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Abstract: Eurycomanone (EN) is one of the representative quassinoid diterpenoids from roots of
Eurycoma longifolia Jack, a natural medicine that is widely distributed in Southeast Asia. Previous
studies showed that EN induces cancer cell apoptosis and exhibits anti-cancer activity, but the
molecular mechanism of EN against cancer has still not been elucidated. In this study, we examined
the regulatory effect of EN on autophagy to reveal the mechanism of EN-mediated colon cancer
growth inhibition. First, we found that EN is able to inhibit colon cancer cell proliferation and colony
formation. The angiogenesis level in cancer cells was inhibited as well. Next, the treatment of EN led
to the suppression of autophagy, which was characterized by the downregulation of the LC3-II level
and the formation of GFP-LC3 puncta under EN treatment in colon cancer. Moreover, we revealed
that the mTOR signaling pathway was activated by EN in a time- and concentration-dependent
manner. Finally, autophagy induction protected colon cancer cells from EN treatment, suggesting
that autophagy improves cell survival. Taken together, our findings revealed the mechanism of EN
against colon cancer through inhibiting autophagy and angiogenesis in colon cancer, supporting that
the autophagy inhibitor EN could be developed to be a novel anti-cancer agent.

Keywords: eurycomanone; autophagy; angiogenesis; mTOR; colon cancer

1. Introduction

Global statistics showed that colon cancer was the third most common cancer with the
second highest mortality among all cancers [1]. Experts predicted 53,200 deaths from colon
cancer during 2020 in America [2]. Compared with European and American countries, the
incidence of colon cancer in China is higher and has shown a clear upward trend in recent
years [3]. Colon cancer occurs in the colon or rectum and is associated with high-fat and low-
fiber diets. Due to irregular eating schedules or unhealthy eating habits, the age of onset
of colon cancer is decreasing, and the incidence of cancer is rising among people in their
20s and 30s. Thus, it is urgent to develop effective treatments for colon cancer. Nowadays,
there are three common clinical treatment methods, including surgery, chemotherapy, and
radiotherapy, among which surgery is still the most effective choice in the early stage.
However, for advanced colon cancer, combined treatments must be applied. Although
chemotherapy agents such as 5-fluorouracil, capecitabine, irinotecan, and oxaliplatin [4–7]
can be effectively used alone or in combination to treat colon cancer, their side effects and
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secondary drug resistance are problems that we cannot ignore. For the past few years,
targeted drugs, such as the angiogenesis inhibitors bevacizumab [8] and ramucirumab [9],
have been successfully applied in the treatment of advanced colon cancer. Unfortunately,
some serious adverse effects accompany cancer therapy, such as hypertension, hemorrhage,
etc. Therefore, it seems to be necessary to develop anti-colon-cancer drugs with fewer side
effects at the current moment.

As the potent anti-neoplastic activity of paclitaxel has been observed [10], more and
more studies focus on the pharmacodynamics of natural products with less toxic side effects
and broad prospects for anti-cancer therapies [11]. Eurycomanone (EN) is extracted from
the root of Eurycoma longifolia Jack, which is widely distributed in southeast Asian countries.
The traditional usages and toxicity of Eurycoma longifolia Jack have been reviewed [12–14],
and it was revealed to possess good anti-angiogenesis and anti-tumor effects and to have
the potential to be a new anti-cancer drug. Among the variety of components of Eurycoma
longifolia Jack, quassinoid diterpenoids are the most effective and have more than three
valuable pharmacological effects, such as improved sexual function, enhanced male fertility,
anti-malarial activity, and anti-tumor activity. EN is one of the representative quassinoid
diterpenoids and exhibits anti-proliferation and cytotoxicity in different cancers [15,16]
such as breast cancer and lung cancer. Here, our group extracted the components of
Eurycoma longifolia Jack and further improved the extraction and purification process of EN
(Figure 1A). In addition, the inhibitory effect of EN on colon cancer was further explored in
our study.

