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Abstract

Understanding SARS-CoV-2 evolution and host immunity is critical to control COVID-19

pandemics. At the core is an arms-race between SARS-CoV-2 antibody and angiotensin-

converting enzyme 2 (ACE2) recognition, a function of the viral protein spike. Mutations in

spike impacting antibody and/or ACE2 binding are appearing worldwide, imposing the need

to monitor SARS-CoV2 evolution and dynamics in the population. Determining signatures in

SARS-CoV-2 that render the virus resistant to neutralizing antibodies is critical. We engi-

neered 25 spike-pseudotyped lentiviruses containing individual and combined mutations in

the spike protein, including all defining mutations in the variants of concern, to identify the

effect of single and synergic amino acid substitutions in promoting immune escape. We con-

firmed that E484K evades antibody neutralization elicited by infection or vaccination, a

capacity augmented when complemented by K417N and N501Y mutations. In silico analy-

sis provided an explanation for E484K immune evasion. E484 frequently engages in interac-

tions with antibodies but not with ACE2. Importantly, we identified a novel amino acid of

concern, S494, which shares a similar pattern. Using the already circulating mutation

S494P, we found that it reduces antibody neutralization of convalescent and post-immuniza-

tion sera, particularly when combined with E484K and with mutations able to increase bind-

ing to ACE2, such as N501Y. Our analysis of synergic mutations provides a signature for

hotspots for immune evasion and for targets of therapies, vaccines and diagnostics.

Author summary

For a SARS-CoV-2 virion to enter a cell, the spike protein displayed at its surface must be

recognized by the host ACE2 receptor. Serum neutralizing antibodies, shown to develop

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009772 August 5, 2021 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Alenquer M, Ferreira F, Lousa D, Valério
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upon natural SARS-CoV-2 infection or vaccination, bind spike protein preventing the

recognition by ACE2 and, consequently, infection. However, SARS-CoV-2 virus is con-

stantly evolving, and can acquire mutations in spike that render this protein resistant to

neutralizing antibodies and make vaccines ineffective. In this paper, we tested how single

and a combination of mutations naturally occurring in spike, including in variants of con-

cern, would synergize to affect antibody neutralizing capacity. We then integrated these

findings with in silico analyses of amino acids binding to ACE2 and antibodies, and dis-

tributed them in a grid as amino acids important for binding to ACE2 or antibodies, or

both. We found that changes in amino such as E484 and S494, which frequently interact

with antibodies but not with ACE2, promptly evolve immune escape mutants, elicited by

infection or vaccination, if the mutation severely alters the binding specificity of the anti-

body. Our work also suggests that the combination of these mutations with others pro-

moting ACE2 binding, such as N501Y, increases their ability to escape neutralizing-

antibody responses.

Introduction

Severe acute respiratory syndrome coronavirus–2 (SARS-CoV-2) is the virus responsible for

the pandemic of coronavirus disease 2019 (COVID-19) [1] that has caused more than 164 mil-

lion infections and provoked the death of over 3 million people (as of April 18, 2021). A perti-

nent question is whether viral evolution will permit escaping immunity developed by natural

infection or by vaccination. The answer to this multi-layered and complex question depends

on the type, duration and heterogeneity of the selective pressures imposed by the host and by

the environment to the virus, but also on the rate and phenotypic impact of the mutations the

virus acquires. The central question is whether the virus can select mutations that escape host

immunity while remaining efficient to replicate in the host [2–4]. Identifying immune evasion

signatures in the virus is critical for preparedness of future interventions to control COVID-

19.

SARS-CoV-2 is an enveloped virus, characterized by displaying spike proteins at the surface

[5]. Spike is critical for viral entry [6] and is the primary target of vaccines and therapeutic

strategies, as this protein is the immunodominant target for antibodies [7–11]. Spike binds to

ACE2 displayed at the host cell surface and, upon activation by proteolytic cleavage, mediates

membrane fusion of viral and host membranes to deliver virion contents inside the cell. Pro-

teolytic cleavage happens at two sites in spike (S1/S2 and S2’) in a process that starts during

viral egress with cleavage of S1/S2 site (by furin) and terminates with cleavage of the S2’ site

either at the cell surface by TMPRSS2 or inside lysosomes by, for example, cathepsin L [6].

Interestingly, the spike protein oscillates between distinct conformations to recognize and

bind different host factors [12,13]. In the prefusion state, the receptor binding domain (RBD)

alternates between open (‘up’) and closed (‘down’) conformations [5,14]. For binding to the

ACE2 receptor, the RBD is transiently exposed in the ‘up’ conformation. However, most

potent neutralizing antibodies elicited by natural infection [9,11,15] and by vaccination [7,10]

bind spike in the closed (‘down’) conformation. Understanding how each amino acid of spike

dynamically interacts with either antibodies or ACE2 receptor may reveal the residues that are

more prone to suffer mutations driving immunological escape without affecting viral entry.

Viral mutations may affect host-pathogen interactions in many ways: affect viral spread,

impact virulence, escape natural or vaccine-induced immunity, evade therapies or detection

by diagnostic tests, and change host species range [16,17]. Therefore, it is critical to survey
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circulating variants and assess their impact in the progression of SARS-CoV-2 dynamics in the

population, in real time. Being a novel virus circulating in the human population, SARS-CoV-

2 evolution displayed a mutational pattern of mostly neutral random genetic drift until

December 2020. In fact, the D614G mutation in the spike protein was amongst the few epide-

miologically significant variants, resulting in increased transmissibility without affecting the

severity of the disease [18,19]. However, from the end of 2020, three divergent SARS-CoV-2

lineages evolved into fast-spreading variants that became known as variants of concern: B.1.1.7

[United Kingdom (UK)] [20], B.1.351 [South Africa (SA)] [21] and P.1 (Brazil) [22]. More

recently, other lineages were added to this list: B.1.427, B.1.429 [California, United States of

America (USA)], B.1.617 or B.1.617.1–3 (India) [20,23,24], as well as several lineages of inter-

est that carry the mutation E484K, including P.2 [25] and B.1.1.7 containing E484K. These var-

iants present alterations in the spike protein that change its properties: increase

transmissibility and virulence [26,27] and/or escape immunity developed by natural infection

[28,29], therapies [30–32], vaccination [33], detection [34]; and change the host species range

[35]. Mutations in the RBD of spike may severely affect viral replication and host immune

response since, as explained above, this region is responsible for binding to ACE2 and is

immunodominant. Three mutations—D614G, N501Y and L452R - are associated with an

increased ACE2 binding affinity in humans and increased viral transmission [18,19,26,36].

Y453F was associated with a mink-to-human adaptation in cluster 5 [37]. L452R and N439K

are associated with a modest reduction in antibody-dependent neutralization by immune sera,

whilst variants containing E484K display a reduction that is moderate to substantial [38]. Vari-

ants, however, contain several mutations combined and some will have synergetic effects.

