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Abstract

High-throughput RNA sequencing (RNA-seq) enables comprehensive scans of entire 

transcriptomes, but best practices for analyzing RNA-seq data have not been fully defined, 

particularly for data collected with multiple sequencing platforms or at multiple sites. Here we 

used standardized RNA samples with built-in controls to examine sources of error in large-scale 

RNA-seq studies and their impact on the detection of differentially expressed genes (DEGs). 

Analysis of variations in guanine-cytosine content, gene coverage, sequencing error rate and insert 

size allowed identification of methods that produce more false positives or are less reproducible 

across sites. Moreover, commonly used methods fornormalization (cqn, EDASeq, RUV2, sva, 
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PEER) varied in their ability to remove these systematic biases, depending on sample complexity 

and initial data quality. Normalization methods that combine data from genes across sites are 

strongly recommended to identify and remove site-specific effects, and can substantially improve 

RNA-seq studies.

The deep sampling capabilities and single-base resolution of RNA-seq have led to its 

adoption for a variety of studies of the transcriptome, which include many inter-site and 

large-scale studies such as the ENCODE Project, GEUVADIS, GTEx, the Epigenomics 

Roadmap, the human Brainspan Project and the Nonhuman Primate Reference 

Transcriptome Resource. However, it is notable that RNA-seq, just like microarrays, has 

taken many years to emerge as a trusted and established method, as experiments can suffer 

from lack of principled experimental design, poor sample quality, inconsistent library 

preparation or platform-specific measurement biases1, 2. Indeed, when microarrays started 

being used to identify biomarkers for drug toxicity and disease, the FDA recognized that an 

effort was needed to assure data quality and inter-site and inter-platform reproducibility, and 

to this end established the MicroArray Quality Consortium (MAQC)3. Through the MAQC, 

experimental standards and control RNA samples were developed, along with quality 

assurance guidelines and standardized microarray procedures4. Standards were also 

developed for data repositories (the Minimum Information About a Microarray Experiment, 

MIAME)5, along with robust methods for analyzing microarray experiments from multiple 

sources6. These and other efforts have enabled the exploitation of the large publicly 

available microarray datasets and the subsequent deduction of important biological and 

clinical insights7.

The success of MAQC motivated the development of similar guidelines and standards for 

high-throughput sequencing8, 9, in particular for RNA-seq10, 11, which led to the creation of 

the FDA Sequencing Quality Control (SEQC) Consortium and the Association of 

Biomolecular Resource Facilities (ABRF) studies on Next-Generation Sequencing (NGS). 

Previous large-scale RNA-seq studies have focused on the variation between lanes and 

flowcells12, and considerable progress has been made on reducing batch effects by 

normalizing GC content bias, fragment bias and the biases of isolation procedures13-23. So 

far, several RNA-seq data quality metrics have been developed13, 22, 24, 25, and surrogate 

variable analysis (sva)26, 27 has been applied to RNA-seq and microarray data from 

individual laboratories to improve expression measures28. Recently, a thorough, cross-site 

examination of Illumina RNA-seq data29 demonstrated that “laboratory effects” strongly 

affect GC content and insert size of prepared RNA-Seq libraries, and a method proposed to 

correct for them, Probabilistic Estimation of Expression Residuals (PEER)30, was able to 

reduce artifacts without adversely impacting the detection of expression quantitative trait 

loci (eQTLs).

Yet, to date, there has been no systematic examination of the impact of site-specific bias in 

detecting differentially expressed genes (DEGs), which is often the primary goal of an 

RNA-seq experiment. Moreover, there are various proposed means by which to correct for 

such biases, but the performance of several competing methods has not been systematically 

characterized. Here we used the controlled experimental design of the standardized SEQC/
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ABRF samples to test intra- and inter-site reproducibility, sensitivity and specificity of 

RNA-seq for pairwise comparisons of samples with varying complexity, representative of 

different experimental scenarios. We benchmarked two different sequencing platforms (Life 

Technologies Personal Genome Machine (PGM) and Illumina HiSeq2000) across twenty 

laboratory sites, and assessed a variety of methods for data normalization and bias removal 

(cqn14, EDASeq15, RUV231, sva26, 27 and PEER30). To our knowledge, our work represents 

the first cross-platform evaluation of methods for assessing RNA-seq quality and removing 

variance from data for multi-site, multi-platform reproducibility, which is a prerequisite for 

reliable conclusions and the integration of measurements and experiments from different 

laboratories. Finally, this work shows that, although bias-correlation methods can be 

successful at improving data quality, there is a wide range of impact on the detection of 

DEGs, for which correction methods often make a tradeoff between accuracy and 

reproducibility.