Autophagy is an ancient biological process that is prevalent in eukaryotic cells. The
process of autophagy can be simply divided into three steps: the two-layer membrane
structure wrapping the components to be degraded to form autophagosomes, the fusion
of autophagosomes with lysosomes to form autolysosomes, and the degradation of the
autophagic components [17]. Autophagy plays a crucial role in multiple physiological
processes [18], such as aging, development, cell death and survival, etc. Most importantly,
autophagy has been closely associated with tumorigenesis [18,19], either suppressing tu-
mors or promoting tumors. In the treatment of cancer, many anti-cancer agents exert their
function through regulating autophagy, either inducing autophagy [20,21] or inhibiting au-
tophagy [22,23]. Whether the tumor-suppressive effect of EN is associated with autophagy
is not known.

Angiogenesis refers to the development of new blood vessels from pre-existing capil-
laries or capillary veins. It plays a fundamental role in the occurrence, progression, and
migration of tumors through the transportation of nutrients and oxygen [24]. Currently,
more and more studies have proven that the inhibitors of angiogenesis can be used for
cancer therapy. They were designed to target VEGF, the VEGF receptor, or other specific
molecules instead of acting directly on cancer cells [25–27]. Similarly, drug resistance occurs
with the use of anti-angiogenic therapies [28], which are associated with autophagy. Thus, it
is possible to overcome drug resistance and enhance the efficacy of angiogenesis inhibitors
through regulating the autophagy level in cancer.

Here, we hypothesized that EN exerts an anti-colon-cancer effect by regulating au-
tophagy. In this study, our results showed that EN inhibits colon cancer cell growth in a
time- and dose-dependent manner. Under EN treatment, the autophagy level of cancer
cells decreased, which can be attributed to the activation of the mTOR signaling pathway.
Functionally, autophagy enhancement plays a protective role in the EN-induced cell growth
inhibition of colon cancer. Taken together, our findings demonstrate that EN might be a
novel therapeutic agent to use alone or in combination with autophagy inhibitors in the
treatment of colon cancer.

2. Materials and Methods
2.1. Reagents and Antibodies

The reagents used in our research were: a BCA protein assay kit (Solarbio, #PC0020),
BeyoECL Plus (Beyotime, #P0018S, Shanghai, China), CQ (Sigma Aldrich, #C6628, St. Louis,
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MO, USA), crystal violet (Beyotime, #C0121), DCFH-DA (Beyotime, #S0033S), DMSO
(Solarbio, #30072418, Beijing, China), EBSS (Gibco, #24010043, Waltham, UK), GSH (AAT,
#22810, Sunnyvale, California, USA), a Hoechst33342 staining kit (Beyotime, #C1025),
Lipofectamine 2000 reagent (Invitrogen, #11668027), matrigel (BD, #356234, New York,
USA), MTT (Solarbio, #M8180, Beijing, China), a CCK-8 kit (Yeasen,#40203ES60, Shanghai,
China), Opti-MEM (Gibco, #11095080), and RAPA (Beyotime, #S1842).

The antibodies used in the experiments were from Cell Signaling Technology (CST):
α-Tubulin (CST, #2144), β-actin (CST, #58169), Beclin-1 (CST, #3495), ERK (CST, #4695),
GAPDH (CST, #2118), LC3 (CST, #3868), mTOR (CST, #2983), phospho-ERK (Thr202/Tyr204,
CST, #4370), phospho-mTOR (Ser2448, CST, #5536), phospho-S6 (Ser235/236, CST, #2211),
phospho-VEGFR2 (Tyr1175, CST, #2478), S6 (CST, #2217), TSC2 (CST, #4308), and VEGFR2
(CST, #2479). The fluorescence antibody was PE-VEGFR2 (BD, #89106). Other antibodies
included goat anti-rabbit/mouse IgG-HRP (Fdbio science, FDR007 and FDM007, Hangzhou,
China) and FITC goat anti-rabbit IgG (Beyotime, A0562).