Interestingly, some mutations are convergent whilst others are unique in lineages [39]. For

example, in B.1.351 and P.1 lineages, mutations in amino acid residues at positions 18 (L18F)

and at position 417 (S417N, or S417T in some P.1 cases) were observed. A two amino acid

deletion in positions 69 and 70 of spike is observed in cluster 5 and lineages B.1.1.7, B.1.525

and B.1.258 [40]. The appearance of shared mutations in distinct and rapidly spreading

SARS-CoV-2 lineages suggests that these mutations, either alone or in combination, may pro-

vide fitness advantage, as recently observed with the acquisition of S417N by B.1.617.2 lineage.

In principle, mutations in different domains of spike may affect its function and result in con-

formational rearrangements of the RBD. Therefore, it is important to understand how syner-

getic interactions in spike collectively change the RBD.

Serum neutralizing antibodies were shown to develop upon natural SARS-CoV-2 infection

[41] or vaccination [42,43], and last at least several months [44–46]. The alarm caused by the

emergence of SARS-CoV-2 variants with the potential to escape host immunity acquired

through infection or vaccination has been confirmed by a series of reports for lineages B.1.351

and P.1. [28,29,33,47,48]. These raise concerns on whether a reduction in vaccine efficacy

could result in re-infections and delay the reduction in mortality caused by circulating SARS--

CoV-2. There is, therefore, the urgent need to develop mutation-tolerant vaccines (and bio-

pharmaceuticals) targeting the spike protein. In this sense, it is critical to determine what

makes mutations well tolerated for the viral lifecycle whilst efficiently escaping immunity. In

this work, we engineered spike-pseudotyped viruses and analyzed individual and combined

mutations that convergently appeared in different lineages, over time and across several geo-

graphic locations, to determine their synergetic effects on neutralizing-antibody responses.

We then used available structures of the complexes spike-antibodies and spike-ACE2 to deter-

mine the distance between each amino acid residue in the complex and the frequency of inter-

actions of each amino acid residue of the RBD with either ACE2 or antibodies. We found a

moderate reduction in neutralizing potency of sera against SARS-CoV-2 spike-pseudotyped

lentivirus containing single mutations at positions 484 (E484K) and 494 (S494P). Interestingly,
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the reduction became substantial with the addition of synergetic mutations K417N/N501Y to

E484K, or E484K/N501Y to S494P. In addition, we show that the amino acid residues at posi-

tions 484 and 494 frequently engage in binding to antibodies but not in binding to the receptor

ACE2. Our work suggests that the amino acid residues at the RBD that are more dispensable

for binding to ACE2 can more promptly evolve immune escape mutants if the amino acid resi-

due substitution severely alters the binding specificity of the antibody. It also suggests that the

combination of these mutations with others that promote ACE2 binding, such as N501Y,

increases their ability to escape neutralizing-antibody responses.

Results

Construction of spike-pseudotyped viruses containing single or combined

mutations in spike

The identification of mutations in SARS-CoV-2 genome of considerable prevalence or that

emerged independently over time is important, not only to track viral evolution and dynamics

of lineages circulating worldwide, but also to identify recurrent mutations and their effects,

and ultimately tailor preventive measures to contain the virus. For this study, we selected only

mutations in spike (that emerged between 29th of December 2019 and 25th of March 2021, S1

Fig) because this protein is responsible for viral recognition of ACE2 receptor [6,49–52] and

for inducing neutralizing antibodies in the host [10] and, therefore, mutations in spike may

hamper therapies, populational immunity and vaccination-mediated protection [53–55].

Whilst mutations on the RBD may sterically block binding of spike to ACE2, mutations in dif-

ferent spike domains may affect the conformation of the protein thereby impacting antibody

recognition. Given this, for this study we selected mutations in spike to include variants of

concern and of interest (up to all mutations in lineages B.1.1.7, B.1.351 and P.1; S1 Table), of

high prevalence (S1 Fig), or convergent appearance in different lineages over time, as shown in

Fig 1B and described in S1 Table. In addition, the mutations in the RBD region are highlighted

also in the open (‘up’) conformation (Fig 1C), showing the conformational changes that each

amino acid residue undergoes in this region.

The different spike versions served to engineer lentiviral spike-pseudotyped particles

through a three-plasmid approach: a plasmid harboring the lentiviral genome, lacking Gag-Pol

and envelope proteins, and encoding a GFP reporter; a Gag-Pol expression plasmid; and a

plasmid expressing SARS-CoV-2 spike protein (or VSV-G protein, as control). Cells infected

by these lentiviruses express GFP and can be easily quantified with high-throughput analytical

methods.

Neutralization assays on spike-pseudotyped viruses to evaluate synergetic

effects of mutations

For the neutralization assay, we developed a 293T cell line expressing the human ACE2 recep-

tor (S2 Fig). The specificity of the assay was assessed using an anti-spike polyclonal antibody

and an RBD peptide that competes with the spike protein for viral entry in SARS-CoV-2

spike-pseudotyped but not in VSV G-pseudotyped lentivirus that was used in parallel (S3 Fig).

In this study, we evaluated evasion of host neutralizing antibodies. We characterized the

serum antibodies from 12–16 health care workers, infected with SARS-CoV-2 during spring/

summer 2020, for their ability to neutralize our spike-pseudotyped mutant lentiviruses. These

sera were tested by ELISA for their anti-spike content and classified as low (endpoint titer up

to 1:150), medium (endpoint titer 1:450) and high (endpoint titer from 1:1350) (S2 Table). We

also used 4 negative sera as control (one pre-pandemic and 3 contemporary). Representative
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neutralization curves of the wild-type (WT, 614G) and original (614D) strains, as well as vari-

ants of concern B.1.1.7, B.1.351 and P.1 (containing all defining mutations, Fig 2A–2D and S1

Table) are shown in Fig 2E and the complete set of neutralization curves in S4 Fig. For each

neutralization curve, we calculated the half-maximal neutralization titer (NT50), defined as the

reciprocal of the dilution at which infection was decreased by 50% (Fig 2F). Consistent with

the literature, the ELISA titer was associated with the neutralizing titer of sera (S2 Table)

[45,56].

In this paper, we used the Wilcoxon statistical test when comparing NT50s to understand if

variants are significantly different from the WT. However, to define whether variants are capa-

ble of evading neutralization, we use the 4-fold criteria, similar to what has been done with

influenza virus, where differences in hemagglutination assays greater than 4-fold highlight the

need for vaccine update [33,57,58]. Data show that, although the spike including all defining

mutations of B.1.1.7 exhibited a modest reduction in neutralization titers relative to WT spike,

it was still efficiently neutralized by convalescent sera, as observed before (Fig 2F and 2G)

[32,59]. Conversely, the complete set of defining mutations of B.1.351 and P.1 consistently

Fig 1. Location of the mutations in spike tested in this work. (A) Schematic representation of the SARS-CoV-2 spike

primary structure. NTD, N-terminal domain; RBD, receptor-binding domain; S1/S2, S1/S2 protease cleavage site; S2’, S2’

protease cleavage site; FP, fusion peptide; HR1, heptad repeat 1; HR2, heptad repeat 2; TM, transmembrane domain; CT,

cytoplasmic tail. The protease cleavage sites are indicated by arrows. (B) The mutations in spike engineered in this study are

mapped onto the spike protein surface, using a structure obtained by homology-based modelling with the structure PDB ID

6XR8 as a template. Mutations are highlighted using magenta spheres mapped on one of the monomers, which is represented

with different colors to highlight important regions: NTD (green), RBD (yellow), FP (pink), HR1 (cyan). The remaining

monomers are displayed in grey. (C) The structure of the spike protein with one RBD up and bound to ACE2 (PDB ID 7DF4)

is shown to highlight the mutations used in this study located in the RBD in the context of its interaction with the receptor.