Results

Experimental data comparing intra- and inter-site variation

The experimental design of the main SEQC and ABRF studies are described in detail 

elsewhere32, 33. Briefly, four RNA samples were provided by the FDA SEQC consortium, A 

(cancer cell lines), B (brain) and two titrated mixtures of A:B (C and D). Samples C and D 

represent mixtures of samples A and B at the defined ratios of 3:1 and 1:3, respectively, and 

thus hold “built-in truths” of sample mixing ratios. These were sequenced and analyzed by 

over twenty laboratories and a total of six sequencing platforms. Here we use two RNA-seq 

platforms from the SEQC/ABRF studies where we had library preparation replicates of each 

sample at every site: Illumina's HiSeq2000 and Life Technologies PGM. For Illumina, each 

sample was distributed from a single source to six different primary test sites (ILM1–6) and 

prepared in quadruplicate at those sites. A fifth library for each sample, prepared at an 

independent seventh site, was also distributed and sequenced at three test sites (ILM2,3,5). 

Samples were barcoded and pooled together prior to sequencing in order to assess lane and 

batch effects7, 15, and were then paired-end sequenced (2 × 100) on two flowcells using 

Illumina's HiSeq2000 platform. For the PGM platform, samples were prepared in duplicate 

at three sites and sequenced on three 318 chips at each site. We first focus on the results 

from the Illumina platform.

Identical inter-site replicates show high rates of false positives

Ideally, expression values generated from identical samples at different sites should show 

little (and random) variation across sites. Thus, we can compare each sample to itself across 

the six test sites by pairwise calling of all differentially expressed genes (Fig. 1a) to generate 

an empirical measure of the false positive rate for all four samples (Fig. 1b)—that is, all 

DEG calls represent false positives. However, we observed many differentially expressed 

genes at varied fold-change (FC, 1.5–2.0) and false-discovery rate thresholds (FDR, 0.05–

0.001) using the limma-voom package. At the most lenient FC (1.5) and FDR (0.05), the 

number of false positive DEGs detected was as high as 9,602 (mean = 2,823, S.D. = 3,527, 

including both changes up and down), or ∼20% of all genes (Fig. 1b). As the stringency of 

the FC and FDR thresholds increased, the number of false positive DEGs decreased; 
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although even at fairly stringent thresholds (FC >2.0 and FDR <0.001), the number of DEGs 

detected was still as high as 3,135 (mean = 739, S.D. = 1,089), representing up to 8% of all 

genes. When we examined the inter-site DEG false positive rates for several other analysis 

pipelines (WHAM34, Mapsplice35, Novoalign36, Cufflinks23, 37, 38 and HTSeq39) we found 

similarly high false positive rates, regardless of the analysis pipeline or read alignment 

methods used (Supplementary Fig. 1).

To remove these false positives, we tested several established methods for normalization of 

RNA-seq data (cqn14, EDASeq15, RUV231, sva26, 27 and PEER30) and we observed highly 

variable results. Some methods (specifically sva and PEER) that leveraged all data across all 

sites were quite successful at ameliorating the high rate of false positives (Fig. 1, 

Supplementary Fig. 2), removing 85.1% to 87.7% of the original total false positive DEGs. 

The application of RUV2 with ERCC spike-ins (RUV2-ERCC), which tries to remove 

confounding factors based on a control set of synthetic RNAs assessed across sites, on 

average removes just 20% of false positives on average, but is more effective for sites that 

already have relatively low false positive rates (ILM4, ILM5). Notably, neither applying GC 

bias correction tools (cqn14 and EDASeq15) to individual sites nor changing read counts to 

only use 3′-UTRs was effective at decreasing the number of inter-site false positive DEGs 

(Fig. 1b and Supplementary Fig. 3); in most cases, these methods actually increased the 

number of false positives.

Inter-site DEG reproducibility varies by site and sample

However, any method for improving the false positive rate for DEG detection (A vs. A) 

needs to also be examined in the context of the true positives (validated DEGs), and we 

sought to determine the pre-normalization relationship between false positive DEGs, true 

positives and sites with high false positives (e.g. ILM3). We examined the repeatability and 

reproducibility of gene expression measures between the different samples with varying 

levels of complexity (A vs. B, and their 3:1 and 1:3 titrations of C and D). We used several 

analyses to establish the inter-site accuracy of DEG detection: the correlation of measured 

gene expression profiles, DEG detection within and across sites, and DEG detection vis-à-

vis independent Taqman data from 779 genes querying the exact same RNA samples.

First, the intra-site and inter-site Pearson correlation coefficients (R2) were all above 0.95 

(Supplementary Fig. 4), and Q-Q plots of the gene expression values from different sites 

indicated that all sites had similar distributions that clustered together (Supplementary Figs. 

5–8). Thus, simply calculating R2 values of genes' expression measures and showing that 

samples cluster together merely shows the tendency of expression values to track each other; 

these high correlation coefficients mask the 8–20% false positive rate described above33, 40.

Second, we examined, at each site, the differentially expressed genes for every possible 

pairwise comparison of samples. All six sites found similar numbers of DEGs 

(Supplementary Fig. 9), and the Spearman rank correlation of p-values showed that the 

inter-site rank agreement was very high for the common DEGs shared by all 6 sites, with a 

median correlation greater than 0.96 (Supplementary Fig. 10a–c). However, when we 

examined the complete list of DEGs found at each site (instead of just those DEGs common 

across sites), we found much lower correlations, ranging from 0.55–0.95 (Fig. 2a). As 
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expected, one site (ILM3) always showed the lowest Spearman correlation of p-values (Fig/ 

2a), co-incident with an increase in site-specific DEGs (Fig. 2).