2.2. EN Extraction Method

EN was isolated and purified by Prof. Tian Jingkui in the Key Laboratory of Biomedical
Engineering at Zhejiang University. Briefly, 10 kg of dried Radix Donggeali was heated
with 60% ethanol for reflux extraction three times, and the extract was combined. Then,
the extract was filtered, the solvent was concentrated until alcohol-free, and centrifuged.
After centrifugation, the supernatant was separated by an HPD100 macroporous resin
column, and the 30% ethanol eluent was collected. The eluent was concentrated to dry,
and the total extract sample (EL) was 150 g. The EL was dissolved in 15% methanol and
separated by medium-pressure preparative chromatography. The first batch was collected
every 10 min. TLC detection was combined with the same fluid. A total of 20 components
(EL1~20) were obtained.

2.3. Cell Culture

All cancer cell lines were obtained from American Type Culture Collection (ATCC,
Manassas, VA, USA). HeLa cells stably expressing GFP-LC3 and L929 cells stably expressing
RFP-GFP-LC3 were kindly provided by Prof. Shen Han-Ming (National University of
Singapore, Singapore).

A549 and PC9 cells were maintained in RPMI 1640 medium (Genom, #GNM31800,
Hangzhou, China) containing 10% fetal bovine serum (Sangon Biotech, #E510008, Shanghai,
China). HUVECs were maintained in ECM medium (ScienCell, #1001, Carlsbad, CA, USA).
All other cells were maintained in DMEM medium (Genom, #GNM12800) containing
10% fetal bovine serum. All cell lines were incubated at 37 ◦C in a 5% CO2 incubator
(Thermo Scientific, Waltham, MA, USA).

2.4. Cell Viability Assay

MTT was used to measure cell viability. First, cells were seeded in 96-well plates
with 5000 cells/well and incubated at 37 ◦C for 24 h before treatment with different
concentrations of EN for different times. Then, 50 µL of MTT (2.5 mg/mL dissolved in PBS)
solution was added into each well for a 2 h incubation. Finally, the medium was carefully
replaced with 200 µL of DMSO. After shaking for 3 min, we measured the absorbance at
570 nm with a multiscan spectrophotometer (Thermo Scientific). The relative cell viability
rate = (the average absorbance of the experimental group/the average absorbance of the
control group) × 100%. All data were repeated three times.

Cell viability assay was also evaluated using a CCK8 assay kit. After the indicated treat-
ment, 10 µL of CCK-8 was added to each well, and the cells were subsequently incubated
at 37 ◦C for 1~4 h. The absorbance was measured at 450 nm using the microplate reader.
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2.5. Colony Formation Assay

Cells were seeded in 6-well plates (500 cells/well) and incubated for 24 h before
treatment with different concentrations of EN. The medium was removed after 24 h, and
2 mL of complete medium was added in each well. The cells were maintained for about
14 days until the clones grew to a suitable size (more than 50 cells/clone). Meanwhile, the
medium was changed every three to four days. Finally, the medium was removed, and
a moderate amount of PBS was used to wash each well. Methanol was used to fix the
cells for 5 min, and cells were stained with 0.1% crystal violet for 30 min and then gently
washed with ddH2O to remove excess stain. The clones were photographed and counted
by Image J.

2.6. Tube Formation Assay

Matrigel (BD Biosciences, San Jose, CA, USA) solution was added to the well of a
pre-chilled 96-well sterile plate, which was incubated for 30 min to 1 h at 37 ◦C to allow
the Matrigel solution to form a gel. Approximately 2 × 104 HUVECs/well were treated
in a 96-well plate with different concentrations of EN in the presence or absence of VEGF
(50 ng/mL). Then, the tube formation in each well was monitored and imaged using an
inverted microscope. We used an Image J plug-in named Angiopoiesis Analyzer to analyze
the tube formation. Three independent experiments were required for each treatment.

2.7. Transwell Migration Assay

The Transwell migration assay used six Transwell chambers (14111, Labselect, Hefei,
China). Cells were seeded in an upper Transwell chamber with serum-free DMEM, and fetal
bovine serum-containing DMEM containing different concentrations of EN were placed in
the lower Transwell chamber. After 48 h, cells that remained on the upper surfaces of the
Transwell chambers were gently removed with a cotton swab, and the cells were fixed with
4% paraformaldehyde for 15 min and stained with a crystal violet solution for 15 min. The
images were measured by Image J.