The spike protein is represented in the same color scheme used in (B) and ACE2 is displayed in teal.

https://doi.org/10.1371/journal.ppat.1009772.g001
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showed a reduction in neutralization capacity higher than 4-fold and are considered signifi-

cantly different from the WT virus (Fig 2G). We then analysed a series of single, double and

triple mutations (Figs 2H, S4 and S5). We found that the mutations N501Y, Δ69-70/N501 and

Δ69-70/N501+P681H, associated with B.1.1.7 variant, behave as WT spike. The mutation

E484K alone reduced sera neutralization capacity by 3.6-fold [ratio NT50 mutant/NT50 WT of

0.028±0.37 (geometric mean ± SD)], and inclusion of additional mutations (K417N and

N501Y) further decreased the neutralization (0.08±0.05), emphasizing the role of synergic

mutations on immune evasion and underscoring the need for evaluating single and combined

mutations on variants [48]. Other mutations outside the RBD did not significantly alter sera

neutralization efficiency. However, we observed a reduction in neutralization in some sera

against N439K mutant (0.53±0.45) as reported in [38], which was not observed when Δ69–70

was added (Figs 2H and S5), and also against L452R mutant (0.48±0.23) that is associated with

the most recent variants of concern B.1.427/9, as reported in [60].

Importantly, we tested BNT162b2-elicited plasmas (collected after the first and second dos-

age of the Pfizer–BioNTech vaccine) for their capacity to neutralize the spike-pseudotyped

particles expressing WT spike protein or mutants bearing all defining mutations of the variants

of concern B.1.1.7, B.1.351 and P.1. Amongst 10 individuals, plasma collected 12 days after the

administration of the first vaccine dose displayed anti-spike IgG titers from 1:450 to 1:12150

(S3 Table), and only one of them exhibited neutralizing capacity (S3 Table and S6 Fig).

BNT162b2-elicited plasma collected 12 days after the administration of the 2nd dose had very

high levels of anti-spike IgG (titers 1:36450–1:109350), higher than any sera collected upon

natural infection, and all exhibited neutralizing activity against the variants of concern B. 1.351

and P.1, although with significantly lower efficiency than against the wild type or the B.1.1.7

variant (Fig 3).

Collectively, these data show that the spike-pseudotyped lentiviral particles used in this

study, in which GFP is the output and is measured by high throughput and cheap methodolo-

gies, is suitable to quantitatively assess how single and synergetic mutations in full-length spike

affect neutralizing-antibody responses.

Frequency of contacts spike-antibodies and spike-ACE2

We then asked if we could find signatures in the spike protein leading to escape in antibody

neutralization. To be able to escape antibodies while maintaining the ability to efficiently infect

cells, the mutations introduced must destabilize the interaction with antibodies while keeping

a high binding affinity for ACE2. Thus, we reasoned that mutations occurring in residues that

are relevant for antibody binding but not very relevant for the interaction with ACE2 can be

advantageous for the virus and, therefore, we needed to establish which amino acid residues

are involved in antibody binding and in RBD binding.

Fig 2. Neutralization of SARS-CoV-2 spike mutants by convalescent human sera. (A-D) SARS-CoV-2 spike secondary structure

of the original strain (A), the B.1.1.7 variant first identified in the UK (B), the B.1.351 variant (SA) (C) and the P.1 variant (Brazil)

(D). Insets show spike structure surrounding each mutated amino acid, and the corresponding structure in the WT. (E-H)

Neutralization assays were performed by infecting 293T-ACE2 cells with pseudoviruses displaying WT or mutant SARS-CoV-2

spike, in the presence of serial dilutions of a convalescent human sera cohort (n = 12–16). (E) Representative neutralization curves of

sera with low, medium, and high titers of anti-spike IgG antibodies against WT virus, original virus, and variants of concern B.1.1.7,

B.1.351 and P.1. Relative infection is defined as the percentage of infection relative to cells infected in the absence of serum. (F)

Paired analysis of neutralizing activity of each serum against WT vs original virus or variants of concern. NT50 is defined as the

inverse of the dilution that achieved a 50% reduction in infection. Dashed lines indicate the limit of detection of the assay (NT50 =

30). ns, non-significant, ��p<0.01, ���p<0.001 by two-tailed Wilcoxon matched-pairs signed-rank test. (G) Ratios of neutralization

between variant and WT viruses. (H) Ratios of neutralization between mutant viruses with single, double, or triple mutations and

WT virus. Red bars indicate the geometric mean. See S4 and S5 Figs and S2 Table for the complete set of neutralizing curves,

neutralizing titers, anti-spike IgG titers determined by ELISA and the numerical values plotted in this figure.

https://doi.org/10.1371/journal.ppat.1009772.g002
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To determine which spike protein residues are more frequently targeted by neutralizing

antibodies, we analyzed 57 structures retrieved from the protein data bank (PBD) containing

the spike protein (or only the RBD region) bound to antibodies (S4 Table). Our results

revealed that the receptor binding motif (RBM), in RBD, is the region with the highest fre-

quency of contacts (Fig 4A and 4B), consistent with what has been documented [11,61–64].

This region is important for the SARS-CoV-2 infection since it mediates contacts with ACE2

[50,65,66] and, for this reason, the binding of antibodies to this region would hinder ACE2

binding and, consequently, the entry of the virus in the cell.

In addition to contacts with the RBD, we also identified other regions of the spike protein

with antibody binding sites. The antibodies FC05 and DH1050.1 bind to segments in the N-

terminal region (between residues 143–152 and 246–257), region identified as an antigenic site

[54], and 2G12 binds to residues 936–941 in the stalk (Fig 4B and 4C).