Finally, to evaluate the sensitivity and specificity of DEG detection from RNA-seq data at 

each test site, we calculated the Matthews Correlation Coefficient (MCC)41, 42, with the true 

positive rate (TPR) and false positive rate (FPR) based on the Taqman data set 

(Supplementary Fig. 11). Scatter plots for pairwise comparisons across all sites and samples 

revealed good overall correlation between RNA-seq data and TaqMan data at the gene level 

(Supplementary Fig. 12a, with mean R2 = 0.729). However, the similarity of the TaqMan 

and RNA-seq data was improved for all comparisons when using the exact TaqMan primer's 

coordinates on the transcriptome to quantify RNA-seq expression rather than the combined 

read count across the entire gene (Supplementary Fig. 12b, mean R2 increase of 0.14). 

Nonetheless, in all cases, the site detected as an outlier by our analysis of false positives 

(ILM3) showed the lowest R2 and MCC with the TaqMan data (Fig. 2b). The DEGs 

detected from TaqMan were then compared to the DEGs obtained from RNA-seq using the 

limma-voom method. Each of the six cross-sample comparisons had very similar MCC, 

TPR and FPR (Fig. 2 and Supplementary Fig. 13), and these measures also indicated lower 

agreement as the samples became more similar, as expected, with the biggest differences 

expected by design in comparisons of samples A and D, whereas conversely the mixture 

samples C and D were similar by design. Indeed, when applying a variety of information 

theoretic metrics (such as mutual information33, Supplementary Fig. 14), we observed a 

similar loss of reproducibility as samples become more similar.

Cross-site data normalization improves RNA-seq quality

Because false positives and true positives were both affected by site-specific noise, we next 

compared DEG detection performance across sites (Fig. 3a) using five methods for RNA-

seq normalization (EDAseq, cqn, RUV2, sva and PEER). We observed that EDASeq and 

PEER were the two top methods with the highest adjusted Spearman rank correlation of p-

values between inter-site and intra-site DEG analysis (Fig. 3b). All methods yielded reduced 

inter-site reproducibility as samples become more similar, as expected. Using the common 

intra-site DEGs to validate inter-site DEGs showed that PEER consistently performed better, 

especially for the site with the largest bias (ILM3), where PEER successfully identified and 

compensated this bias, for every comparison (Supplemental Figure 15). This was also true 

when measured by MCC (Fig. 3c, Supplementary Fig. 16a.

We then further measured the impact of these normalization methods on the intra-site and 

inter-site quantification of differential gene expression. We compared the RNA-seq intra-site 

DEGs with the independent TaqMan data, using MCC as the evaluation measure. Although 

most methods did not improve the accuracy of intra-site DEGs detection, we found that 

EDAseq gave the highest similarity to Taqman expression measures (with mean MCC = 

0.939 and S.D. = 0.019, Fig. 4 and Supplementary Figure 16b). This improvement was 

consistent across all pairwise comparisons and all test sites.Quality control metrics flag 

sources of error and poor data

These results indicated a need to further investigate the underlying sources of variance that 

lead to so many false positives or irreproducible DEGs. Sample QC metrics (Supplemental 
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Figs. 17,18) indicated that data from a single site was distinct compared to the others. First, 

a non-random nucleotide composition bias was seen at the beginning of the sequencing 

reads, concomitant with a distinct, narrow bell curve of GC-content for the IML3 site (Fig. 

5a). Also, site ILM3 had an overall higher sequencing error rate compared to the other sites 

(Fig. 5c). We saw that both sample B (as a type) and ILM3 (as a site) had more reads near 

the 3′ end than the 5′ end of genes, indicating a shift in the coverage of the genes 

(Supplementary Fig. 18c). Coverage across the gene body was assessed using the coefficient 

of variation of the coverage across the length of the genes, and we saw that overall the ILM3 

site had higher coefficients of variation (Fig. 5d and Supplementary Fig. 18c), thus 

demonstrating the value of a ‘nucleotide composition metric’ (described below) for QC in 

RNA-seq for identifying unusual and potentially problematic measurements.

To test whether these sources of bias were site-dependent, we examined the fifth library of 

each sample (replicate 5, for samples A,B,C and D), which was prepared at an independent 

seventh site and then sequenced at three of the test sites. With this experimental design we 

can separate out sources of variation as either arising from the library preparation (including 

RNA isolation) or as arising from the sequencing itself. In the case of GC distribution, the 

fifth library from each sample did not exhibit an aberrant spike at 50% GC-content like 

replicates 1–4 sequenced at the ILM3 site; it is likely that the aberrant spike is a result 

arising purely from sample preparation (Fig. 4a,b and Supplementary Fig. 18a), which 

confirms the primary source of variation put forward by both the GEUVADIS and SEQC 

Consortium comparisons of RNA-seq measurements.33 Table 1 summarizes major sources 

of variation observed in our quality metrics as determined sequencing the fifth replicate 

libraries at sites ILM2, 3 and 5.

