratification,

but also in selection of the appropriate targeted therapies.

One limitation of our study is that we did not correlate

the genetic data with biopsy histology, although we felt

that this more closely resembled the real world clinical

scenarios in which a pathologist would not evaluate each

individual core. Additionally, certain assumptions were

made in order to estimate the predictive ability of each

biopsy, including that each core was taken independently

and at a random tumor location, and that if a mutation

was not detected then it was assumed that it did not exist

elsewhere in the tumor.

The clinical implications of these results are yet to be

determined. One must consider that our biopsies were

captured from the nephrectomized specimens, enabling

us to easily sample different tumor regions. This meth-

odology is not yet applicable for in situ cases without

increasing risk of bleeding and adjacent organ injury

along with prolonging anesthesia time. Multi-site tumor

sampling after surgical resection, however, should be

considered for stratifying postnephrectomy cancer-spe-

cific risk and for selection of subsequent systemic thera-

pies. It may also be a worthwhile strategy to combine

DNA from three to four tumor regions and sequence as

a single specimen. This process would maximize muta-

tion detection yield while minimizing the cost of sample

sequencing.

Conclusions

The mutational burden of renal tumors varies by region

sampled. Ex vivo core needle biopsies reveal regional vari-

ations in key tumor suppressor mutations associated with

ccRCC. Single site assessment of prognostic genetic muta-

tions is unlikely to reflect the heterogeneous nature of

kidney cancer. This presents a challenge when attempting

to capture genetic predictors of tumor behavior by sam-

pling a single site.
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