To choose the cut-off above which to select the most important residues for antibody bind-

ing, we built a histogram (S7 Fig). Three distinct groups appear: the first includes residues that

have an interaction probability below 20%, the second includes residues whose interaction is

between 20% and 45% and the last corresponds to frequent binders (interaction probability

over 45%). Within this last group, we find Y449, L455, F456, E484, F486, N487, Y489, Q493,

Fig 3. Neutralization of SARS-CoV-2 variants of concern by post-vaccination plasma. Neutralization assays were performed with pseudoviruses displaying WT

SARS-CoV-2 spike or variants of concern B.1.1.7, B.1.351 and P.1, in the presence of serial dilutions of post-vaccination plasmas from 10 individuals, 12 days after the first

and the second rounds of vaccination. (A) Representative neutralization curves of post-vaccination plasma against WT virus and variants of concern. (B) Paired analysis

of neutralizing activity each of plasma against WT vs variants of concern. Dashed lines indicate the limit of detection of the assay (NT50 = 30). �p<0.05, ���p<0.001 by

two-tailed Wilcoxon matched-pairs signed-rank test. (C) Ratios of neutralization between variant and WT viruses. Red bars indicate the geometric mean. See S6 Fig and

S3 Table for the complete set of neutralizing curves, the anti-spike IgG titers of each plasma and the numerical values plotted in this figure.

https://doi.org/10.1371/journal.ppat.1009772.g003
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S494, and Y505 residues (Fig 4A and 4B). More than half of these residues have hydrophobic

side chains, showing that, within the batch of antibodies we studied, the most common bind-

ing mode is through hydrophobic contacts. These residues are important for antibody binding,

which means that mutations within this group may enable the virus to escape antibodies from

patients previously exposed to the WT or another variant, or people vaccinated using WT

sequences of spike. In fact, prior studies have shown that mutations on most of these residues

influence antibody escape [2,67]. For residues L455, F456 and F486, mutations for less hydro-

phobic residues have been shown to reduce binding by polyclonal antibodies [67], and

mutants at site 487 escape human monoclonal antibodies COV2-2165 and COV2-2832 [2,63].

Interestingly, our results also show that there is a high prevalence of antibodies binding to

E484 (~50%, Fig 4B).

To determine which amino acid residues in spike engage in ACE2 binding, we performed

molecular dynamics (MD) simulations of the RBD bound to ACE2. These allowed us to deter-

mine which RBD residues are relevant for binding to ACE2, and the persistence of these inter-

actions (Fig 4D). Combining the information on antibody and ACE2 binding allows us to

predict which are the most relevant amino acid residues (high affinity for antibodies and low

affinity for ACE2). Using these criteria, two residues stand out: E484 and S494 (Fig 4E, IV

quadrant circled in red). These results are consistent with the evidence that E484 is an impor-

tant mutation site and bring to light a new relevant site: S494. Mutations in S494 have been

found in circulating strains, and the S494P mutation was shown to reduce the binding by poly-

clonal plasma antibodies [67] whilst having no [4] or modest effect [68] in RBD-ACE2

binding.

To elucidate the role of this mutation in antibody neutralization, we used our neutralization

assay and found that mutation S494P alone leads to a reduction in neutralization by convales-

cence sera that is significant (Figs 4F and S9, and S5 Table) despite not reaching our 4-fold cri-

teria (ratio NT50 of mutant in relation to WT of 0.39±0.28, Fig 4G). This value was further

reduced when this mutation was combined with N501Y (0.28±0.21, Fig 4F and 4G), or when

combined with E484K (0.25±0.32, Fig 4F and 4G). We constructed these spike mutants

because we aimed at understanding if mutations that increased the ability to bind ACE2, such

as N501Y, could synergize with mutations escaping antibody neutralization. Interestingly, the

E484K/S494P/N501Y triple mutant reduced neutralization over the 4-fold criteria applied

(0.17±0.34, Fig 4F and 4G). We also tested the ability of these mutants to evade neutralization

by post-immunization sera, but the effect was less pronounced (Figs 4H, 4I and S10, and S6

Table). In fact, S494P alone did not significantly reduce neutralization, becoming significant

Fig 4. Spike protein-antibody and RBD-ACE2 contact analysis. (A) Histogram of the contact frequency of each spike residue with

antibodies using a cut-off value 4.5 Å to define a contact. (B) Zoom in of the histogram shown in (A) in the region comprising the residues

with the highest frequency of antibody contacts (located in the RBD). (C) Antibody contact map represented on the spike protein surface,

seen from front (left side) and from top (right side); the map was built with VMD [108] and the color gradient is used to represent the log

of the frequency of contact with Ab as shown in the scale bar. (D) Histogram of the contact frequency of RBD residues with ACE2,

obtained from MD simulations, using a cut-off value 4.5 Å to define a contact. (E) Scatter plot correlating the RBD residues’ frequency of

contact with ACE2 and antibodies; each point represents one residue and those that were studied experimentally are highlighted in bold;

the quadrants are filled with different colors to highlight the relevance of different residues as potential mutation hotspots, with the most

relevant residues located in quadrant IV and shown as red points. (F-I) Neutralization assays were performed against pseudoviruses

displaying WT or S494P spike mutants, in the presence of serial dilutions of convalescent sera (F, G) or post-vaccination sera 1 month after

the first and the second rounds of vaccination (H, I). (F, H) Paired analysis of neutralizing activity of convalescent sera (F) or post-

vaccination sera (H) against WT vs S494P, S494P/N501Y, E484K/S494P or E484K/S494P/N501Y mutants. Dashed lines indicate the limit

of detection of the assay (NT50 = 30). ns, non-significant, �p<0.05, ��p<0.01, ���p<0.001 by two-tailed Wilcoxon matched-pairs signed-

rank test. (G, I) Ratios of sera neutralization between S494P mutants and WT viruses. Red bars indicate the geometric mean. See S7 and S8

Figs and S4 Table for protein-antibody contact frequency histogram, overall representation of amino acid residues relevant for antibody

and ACE2 binding and list of references of the structures of the antibodies used, respectively; S9 and S10 Figs and S5 and S6 Tables for the

complete set of neutralizing curves, the anti-spike IgG titers of each serum and the numerical values plotted in this figure.

https://doi.org/10.1371/journal.ppat.1009772.g004
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when N501Y (0.70±0.4), or E484K (0.5±0.3) mutations were introduced. The triple mutant

displayed the more significant reduction in neutralization, despite not reaching the 4-fold dif-

ference (0.34±0.18, Fig 4H and 4I). Importantly, S494P mutation appeared independently on

several occasions and is under positive selection [68], and is now a variant in monitoring, espe-

cially when combined with E484K or N501Y [20,69]. Our results indicate that the S494P muta-

tion can facilitate the escape of the virus from antibodies, maintaining the ability to bind to the

receptor and enter host cells, and should be surveilled worldwide.

Some residues that are important for antibody binding are also involved in frequent inter-

actions with ACE2. Seven of these residues remained bound to ACE2 throughout the whole

simulation in all the replicates: L455, F456, F486, N487, Y489, Q493 and Y505 (Fig 4D, top res-

idues in quadrant II). This group includes residue F456, which was found to be a hotspot for

escape mutations [67]. Although this may seem contradictory, the same study shows that

mutations in this residue were very rarely found in nature and, because of lack of prevalence,

were not analyzed [67]. We hypothesize that the low mutation rate for this site may be due to

the high relevance of this residue for RBD-ACE2 binding. In fact, deep mutational analysis

shows that when mutating F546 to any amino acid residue besides its SARS-CoV-1 counter-

part (a leucine), the ACE2 binding affinity is reduced [4]. Even though a viral variant with a

single mutation at the site 456 could escape antibodies, it would be unfit to subsist in nature,

due to a reduced ability to infect host cells. In addition, some residues such as N501, S417,

L452 were shown to be strong ACE2, but weak antibody binders, raising the possibility that

these amino acids may undergo mutations that cooperatively synergize with antibody binders

to increase the viral fitness of immune escape competent SARS-CoV-2 variants. Interestingly,

N501Y, L452R and S417N have been associated with increased viral transmission [18,19,26,36]

and, when combined with E484K, augmented resistance to neutralizing antibodies.