This control library was also able to reveal other features inherent to the sample preparation 

and sequencing. The fifth library replicate of each sample was always consistent in error rate 

with the other samples it was sequenced with, indicating that the sequencing error rate is 

indeed primarily a function of sequencing, and not affected by library preparation (Fig. 5c 

and Supplementary Fig. 18b). Plots of the uniformity of coverage across gene bodies 

showed that sample B, regardless of where it was prepared or sequenced, had more read 

coverage near the 3′ end than the 5′ end with respect to annotated gene models 

(Supplementary Fig. 18c), indicating that the stock of sample B prior to its distribution to 

each site may have been contaminated with something which would have caused it to have 

depleted 5′ ends before poly(A)+ selection (for example, RNase or cations). The remaining 

fifth libraries (A, C, D) had relatively uniform coverage when sequenced at ILM3, whereas 

the corresponding samples prepared at ILM3 did not, notably demonstrating that library 

preparation can exacerbate poor genebody coverage uniformity (Fig. 5d,e and 

Supplementary Fig. 18c). Lastly, because the nucleotide composition metric (Fig. 5f and 

Supplementary Fig. 17) showed that the fifth library replicate had equal base composition 

regardless of sequencing site (#5, dashed lines), these data demonstrate, for the first time to 

our knowledge, that the nucleotide composition bias of RNA-seq data likely arises from 

library preparation alone.

Finally, we observed that the latent experimental factors determined by PEER and sva are 

highly correlated with QC metrics and properties, and that these factors were responsible for 
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the majority of false positives in inter-site DEG analysis. For sva, the first latent factor was 

significantly correlated with the GC content distribution quality metric of the sites (p < 

2×10-7), the average error rate (p < 6×10-7) and the duplication by library (see 

Supplementary Fig. 19p < 2×10-4). The second latent factor was significantly associated 

with the genebody coverage uniformity (p < 3×10-4). For PEER, the first latent factor was 

significantly correlated with the GC content distribution quality metric, the genebody 

coverage uniformity, and the average error rate of the sites (p < 2×10-4). These additional 

metrics can, and should, be used for tracking samples that may suffer from high false 

positives and inherent sample noise.

Cross-platform applicability of normalization methods

Finally, we sought to gauge the utility of these inter-site normalization methods across 

multiple platforms. We used PGM RNA-sequencing data from the ABRF-NGS consortium 

data (see methods), which used the same standardized RNA samples (A and B) as the SEQC 

consortium, and were prepared using the Life Technologies RNA Sequencing kit at three 

independent sites (PGM1–3) with duplicate library preparations and sequenced using three 

Ion 318 chips. Sequencing reads were again aligned using the STAR43 aligner and annotated 

using GenomicRanges44 with Aceview45 genes.

We first examined the GC content of the mapped reads from PGM data, and found that some 

replicates showed abnormal GC content distributions (Supplementary Fig. 20). Two libraries 

in particular had a much higher maximum spike in their GC-content (%GC) for their reads 

(>5.8%) in comparison to the rest of the libraries (mean 4.9%, Supplementary Fig. 21). The 

average base error rate (Supplementary Fig. 21b) was higher in PGM1 and PGM3 than in 

PGM2. We also observed for sample A, that replicate 4 from PGM1, replicate 2 from 

PGM2, and replicate 1 from PGM3, all had the lowest genebody coverage variation 

compared to other PGM data (Supplementary Fig. 21c). After the Trimmmed Mean of M-

values (TMM)55 and limma-voom normalization, we found that samples A and B were well 

distinguished by multidimensional scaling (Supplementary Fig. 21d), and that the two 

replicates with abnormal GC content distributions (PGM1.A.4 and PGM2.A.2) were 

separated from the other replicates of sample A at dimension 2.

We then examined the inter-site false positive DEGs for the PGM data, each with two 

replicates for sample A and B. With the lowest stringency thresholds (FDR: 0.05; FC: 1.5), 

there were on average 114 false positive DEGs (0.32%) using the original limma DEGs 

analysis (Supplementary Fig. 22a). Notably, applying PEER successfully removed almost all 

the false positive DEGs (Supplementary Fig. 22c). The responsible hidden variable 

identified by PEER was significantly correlated with GC content (p = 0.03). Using the 

common intra-site DEGs to validate the called inter-site DEGs, the MCC41, 42 showed that 

PEER also yields a higher accuracy than the original limmavoom method (Supplementary 

Fig. 22d,e), indicating that global data normalization analysis methods such as PEER can 

also be used to improve RNA-seq data across both Illumina and the PGM platforms.
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Discussion

Utilizing the new benchmark data sets created by the SEQC Consortium and the ABRF-

NGS Study on RNA-seq32,33, we determined the relationship between the quality of a 

dataset indicated by a wide range of quality metrics and the results of differential gene 

expression (DEG) analysis of samples both within a site and across sites. We then rigorously 

tested a variety of commonly used statistical tools for RNA-seq data normalization (sva, 

RUV2, cqn, EDASeq, PEER) using multiple samples and metrics. Overall, the 

reproducibility of intra- and inter-site DEGs across all sites showed a higher correlation for 

comparisons between more biologically different samples (A versus B), and a lower 

reproducibility for more similar samples (A versus C, B versus D, C versus D), reflecting 

the expected greater challenge of reliably identifying smaller differences. Indeed, the unique 

study design allowed a reductio ad absurdum experiment, comparing replicates of the exact 

same sample across sites, where we notably still observed thousands of DEGs that were 

deemed statistically significant but clearly reflected technical differences between sites and 

not differences between the compared RNA-samples. The application of GC content bias 

correction packages including cqn14 and EDASeq15 could not remove these false positives, 

likely because GC content bias is not the only source that contributes to bias in gene 

expression data. Similarly, RUV factor analysis based on the ERCC control gene set was not 

sufficient.