2.8. Flow Cytometry Assay

Phyoglobinin (PE) absorbs light at different wavelengths and can be used as a fluo-
rescent marker. In this study, VEGFR2 expression was observed after EN treatment with
HCT116 using a PE-VEGFR2 (BD, #89106) antibody. PE-VEGFR2 diluent was added and
incubated in darkness at 4 ◦C for 2 h. Flow cytometry (Beckman, Brea, CA, USA) was used
to detect the fluorescence intensity at an excitation maximum (Ex Max) of 488 nm and an
emission maximum (Em Max, Kanagawa, Japan) of 576 nm.

2.9. Intracellular ROS Level Measurement

Cells were seeded into a 12-well plate (2 × 105 cells/well) first. The next day, we
replaced the medium and treated the cells for 24 h in the presence or absence of EN. DCFH-
DA (2 µM) was used to treat the cells at 37 ◦C for 30 min. Then, cells were collected, and
the fluorescence intensity was measured by flow cytometry (Beckman coulter, Brea, CA,
USA). The ROS level = (experimental group/control group) × 100%.

2.10. Cellular GSH Level Measurement

GSH, which is an indicator of oxidative stress, is a potential cause of apoptosis or cell
death. Cells were seeded into 12-well plates (2 × 105 cells/well) and then treated with EN.
Finally, a GSH (10 nM) stain was added into the medium for a 30 min incubation. The cells
were collected, and the fluorescence intensity was measured by flow cytometry. The GSH
level = (experimental group/control group) × 100%.

2.11. Wound Healing

First, we drew a straight horizontal line on the bottom of the 6-well plate. Cells were
seeded in the 6-well plate (5 × 105 cells/well) and incubated for one or two days until
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100% confluent monolayer growth. The cells were treated with different concentrations
of EN for 24 h. We used a 200 µL micropipette tip to create a vertical wound and washed
the exfoliated cells with PBS twice. The medium was replaced with FBS (2.5%). Finally, a
suitable field was chosen for each well and photographed with INTENSILIGHT C-HGFIE
(Nikon, Tokyo, Japan). The images were measured by Image J.

2.12. Confocal Microscope Assay

HeLa cells stably expressing GFP-LC3 or L929 cells stably expressing RFP-GFP-LC3 were
seeded in an 8-well chamber. After the pretreatment with rapamycin (200 nM, 2 h), the cells
were then treated with EN. The cell fluorescence was detected with a confocal microscope.

HCT116 cells were first transfected with Flag-Beclin-1 and then seeded in an 8-well
chamber and treated with EN. After that, the cells were fixed, permeabilized, and stained
with anti-VEGFR2 conjugated to PE and LC3. Finally, Hoechst was used to stain DNA and
nuclei for 10 min, and cells were photographed with a confocal microscope (LEICA TCS
SP8, Leika, Wetzlar, Germany).

2.13. Western Blotting

Cells were seeded into a 6-well plate (5 × 105 cells/well) and later treated with
different concentrations of EN for different treatments. After that, cells were harvested and
lysed in RIPA buffer (50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% Triton X-100, 1% sodium
deoxycholate, 0.1% SDS, sodium orthovanadate, sodium fluoride, EDTA, and leupeptin)
with a protease inhibitor cocktail (Beyotime, #P1010). The same amount of protein was
resolved by SDS-polyacrylamide gels and then transferred onto a polyvinylidene fluoride
(PVDF, Bio-Rad, 1620184, Hercules, CA, USA) membrane. The membranes were blocked
with TBST plus 5% non-fat milk for 2 h and incubated with primary antibodies and
secondary antibodies. After the membranes were enhanced with an ECL system, they were
developed with the ChemiDoc MP Imaging System (BIO-RDA).