Together, the analysis presented here is supported by experimental evidence on mutation-

driven binding to ACE2 and escape to antibodies [2–4], as well was with the emergence of nat-

ural variants [28,32,38,55,70–72], and may be used to predict mutation hotspots.

Discussion

It is critical to understand SARS-CoV-2 signatures that allow escaping neutralizing antibodies,

which could pose challenges to vaccination and render therapies ineffective.

We developed spike-pseudotyped lentiviral particles for high-throughput quantitation that

express GFP upon entering cells, contributing to the toolkit of neutralizing assay methodolo-

gies [73–75]. Our method of reading fluorescent signals in 96 wells plates using the GloMax

Explorer System is suitable to assess the neutralization activity of sera/plasma from individuals

infected naturally or vaccinated, and to screen for antiviral drugs that block viral entry, such as

therapeutic antibodies, in biosafety level 2 settings, which greatly facilitates the procedure and

broadens its usage. It can be easily adapted to include single and multiple mutations, as

observed in the present work for sera neutralizing activity (Fig 2). Our results with

BNT162b2-elicited plasma (Fig 3) agree with previous publications showing resistance to neu-

tralization by B.1.351 and P.1 lineages [28,29,33,47,76] and validate our neutralization assay.

The fact that only mutations containing the E484K substitution promote immune escape,

although this effect increases with synergic mutations that improve viral binding to ACE2

(K417N and N501Y), may be a consequence of lack in immunological selective pressure, a rec-

ognized driver of evolution [58,77–79], as a large proportion of the population remains suscep-

tible to SARS-CoV-2 infection. However, the emergence of this escape mutant suggests that

the continued circulation of the virus may, in the future, impose further immunological con-

straints and result in viral evolution, as seen for influenza A virus [58,80]. How changes in
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SARS-CoV-2 will impact the circulation of the virus is not known, and the future will also elu-

cidate whether vaccination will shape evolution of SARS-CoV-2 and permit reinfections. At

the moment, reinfections are considered rare events [81,82], but reports that SARS-CoV-2

escape mutants were shown to drive resurgence of cases upon natural infection [23,83] are

indicative that viral dynamics in the population may change [26,84]. Therefore, the develop-

ment of methods able to predict hotspots of immune evasion are in demand. The surveillance

of circulating strains across time, the evaluation of the type and duration of host immune

responses upon natural infection and vaccination, and the identification of antibodies that effi-

ciently control SARS-CoV-2 are essential measures to understand and control SARS-CoV-2

infection and host response [85–87]. We argue that the structural information on complexes

between antibodies, or ACE2, and spike variants may be integrated with mutational maps and

their phenotypic characterization [2–4] to predict hotspots of immune evasion.

In this work, we analyzed by neutralization assays how a full-length spike carrying single or

multiple mutations dispersed throughout the protein affected the conformation of the RBD.

With this assay, we probed how antibodies from infected patients or vaccinated individuals

block viral entry. We used structural information on the protein complexes spike-antibodies

and spike-ACE2 to define the non-overlapping frequency of interactions using a cut-off value

of 4.5 Å distance to define a contact. Given that only a few amino acid residues are involved in

protein-protein interfaces [88], including in antibody-antigen recognition, we aimed at identi-

fying which amino acid residues may evolve antibody escape mutants without affecting viral

entry. With this approach, we identified two amino acid residues at the RBD—positions 484

and 494 (Fig 4E)—that frequently engage in interactions with antibodies but not with ACE2.

We observed that E484 is relevant for antibody binding (Fig 2), in agreement with our and pre-

vious experimental results, and with the occurrence of this mutation in two variants that are

becoming highly prevalent and were shown drive resurgence of infection in sites with high lev-

els of seroconversion [2,33,57,71,72,83]. Additionally, we found that mutation of residue 494

may be problematic, either alone or combined with synergetic mutations, as it reduces neutral-

ization competency of convalescent sera, and thus facilitates antibody escape without substan-

tially altering the affinity for the ACE2 binding (Figs 4E, 4G and S8). The mutation S494P has

been found in nature with a prevalence of 0.81% of all sequenced genomes (March 2021, S1

Fig) and has already been observed in combination with mutation E484K (reported on the

22nd of October 2020). Of note, current prevalence of B.1.351 and of P.1 is 1.9% and 0.47%,

respectively, being in the same range as S494P. We posit that the prevalence of mutations in

amino acids 484, 494 and 501 will increase with viral circulation and/or spike seroconversion

and should be surveilled worldwide. We observed a similar pattern relative to the substitution

L452R/Q in India, in which the E484Q mutation was acquired posteriorly. At the moment,

however, with the majority of the population still susceptible to viral infection, mutations that

increase viral transmission, such as N501Y [84] have a selective advantage. In the future, muta-

tions escaping host antibodies whilst increasing binding to ACE2 may become prevent.

Our approach has some caveats. Regarding the neutralization assays, and despite spike

being the immunodominant protein targeted by antibodies [7–11], other viral proteins may

contribute, even if in a small proportion, to neutralization activity in vivo, which we are unable

to detect using spike-pseudotyped particles. In addition, the sera/plasma we used were

obtained at a fixed time interval. Future experiments should repeat the analysis using sera/

plasma of people infected with known genotypes, or from different geographical areas and

obtained at different times along the epidemic dynamics. Finally, we inspected a handful of

mutations and not a comprehensive mutational map across spike [2,4]. However, we traced

several mutations across spike in single and multiple combinations, and thus, we conclude

that our analysis is relevant to inform on mutation-driven escape viruses to antibodies. In
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addition, we only investigated antibody-neutralization responses but other mutations in spike

may contribute to overall antibody escape, and hence regulate the host response to infection,

which we are unable to detect by our assay.

The analysis of frequency of interactions between spike-antibodies or ACE2 has some issues

associated as well. The pool of complexes spike protein/RBD and antibodies analyzed here is

not necessarily representative of the universe of antibodies found in COVID-19 patients, since

it is limited by the availability of structural information and is biased to monoclonal antibodies

(S4 Table). All the antibodies analyzed are neutralizing antibodies, which is not the case in

nature [54]. Additionally, many structural studies have focused on the interaction with the

RBD, while other regions have not been so exhaustively analyzed, which creates a bias in terms

of the number of RBD binding antibodies with known structure [50,65,66]. Limitations of the

methods used, such as crystallographic contacts, can also influence the results. Nevertheless, its

combination with data from the molecular simulation and from experiments helps to predict

and explain the emergence of new mutations.

In conclusion, our analysis of the spike protein-antibody contacts revealed that (within the

available data set) the receptor binding motif, in the receptor binding domain, is an important

region for antibody binding, which makes sense, since antibody binding to this region can pre-

vent the interaction with ACE2 and ultimately impair viral infection. Our results are in very

good agreement with experimental data on mutation-driven escape to polyclonal antibodies

and with the emergence of natural variants, which were reported to re-circulate in previously

exposed people [83]. Thus, this analysis represents a simple strategy to predict mutation hot-

spots that should be kept under surveillance. The predictions will become even better once the

pool and diversity of available structures increases.