However, the majority of RNA-seq false positives (>85%) could successfully be removed by 

subtracting the effects of latent variables identified by either sva26,27 or PEER30, which 

could be achieved by jointly analyzing the set of measurements of all genes across multiple 

sites, without a decrease in the sensitivity or specificity of DEG detection at each site or 

across sites. These latent variables were shown to be significantly associated with GC-

content, genebody coverage uniformity, average base error rate and insert size. This 

confirms the impact of two already recognized RNA-seq latent variables, GC-content and 

insert size15,22, and it also identifies two more relevant contributions to technical variation, 

gene coverage variation and error rate. Furthermore, our use of the cross-site, internal 

control library (#5) has demonstrated that GC-content is preparation-specific, not laboratory 

specific, and we have introduced the coefficient of variation for genebody coverage as an 

important quality measure in RNA-seq (Table 1), which quantifies this 5′-3′ bias across both 

platforms.

Our results also indicate that a tradeoff is sometimes made between different goals of 

normalization. For example, although EDASeq could not effectively remove inter-site false 

positives (Fig. 1), it did, however, consistently improve the detection of DEGs as compared 

to the TaqMan reference set (Fig. 4). Conversely, although PEER sometimes ranked lower 

on comparability to the Taqman reference set, it had the greatest impact on removing site-

specific bias. Moreover, it worked best in making data from the HiSeq and PGM platforms 

comparable for cross-platform analyses. Notably, genes tested by TaqMan were (on 

average) more highly expressed, and this may affect normalization method performance for 

this reference set. Regardless, we have shown that RNA-seq quality metrics and bias 

removal can successfully be utilized on multiple platforms. Because many aspects of library 

preparation and normalization are universal aspects of working with RNA, including 
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isolation, purification, priming, amplification, reagent batch and kit version, the 

recommendations and most of our observations presented here will likely be applicable to 

any sequencing platform used for RNA-seq46,47.

In general, given advanced data processing, even substantial bias could be corrected and 

value extracted from experiments combined from multiple laboratories, highlighting the 

need to archive and share the original sequencing reads from RNA-seq experiments. These 

best practices for quality control and analysis of RNA-seq data from different experiments 

or laboratories can readily be implemented, and they are of immediate relevance not just for 

large-scale RNA-seq studies, but also the analysis of smaller experiments in the context of 

other data, such as in-house data or those from public repositories. With the globalization of 

research collaborations and the emergence of an increasing number of large RNA-seq 

cohorts, obtaining sequencing data across different institutes and platforms is inevitable. The 

ENCODE project and GEUVADIS Consortium have provided extremely valuable 

guidelines and best practices for RNA-seq experiments and this work validates and extends 

their conclusions to other efforts such as GTEx, the Epigenomics Roadmap, the human 

Brainspan Project and the Nonhuman Primate Reference Transcriptome Resource 

(NHPRTR). These metrics and internal controls complement those currently in use and 

create additional resolution insights into the quality of an RNA-seq dataset, further 

establishing RNA-seq as a reliable, universal tool for differential expression profiling.

Online Methods

Sample definitions

Sample A was Universal Human Reference RNA (catalog no. 740000) and Sample B was 

Human Brain Reference RNA (catalog no. 6050) from Stratagene and Ambion, respectively. 

Sample C was a 3:1 mixture of A and B (vol/vol), and sample D was a 3:1 mixture of A and 

B (vol/vol).

RNA quantification, purity, and intactness assessment

Concentrations were based on total RNA as measured by OD260 using a NanoDrop 2000 

UV-Vis spectrophotometer. RNA was run on an Agilent Bioanalyzer 2100 to assess 

intactness. Acceptable values were defined as: A260/280 ratio in the range of 1.8-2.2, 

ribosomal RNA ratio (28S/18S) > 1.8, and RNA integrity number (RIN) > 8.0.

Library preparation and sequencing

All SEQC (MAQC-III) data sets are available through the Gene Expression Omnibus GEO 

site (series accession number: GSE47792). All ABRF-NGS RNA-seq data, with analysis 

methods, are also available at the GEO (series accession number:GSE46876).

For Illumina, 250 ng of total RNA from the identical MAQC Samples from 2006 were used 

to create aliquots for all sites and all technologies. Libraries were prepared in quadruplicates 

as six different sites using reagents from Illumina's TruSeq RNA Sample Preparation Kit 

(v2) and following Illumina's Low Sample (LS) protocol in their TruSeq RNA Sample 

Preparation v2 Guide. At each site, each library as indexed with a unique barcode, pooled 
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together, and paired-end sequenced (100×100) on 16 lanes across two flowcells on 

Illumina's HiSeq2000 platform. Control cDNA libraries from the four control RNAs were 

made at a seventh site, which was then distributed to all sites for testing the “machine 

effect.” For the PGM, libraries were constructed at three core laboratory sites using the 

MAQC A, MAQC B, ERCC 1, and ERCC 2 RNAs. Further details are provided in the 

ABRF-NGs manuscript, but briefly, five micrograms of each RNA was enriched for polyA 

RNA (MRRK1010, MPG Kit, PureBiotech) using the recommended Life Technologies Ion 

protocol for Transcriptome Profiling of Low-Input RNA Samples (April 2011 version). The 

resulting RNA was assessed for yield and purity using an Agilent 2100 Bioanalyzer 

PicoChip, all with RINS above 8. Site definitions are as follows: ILM1: Australian Genome 

Research Facility;ILM2: Beijing Genomics Institute; ILM3: Cornell; ILM4: City of Hope; 

ILM5: Mayo Clinic; ILM6: Novartis. We used a set of quality metrics (Supplemental Figs. 

1-4) to gauge the variability of the RNA-seq data within and between 6 SEQC test sites.

Whole transcriptome library preparation for PGM was performed using 5-10 ng of 

fragmented enriched polyA RNA according to the manufacturer's protocol (Ion Total RNA-

Seq Kit V2 protocol #4476286B Life Technologies). Size selection of a 315 bp product was 

performed using a standard Pippin prep protocol (Sage Science) followed by purification 

with AMPure beads (Beckman-Coulter Genomics). Emulsion PCR was performed using the 

One Touch system (Life Technologies). Beads were prepared from 70-100 million copies 

using the One Touch 200 Template Kit v2 #4471263. For each of the MAQC samples, 

PGM1 had 4 replicates, while PGM2 and PGM3 each had 2 replicates. Sequencing was 

conducted using an Ion PGM 200 sequencing kit (#4474004) on the 318 Ion chip.

RNA-seq data preprocessing

Image processing and base calling were accomplished in real-time with Illumina's HiSeq 

Control Software (HCS). Demultiplexing was carried out using Illumina's CASAVA (v1.8) 

software. For the PGM, data were collected using the Torrent Suite v3.0 software. 

Sequences were aligned to the hg19 genome assembly (GRCh37) using STAR43 RNA-seq 

aligner. Using the R packages GenomicRanges44 and Rsamtools48, expression values were 

calculated for each AceView45 annotated gene as the number of reads which overlapped 

with that gene's exonic coordinates.

For any read, if a read overlapped exactly with one gene, the read was counted for that gene; 

otherwise, the read was counted as ambiguous and discarded. The lowest 30% of genes 

(n=21,710), as determined by the sum of all inter-site and intra-site depth-normalized counts 

for each gene, were then removed from each sample. Genes with low read count from 

usually <=2.7 mapped reads across the whole gene are extremely variable, and their removal 

is recommended by the SEQC Consortium in the SEQC main manuscript. Due to the lower 

sequencing depth of the PGM data, the read count for each gene is much less than in the 

ILM dataset, we filtered out the lowest 50% of AceView45 genes to achieve an average read 

count across all replicates with at least 2 reads before gene count normalization. This 

ensured that we only examined consistently detected genes at all sites from all platforms.
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Surrogate variable analysis

Normalized gene expression values for all samples were used to detect latent variables using 

the sva package26. Two latent variables were constructed using twostepsva. build() function 

based on the two-step algorithm of Leek and Storey26, 27. Latent variables in the DEG 

analysis were removed by adding the latent variable in the design matrix for limma approach 

mentioned above.

PEER analysis

Normalized gene expression estimates for all samples were used to detect latent variables 

using PEER package30. The covariates associated with sample type were included for 

inference and the inferred hidden confounders were removed from the signal. The optimal 

number of hidden confounders was found to be two and three for ILM and PGM data sets 

respectively, as the robust analysis of higher number of confounders has indicated (data not 

shown) that influence of further confounders is negligible and thus these can be omitted.

GC bias correction

We applied two R packages cqn17 and EDASeq18 to correct the GC content bias and 

normalized the gene expression, respectively. Then the normalized expression matrix was 

fed in limma lmfit(), contrasts. fit() and eBayes() functions for differentially expression 

analysis.

Remove unwanted variables analysis

We applied RUV2 function31 to remove the unwanted variables in the normalized 

expression values on the log2 scale. The 23 ERCC read counts were used as the control.

3′ UTR gene counting

Gene counts were created as previously described, except 3′UTR coordinates were used in 

place of exon coordinates.