Materials and methods

Ethics statement

This study was approved by the Ethics committees of Centro Hospitalar Lisboa Ocidental and

Centro Hospitalar Lisboa Central, in compliance with the Declaration of Helsinki, and follows

international and national guidelines for health data protection. All participants provided

informed written consent to take part in the study.

Global variants frequencies

A variant surveillance report was retrieved from GISAID on March 26th, 2021. A total of

864131 submissions were used to establish the world frequency of each variant using specific

amino acid mutations (e.g., S_D614G, etc.) by using command line search text tools. Counts

were then divided by week and year, using available metadata for collection date and just vari-

ants over indicated prevalence are reported and plotted per graph.

Cells and plasmids

Human hepatocellular carcinoma HuH-7 cells (a kind gift from Dr Colin Adrain, Instituto

Gulbenkian de Ciência, Portugal), Human Embryonic Kidney 293T (provided by Prof Paul

Digard, Roslin Institute, UK) and 293ET cells (from Dr Colin Adrain) were maintained in

Dulbecco’s Modified Eagle Medium (DMEM, Gibco, 21969035) supplemented with 10% fetal

bovine serum (FBS, Gibco, 10500064), 1% penicillin/streptomycin solution (Biowest, L0022)

and 2mM L-glutamine (ThermoFisher, 25030024), at 37˚C and 5% CO2 atmosphere. Plasmids

used in this study were obtained as follows: pLEX.MSC was purchased from Thermo Scientific;

psPAX2 and pVSV.G were a kind gift from Dr Luı́s Moita (Instituto Gulbenkian de Ciência,
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Portugal); pEGFP-N1 was provided by Dr Colin Crump (University of Cambridge, UK); and

pCAGGS containing the SARS-Related Coronavirus 2, Wuhan-Hu-1 Spike Glycoprotein

Gene (pCAGGS-SARS-CoV-2-S, NR-5231) was obtained through BEI Resources.

Cloning and spike protein mutations

To facilitate incorporation of spike protein into lentiviral pseudovirions, the C-terminal 19

amino acids encompassing the ER-retention domain of the cytoplasmic tail of spike were

deleted. This construct, named SARS-CoV-2 Strunc, was generated by PCR amplification of the

C-terminal region of S without amino acids 1255–1273 (a premature STOP codon was added

in the reverse primer), using pCAGGS-SARS-CoV-2-S as template (primers in S7 Table). The

amplified sequence was cloned back into pCAGGS-SARS-CoV-2-S, between AgeI and SacI
restriction sites, generating the expression vector pCAGGS-SARS-CoV-2-Strunc. Mutations

were introduced in the spike protein by site-directed mutagenesis, with the Quickchange

Multi Site-Directed Mutagenesis kit (Agilent) following the manufacturer’s instructions (prim-

ers in S7 Table). Lentiviral reporter plasmid pLEX-GFP was produced by PCR amplifying GFP

from pEGFP-N1 (primers in S7 Table) and cloning the insert into BamHI–XhoI restriction

sites in the multi-cloning site of pLEX.MCS vector. For lentiviral plasmid pLEX-ACE2 produc-

tion, human ACE2 coding sequence was amplified from Huh7 cDNA and cloned into pLEX.

MCS, using XhoI and MluI restriction sites (primers in S7 Table).

Production of 293T cells stably expressing human ACE2 receptor

To produce VSV-G pseudotyped lentiviruses encoding the human ACE2, 293ET cells were

transfected with pVSV-G, psPAX2 and pLEX-ACE2 using jetPRIME (Polyplus), according to

manufacturer’s instructions. Lentiviral particles in the supernatant were collected after 3 days

and were used to transduce 293T cells. Three days after transduction, puromycin (Merck,

540411) was added to the medium, to a final concentration of 2.5μg/ml, to select for infected

cells. Puromycin selection was maintained until all cells in the control plate died and then

reduced to half. The 293T-ACE2 cell line was passaged six times before use and kept in culture

medium supplemented with 1.25 μg/ml puromycin. ACE2 expression was evaluated by flow

cytometry (S2 Fig).

Production and titration of spike pseudotyped lentiviral particles

To generate spike pseudotyped lentiviral particles, 3x106 293ET cells were co-transfected with

8.89μg pLex-GFP reporter, 6.67μg psPAX2, and 4.44μg pCAGGS-SARS-CoV-2-S WT or

mutants (or pVSV.G, as a control), using jetPRIME according to manufacturer’s instructions.

The virus-containing supernatant was collected after 3 days, concentrated 10 to 20-fold using

Lenti-XTM Concentrator (Takara, 631231), aliquoted and stored at -80˚C. Pseudovirus stocks

were titrated by serial dilution and transduction of 293T-ACE2 cells. At 24h post transduction,

the percentage of GFP positive cells was determined by flow cytometry, and the number of

transduction units per mL was calculated.

Flow cytometry

Flow cytometry was performed as in [89]. In brief, HEK 293T and 293T-ACE2 cells were pre-

pared for flow cytometry analysis by detaching from the wells with trypsin, followed by fixa-

tion with 4% formaldehyde). For analysis of ACE2 expression, cells were stained with a

primary antibody against ACE2 (4μg/ml, R&D Systems, catalog no. AF933) followed by a sec-

ondary antibody labelled with Alexa Fluor 568 (1:1000; Life Technologies). Analysis of cell
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populations was performed in a Becton Dickinson (BD) LSR Fortessa X-20 equipped with

FACS Diva and FlowJo (BD, Franklin Lakes, NJ) software’s.

Human convalescent sera and post-vaccination plasma/serum

Venous blood was collected by standard phlebotomy from health care providers who con-

tracted COVID-19 during spring/summer 2020, as tested by RT-PCR on nasopharyngeal

swabs. Serum was prepared using standard methodology and stored at -20˚C. During this

period, the variant B.1.1, encoding the WT spike protein, was prevalent in Portugal.

Peripheral blood from health care workers was collected by venipuncture into EDTA tubes

at day 12 and day 33 post-immunization with Pfizer BTN162b2 mRNA vaccine and immedi-

ately processed. Alternatively, post-vaccination serum was collected at day 22 and day 51 post-

immunization with Pfizer BTN162b2 mRNA vaccine. Peripheral blood was diluted in PBS 1x

(VWR), layered on top of biocoll (Biowest) and centrifuged at 1200g for 30 min without break.

Plasma was collected to cryotubes and stored at -80˚C ultra-low freezer until subsequent

analysis.

ELISA assay

Direct ELISA was used to quantify IgG anti-full-length Spike in convalescent sera. The antigen

was produced as described in [90]. The assay was adapted from [91] and semi-automized to

measure IgG in a 384-well format, according to a protocol to be detailed elsewhere. For titer

estimation, sera were serially diluted 3-fold starting in a 1:50 dilution and cut off was defined

by pre-pandemic sera (mean + 2 standard deviation).