RNA-seq quality metrics

R-make (http://physiology.med.cornell.edu/faculty/mason/lab/r-make/) is an open-source 

package that we used for all quality metrics evaluation. R-make depend on BEDTools49, 

samtools50, BamTools51, STAR43, and interval container library52. In brief, quality metric 

definitions were as follows: sequencing depth: total number of reads sequenced; mapping 

rate: percentage of reads which mapped uniquely to the reference genome; sequence 

directionality: the number of reads which mapped to the forward and reverse strands 

compared to those of the AceView gene model; nucleotide composition: the total number of 

A/G/C/T sequenced at each position across the length of the read; guanine-cytosine (GC) 

distribution: the number of reads with a particular %GC content; read distribution: the 

fraction of the reads which mapped to either exons, 3′UTRs, 5′UTRs, introns, or intergenic 

regions (or the intersection of any of the aforementioned categories) as defined by the 

AceView gene models; coverage uniformity: the percentage of reads covering each 

nucleotide position of all genes scaled to 100 bins; error rate: the number of mismatches in 

each unique, aligned read with respect to the reference genome for each nucleotide position 
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across all reads; base quality scores: Phred-quality scores as calculated by Illumina's HCS 

for each nucleotide position across all reads; insert size: the distance between two paired 

fragments as calculated by the start position of read-2 minus the end position of read1; and 

duplication rate: the number of reads with exactly the same sequence content.

RNA-seq differential gene expression analysis

Lists of differentially expressed genes were generated using the limma-voom pipeline53, 54 

and compared to the total set Aceview genes consistently observed at all sites (n=45,656). 

All samples utilized four replicates, e. g., four of sample A at site 1 vs four replicates of 

sample A at site 2, etc. The limma package53, 54 has implemented RNA-seq differential gene 

expression analysis. In the current study, the differential gene expression analysis followed 

the limma package53, 54 user guide (http://www.bioconductor.org/packages/2.12/bioc/

vignettes/limma/inst/doc/usersguide.pdf). Briefly, the trimmed mean of M-values 

normalization method, which uses a weighted trimmed mean of the log expression ratios, 

was applied to the raw gene counts55-57. Using voom() from the limma package53, 54, the 

mean-variance relationship of the counts was estimated, and the appropriate weights for 

each observation were computed based on their predicted variance. By applying the lmFit(), 

contrasts. fit() and eBayes() functions, also from the limma package, the fold changes and 

standard errors were estimated by fitting a linear model for each gene, and empirical Bayes 

smoothing was applied the standard errors. We used the Benjamini and Hochberg 

adjustment for multiple testing at a variety of false discovery rates {FDR | 0.05 or 0.01 or 

0.001}. Differentially expressed genes were evaluated at log2 fold change (FC) cutoffs {FC | 

1.5 or 2}.

TaqMan gene expression analysis

TaqMan data for samples A, B, C, and D, was obtained through GEO (accession number 

GSE5350)3. Each TaqMan assay was run in four replicates for each sample. Undetectable 

CT values (CT>35) were removed prior to normalization. The data was normalized using the 

HTqPCR package58 to the average CT of POLR2A by subtracting the average CT of 

POLR2A from each TaqMan target to give the log2 difference between endogenous control 

and target gene3. TaqMan differential gene analysis was performed as for RNA-seq data, 

minus the TMM and voom transformations.

Gene expression quantification correlation of TaqMan data and RNA-seq data

We obtained the TaqMan primer sequence from 2006 MAQC consortium. We then map the 

sequence using blat to hg19 refseq transcriptome have 100% alignment (available at http://

physiology.med.cornell.edu/faculty/mason/lab/data3/sac2026/ABRF/Data/SEQC/

taqman_refseq_mapping.bed). We then convert the transcriptome alignment results to 

genome locations using in house R script, considering three conditions: 1) single exon 

genes; 2) multi-exon genes (sense or anti-sense strand) with primer in one exon; 3) multi-

exon genes (sense or anti-sense strand) with primer spanning two exons. After double 

confirmation with the UCSC genome browser on the actual sequence on the genome, we 

annotate the read count for SEQC project using the genome locations of TaqMan's 863 

primer sequences. We then compare the TaqMan normalized gene expression level with the 
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primer sequence annotated RNAseq normalized gene expression using scatter plot and 

calculated the Pearson correlation.

Validation of DEGs from RNA-seq data using TaqMan data

DEGs from RNA-seq data from each site for six comparisons (A-B, A-C, A-D, B-C, B-D, 

C-D) were validated using the DEGs from the TaqMan data. Based on our FDR and FC 

cutoff, for example, genes with adjusted p value smaller than 0.05 and absolute fold change 

greater than 1.5 and declare them to be differentially expressed, our findings might include 

both truly differentially expressed genes (true positives) and non-differentially expressed 

genes (false positives). Given a list of declared DE genes from sequencing data and the 

information about which genes in TaqMan to be truly DE and which genes are not, we can 

calculate the true positive rate (TPR) and false positive rate (FPR). TPR is defined as the 

proportion of true DE genes that are declared to be DE, while FPR is the proportion of non-

DE genes that are also declared to be DE, whichboth range from 0 to 1. The Matthews 

Correlation Coefficient (MCC) was chosen as measure of DEG detection accuracy41, 42 

which combines test sensitivity and specificity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Inter-site normalization and false positive DEGs
(a) Schematic plot of RNA-seq data from all 4 samples (A,B,C,D) and 6 sites (ILM1-6), 

followed by normalization and calling of all pairwise differentially expressed genes (DEGs). 