ELISA assay on post-vaccination plasma and serum was performed based on the protocol

[92] and modified as described in Gonçalves et al. [93]. Briefly, 96 well plates (Nunc) were

coated with 50 μl of trimeric spike protein at 0.5 μg/mL and incubated overnight at 4˚C. On

the following day, plates were washed three times with 0.1% PBS/Tween20 (PBST) using an

automatic plate washer (ThermoScientific). Plates were blocked with 3% bovine serum albu-

min (BSA) diluted in 0.05% PBS/T and incubated 1h at room temperature. Samples were

diluted using 3-fold dilution series starting at 1:50 and ending at 1:10,9350 in 1% BSA-PBST/T

and incubated 1h at room temperature. Plates were washed three times as previously and goat

anti-human IgG-HRP secondary antibodies (Abcam, ab97215) were added at 1:25,000 and

incubated 30 min at room temperature. Plates were washed three times and incubated ~7min

with 50 μl of TMB substrate (BioLegend). The reaction was stopped with 25μl of 1M phospho-

ric acid (Sigma) and read at 450nm on a plate reader (BioTek). Each plate contained 6 calibra-

tor samples from two high-, two medium-, and two low- antibody producer from adult

individuals collected at Hospital Fernando Fonseca that were confirmed positive for SARS--

CoV-2 by RT-PCR from nasopharyngeal and/or oropharyngeal swabs in a laboratory certified

by the Portuguese National Health Authorities [93]. As negative control, we used pre-pan-

demic plasma samples obtained from healthy donors collected prior July 2019. The endpoint

titer was defined as the last dilution before the absorbance dropped below OD450 of 0.15.

Neutralization assay

Heat-inactivated serum and plasma samples were four-fold serially diluted over 7 dilutions,

beginning with a 1:30 initial dilution. Dilutions were then incubated with spike pseudotyped

lentiviral particles for 1h at 37˚C. The mix was added to a pre-seeded 96 well plate of

293T-ACE2 cells, with a final MOI of 0.2. At 48h post-transduction, the fluorescent signal was

measured using the GloMax Explorer System (Promega). The relative fluorescence units were

normalized to those derived from the virus control wells (cells infected in the absence of
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plasma or serum), after subtraction of the background in the control groups with cells only.

The half-maximal neutralization titer (NT50), defined as the reciprocal of the dilution at which

infection was decreased by 50%, was determined using four-parameter nonlinear regression

(least squares regression without weighting; constraints: bottom = 0) (GraphPad Prism 9). To

assess the specificity of our assay, an anti-spike antibody neutralization assay and an RBD

competition assay were performed in SARS-CoV-2 spike pseudotyped and vesicular stomatitis

virus (VSV) G pseudotyped lentiviral particles, in parallel (S3 Fig). The anti-spike antibody

neutralization assay was performed as above, starting with a concentration of 50μg/ml

(Thermo Fisher Scientific, PA5-81795) and three-fold serially diluting over 7 dilutions. For the

RBD competition assay, 293T-ACE2 cells were pre-incubated with three-fold serial dilutions

of SARS-CoV-2 spike’s receptor binding domain, starting with a concentration of 400μg/ml.

After 1h incubation at 37˚C, supernatant was aspirated and pseudoviruses were added at an

MOI of 0.2. The half maximal inhibitory concentration (IC50) was determined using four-

parameter nonlinear regression (least squares regression without weighting; constraints: bot-

tom = 0) (GraphPad Prism 9).

Spike protein-antibody contact analysis

To determine which residues of the SARS-CoV-2 spike protein contribute the most for the

binding of antibodies, we studied 57 PDB structures containing the spike protein (or only the

RBD region) bound to antibodies (S4 Table). These complexes were chosen based on their

availability in the PDB repositorium [94] and are all neutralizing antibodies. We first used the

MDAnalysis library [95,96] to identify the residues of the antibody and the spike protein

located in the interface between the two proteins. This was done for all PDB structures using

in-house Python scripts. To determine the relevance of each spike protein/RBD residue in the

binding, a distance cut-off value of 4.5 Å was applied as a criterion (i.e., a contact is observed

when two residues have a minimum distance lower than 4.5 Å). Finally, the numerical python

library (NumPy [97]) was used to calculate the frequency of contact for each spike protein resi-

due with an antibody residue, from the sample of PDB structures analyzed.

MD simulation of the RBD-ACE2 complex

Molecular dynamics (MD) simulations of the RBD bound to the ACE2 protein were per-

formed with the GROMACS 2020.3 package [98], using the Amber14sb [99] force field, start-

ing from the 6m0j structure [49], in a truncated dodecahedron box filled with water molecules

(minimum of 1.2 nm between protein and box walls). The TIP3P water model [100] was used

and the total charge of the system (-23, including the constitutive Zn- and Cl- ions bound to

ACE2) was neutralized with 23 Na+ ions. Additional Na+ and Cl+ ions were added to the solu-

tion to reach an ionic strength of 0.1M. The system was energy-minimized using the steepest

descent method for a maximum of 50000 steps using position restraints on the heteroatom

positions by restraining them to the crystallographic coordinates using a force constant of

1000 kJ/mol in the X, Y and Z positions. Before performing the production runs, an initializa-

tion process was carried out in 5 stages of 100 ps each. Initially, all heavy-atoms were restrained

using a force constant of 1000 kJ/mol/nm, and at the final stage only the only C-α atoms were

position-restrained using the same force constant. In the first stage, the Berendsen temperature

algorithm [101] was used to initialize and maintain the simulation at 300 K, using a tempera-

ture coupling constant of 0.01 ps, without pressure control. The second stage continues to use

the Berendsen temperature algorithm but with a force constant of 0.1 ps. The third stage kept

the same temperature control settings, but introduced pressure coupling with the Berendsen

pressure algorithm [101] with a pressure coupling constant of 5.0 ps and applied isotropically.
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The fourth stage changed the temperature algorithm to V-rescale [102], with a temperature

coupling constant of 0.1 ps, and the pressure algorithm to Parrinello-Rahman [103] with a

pressure coupling constant of 5.0 ps. The fifth stage is equal to the fourth stage, but position

restraints are only applied to C-α atoms. During the simulation, the equations of motion were

integrated using a timestep of 2 fs. The temperature was maintained at 300 K, using the V-

rescale [102] algorithm with a time constant of 0.1 ps, and the pressure was maintained at 1

bar using the Parrinello−Rahman [103] pressure coupling algorithm, with a time constant of 5

ps; pressure coupling was applied isotropically. Long-range electrostatic interactions were

treated with the PME [104,105] method, using a grid spacing of 0.12 nm, with a cubic interpo-

lation. The neighbor list was updated every twenty steps and the cutoff scheme used was Verlet

with 0.8nm as the real space cut-off radius. All bonds were constrained using the LINCS algo-

rithm [106]. The system was simulated for 8 μs in 5 replicates (to a total of 40 μs).

RBD-ACE2 contacts frequency

To determine the residues that contribute the most for the interaction between RBD and

ACE2, and the persistence of these interactions, we performed a contact analysis throughout

the simulation. We started by eliminating the first equilibration μs of all replicates. The MDA-

nalysis library [95,96] was then used to pinpoint the residues of the RBD that are in contact

with the ACE2 protein. A distance cut-off value of 4.5 Å was applied as a criterion (i.e., a con-

tact is observed when two residues have a minimum distance lower than 4.5 Å). Finally, we

determined the percentage of time for which a given RBD residue is at less than 4.5 Å of

ACE2.

Homology-based models of spike protein variants

Homology-based models of all the variants analyzed in this study were generated using the

software Modeller [107], version 9.23, using the structure of the WT enzyme (PDB code:

6XR8) [12] as a template. The protocol used only optimizes the atoms belonging to the

mutated residues and the residues that are located within a 5 Å radius from these residues,

maintaining the remaining atoms fixed with the coordinates found in the template structure.

The optimization parameters were set to the software default values. The final model corre-

sponds to the one with the lowest value of the DOPE function out of 20 generated structures.

Supporting information

S1 Fig. Temporal worldwide prevalence of spike mutations considered in this study from

the 29th of December 2019 until the 25th of March 2021. To investigate the global frequency

of SARS-CoV-2, the variant surveillance dataset was retrieved on March 25th, 2021, from

GISAID (Shu Y, McCauley J., 2017). From this dataset and using text mining tools, the num-

ber and frequency of predominant variants was determined from spike protein mutations and

displayed per month according to variant collection date. The mutations are divided onto 3

graphs in which frequencies are up to 100% (1st graph), 8.5% (2nd graph) and 1.75% (3rd

graph) for easier visualization. The frequencies are not cumulative but individual representa-

tions of each mutation.

(TIF)

S2 Fig. Histogram showing expression of human ACE2 by 293T-ACE2 cell line (blue) com-

pared to parental 293T cells (green). ACE2 expression was measured by flow cytometry, after

staining with a goat anti-ACE2 antibody (R&D Systems) followed by staining with an anti-
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goat antibody conjugated to Alexa 568 (Life Technologies).

(TIF)

S3 Fig. Specificity of the in vitro neutralization assay with SARS-CoV-2 spike pseudotyped

lentiviral particles. (A) SARS-CoV-2 spike specific antibody was tested for neutralization

activity against SARS-CoV-2 spike and vesicular stomatitis virus (VSV) G pseudotyped lentivi-

rus. (B) Neutralization assay of SARS-CoV-2 spike and VSV G pseudoviruses in the presence

of spike’s receptor binding domain (RBD). 293T-ACE2 cells were pre-incubated with serial

dilutions of RBD before infection with each virus. Half maximal inhibitory concentration

(IC50) was calculated for both assays, when possible.

(TIF)

S4 Fig. Neutralization curves of spike mutants by human sera. Related to Figs 2 and S5 and

S2 Table. Sera from 16–20 individuals were tested for neutralization of WT and 22 viruses.

Sera were classified into 4 categories: Negative, Low anti-spike IgG titer (�1:150), Medium

titer (1:450) and High titer (�1:1350). Triplicates were performed for each tested serum dilu-

tion. Error bars represent standard deviation.

(TIF)

S5 Fig. Neutralization titers of human sera against spike mutants. Related to Figs 2 and S4

and S2 Table. Paired analysis of neutralizing activity of each convalescent serum against WT

vs mutant virus. NT50 is defined as the inverse of the dilution that achieved a 50% reduction in

infection. Dashed lines indicate the limit of detection of the assay (NT50 = 30). ns, non-signifi-

cant, �p<0.05, ��p<0.01, ���p<0.001 by two-tailed Wilcoxon matched-pairs signed-rank test.

(TIF)

S6 Fig. Neutralization curves of post-vaccination plasma against spike mutants. Related to

Fig 3 and S3 Table. Plasma was collected from 10 individuals 12 days after the first and the

second rounds of vaccination and was tested for neutralization of WT virus and variants of

concern. Triplicates were performed for each tested plasma dilution. Error bars represent stan-

dard deviation.

(TIF)

S7 Fig. Spike protein-antibody contact frequency histogram. This was computed by dividing

the frequency of interaction of spike protein residues with antibodies in 100 bins and calculat-

ing the fraction of residues that fall into each bin.

(TIF)

S8 Fig. Relevant residues for antibody and ACE2 binding. (A) Crystal structure of the

SARS-CoV-2 RBD complexed with ACE2. ACE2 is shown as a purple surface and the RBD is

shown in a cyan cartoon representation with key antibody interacting residues depicted as

sticks. (B) Zoom in to the RBM region of the RBD. Residues relevant for antibody binding

(>35% frequency of contact) are depicted as sticks. Of these, the ones with an antibody bind-

ing probability higher than 45% have a green label, and those that also have a low frequency of

binding to ACE2 (<50%) are labelled in pink.

(TIF)

S9 Fig. Neutralization curves of WT and S494P spike mutants by human sera. Related to

Fig 4 and S5 Table. Sera from 19 individuals were tested for neutralization of WT and S494P

mutant viruses. Sera were classified into 4 categories: Negative, Low anti-spike IgG titer

(�1:150), Medium titer (1:450) and High titer (�1:1350). Triplicates were performed for each
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tested serum dilution. Error bars represent standard deviation.

(TIF)

S10 Fig. Neutralization curves of post-vaccination serum against spike mutants. Related to

Fig 4 and S6 Table. Serum was collected from 8 individuals 1 month after the first and the sec-

ond rounds of vaccination, and was tested for neutralization of WT virus and S494P mutants.

Triplicates were performed for each tested serum dilution. Error bars represent standard devi-

ation.

(TIF)

S1 Table. Details of the mutants created and used in this study. Values of current frequency

are relative to available sequences of week 11 of 2021 (with a bias corresponding to the efforts

that countries/regions deploy to SARS-CoV-2 genome surveillance).

(DOCX)

S2 Table. IgG antibody titers against SARS-CoV-2 spike protein and neutralizing titers

(NT50) of convalescent sera against WT and mutant spike pseudoviruses.

(DOCX)

S3 Table. IgG antibody titers against SARS-CoV-2 spike protein and neutralizing titers

(NT50) against WT and variant pseudoviruses of plasma from vaccinated individuals, col-

lected 12 days after the first and after the second doses of the vaccine.

(DOCX)

S4 Table. Summary of antibodies studied in the spike-antibody complexes. These antibod-

ies were chosen due to the availability of their structure resolved together with the spike (or

just the RBD region) in the PDB repository [94].

(DOCX)

S5 Table. IgG antibody titers against SARS-CoV-2 spike protein and neutralizing titers

(NT50) of convalescent sera against WT and mutant spike pseudoviruses.

(DOCX)

S6 Table. IgG antibody titers against SARS-CoV-2 spike protein and neutralizing titers

(NT50) against WT and mutant pseudoviruses of serum from vaccinated individuals, col-

lected 1 month after the first and after the second doses of the vaccine.

(DOCX)

S7 Table. Primers used in this study.

(DOCX)
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