(b) Intersite false positive DEGs, by comparing the 4 replicate libraries made for a particular 

sample at one Illumina site to the replicates of the same sample from the other five sites, 

shown for all samples (A vs. A, B. vs. B, C vs. C, D vs. D). We compare six normalization 

methods: original (standard limma-voom processing only), and with additional processing 

by EDASeq, cqn, RUV2, SVA, PEER (bar color). Thresholds used for DEG calls: FDR: 

0.05, FC: 2.0. One site (ILM3) showed the most false positives before correction, although 

other sites also showed thousands of false positive DEGs.
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Figure 2. Evaluation of inter-site DEG reproducibility
For each of the six sites, all possible pairwise differential expression analyses were 

performed for all samples A to D, giving a total of six comparisons. We then assessed 

agreement across sites using different measures. (a) The Spearman rank correlation of the q-

values from any two of the six sites are plotted, with color and shape indicating the samples 

compared. (b) Percentage of DEGs agreeing between two sites out of the union of DEGs 

detected at the two sites. (a-b) Along the x-axis we plot all 10 possible pairwise 

combinations of the 6 sites (ILM1 vs ILM2, etc.). (c) External validation by TaqMan using 

Matthews correlation coefficient as measurement. Along the x-axis we plot all 6 possible 

pairwise combinations of the 4 samples. Blue indicates the fraction of DEGs shared, the 

other colors represent the DEGS seen at only one of the sites. Different color and shape 

combinations represent the 6 sites.
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Figure 3. Inter-site DEG detection and validation
(a) Schematic plot of the comparison between intra-site DEGs and inter-site DEGs. We 

show site ILM1 and the comparison of sample A vs. B as an example. Analogously, the 

analysis has been applied to all 6 sites and possible pairwise sample comparisons. (b) 

Spearman rank correlation of the adjusted p-value (q-value) for inter-site DEGs and intra-

site DEGs. (c) Inter-site DEG validation by TaqMan, assessed by MCC for all six pairwise 

sample comparisons (A-B, A-C, A-D, B-C, B-D, C-D). (b,c) We compare six normalization 
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methods: orginal (standard limma-voom processing only), and with additional processing by 

EDASeq, cqn, RUV2, SVA, PEER. Thresholds for DEG calls: FDR: 0.05, FC: 2.0.
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Figure 4. MCC evaluation of intra-site DEG detections using TaqMan data
Each violin plot summarizes data points from 6 sites. We compare six normalization 

methods: orginal (standard limma-voom processing only), and with additional processing by 

EDASeq, cqn, RUV2, SVA, PEER. Thresholds for DEG calls: FDR: 0.05, FC: 2.0.
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Figure 5. 
Examination of RNA-seq data quality identifies major sources of variation. (a) GC content 

distribution (sample A). X-axis is GC content (%) and y-axis is percentage of reads with the 

corresponding GC content. Point shapes distinguish replicates (1: unfilled circle; 5: unfilled 

triangle). (b) The greatest percentage of reads contributing to some GC content bin (0% to 

100%). A sample with more reads contributing to a particular GC content bin (%) indicates 

an abundance of reads with that particular GC content. (c) Average base error rate across all 

sequencing bases (y-axis) across all sites (x-axis). (d) Coefficient of variation of the 

percentage of genebody coverage (y-axis), which is a measure of the evenness of coverage 

across all gene bodies for each site (x-axis). (e) The percentage of reads that covers each 

nucleotide position of all of genes scaled to 100 bins, from 5′ UTR to 3′ UTR for sample A:

1-5. Replicate 1 displayed site-dependent variation in genebody coverage for ILM3 (3′ bias), 

whereas replicate 5 showed similar genebody coverage regardless of where it was 

sequenced, suggesting that genebody coverage is influenced by library preparation. (f) 
Nucleotide frequency versus position for aligned reads. The percentage of each base was 

plotted as a function of the read length for each base (A, G, C, T) for two replicates (1, 5) for 

all sites. Replicate 1 displayed site-dependent base composition frequencies, whereas 

replicate 5 showed similar base composition frequencies regardless of where it was 
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sequenced, suggesting that base composition frequency is largely a result of library 

preparation. Only the 20th to the 100th bases are shown here; the full read range can be seen 

in Supplementary Fig. 4. Vertical facets stand for sample A-D. Site information for ILM1-6 

is color-coded. Replicates 1-4 were prepared and sequenced independently at each site, 

whereas replicate 5 was prepared at a single site and then sequenced at a subset of all sites. 

Point shapes distinguish replicates.
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Table 1

Major sources of variation for quality metrics determined using fifth replicates.

Quality metrics Description Major source of variation

GC content Percentage of bases for each GC bin (1-100) for all aligned reads. Library preparation (including 
RNA isolation)

Genebody coverage evenness
Accumulative statistics for the read coverage of exonic regions from 5′ 
UTR to 3′ UTR for all genes. Each gene is divided into 100 bins to 
calculate the genebody coverage.

Library preparation (including 
RNA isolation)

Base error rate The average base error rate for all aligned reads. Sequencing (inclusive of cluster 
generation)

Nucleotide composition Nucleotide frequency versus position for aligned reads. Library preparation (including 
RNA isolation)
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