2.14. In Vivo Study

Female Balb/c nude mice (3–4 weeks old) were purchased from the Shanghai SLAC
Laboratory Animal Co. Ltd. (Shanghai, China). Animal welfare was ensured, and the
experimental procedures strictly followed the Guide for the Care and Use of Laboratory
Animals. All efforts were made to minimize animal suffering and to reduce the number
of animals used. Xenograft tumors were established by subcutaneously injecting 1× 107

SW620 cells in PBS in a total volume of 0.1 mL. After one week, tumor-bearing mice were
randomly divided into two groups: the vehicle group and the EN (10 mg/kg) group. The
vehicle was 10% DMSO, 20% polyethylene glycol, and 5% Tween-80 in PBS. All treatments
were administered by intraperitoneal injection every two days. The mice were sacrificed
after another thirteen days. The tumor volume was calculated by the formula: Tumor
volume = Width × Width × Length × 0.5.

2.15. H&E Staining Analysis

Tumors collected from mice were fixed in 4% paraformaldehyde. The paraffin-
embedded samples were cut to a 4 µm thickness and stained with H&E by Wuhan servicebio
technology CO. (Wuhan, China) Stained sections were viewed and photographed under
a microscope.

2.16. Immunohistochemistry

After the mice were sacrificed, tumor tissue was removed and immediately fixed in
4% paraformaldehyde for 24 h. Immunohistochemistry was performed on tumor tissue
sections to detect Ki-67 and p62 levels by Wuhan servicebio technology CO.
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2.17. Statistical Analysis

All the experiments were performed at least three times to ensure reproducibility.
Differences among the groups were analyzed by one-way variance, and the means of two
groups were compared using Student’s t test with IBM Statistics SPSS 22. The results
were expressed as the means ± standard errors, * p < 0.05, ** p < 0.01. As long as the
p-value < 0.05, the difference was considered statistically significant.

3. Results
3.1. EN Inhibits Human Colon Cancer Cell Proliferation

EN is known to inhibit the activity of a variety of cancer cells [12]. Here, we inves-
tigated the cytotoxicity of EN in an array of cancer cells, including human colon cancer
cells, lung cancer cells, breast cancer cells, and pancreatic cancer cells. All of these cells
were exposed to EN at different concentrations (0, 8, 16, 24, and 32 µM) for 24 h, 48 h, and
72 h. We calculated the IC50 values of EN in eight cell lines at the time point of 48 h, based
on the rate of cell inhibition (Figure 1B), and the IC50 values of EN in HCT116, SW620,
and SW480 were 20.9 µM, 23.6 µM, and 35.8 µM, respectively. The MTT assay results
also showed a dose- and time-dependent decrease in cell activity, and the cell activity
curves of HCT116 and SW620 under EN treatment are shown in Figure 1C. As shown in
Supplementary Figure S1, we determined the effect of EN on HEK293 cell growth, which
was examined by a CCK8 assay. EN exhibited little adverse effect on non-cancerous cells
with its dose increasing, but it can be adjusted to a safe dose in application. In order to
observe the changes in cell morphology, we used a microscope to photograph the cells
under different concentrations of EN treatment. As expected, the number of cells in the
visual field decreased and cells shrank, became round, and detached from the plate with an
increase in the EN concentration (Figure 1D). In addition, the cell colony formation assay
was also performed to observe cell activity. The number and size of the cell mass decreased
in a concentration-dependent manner in HCT116 and SW620 cells (Figure 1E,F). All the
above results showed that EN inhibits HCT116 and SW620 cell proliferation.
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Figure 1. EN inhibits human colon cancer cell proliferation. (A) The structure of EN. (B) Different cancer
cells were treated with EN (0, 8, 16, 24, and 32 µM) for 24 h, 48 h, and 72 h, respectively, including
SW620, HCT116, SW480, A549, PC9, MDA-MB-231, MDA-MB-468, and PANC-1 cells. Cell viability was
measured by MTT assay, and the 48 h IC50 values of EN in different cancer cells were calculated by SPSS
22. (C) The viability of HCT116 and SW620 cells was shown under EN treatment for 24 h, 48 h, and 72 h.
(D) Cells were first seeded into a 12-well plate and then treated with different concentrations of EN (0, 8,
16, and 24 µM) for 24 h. The morphology and distribution of cells were photographed by microscope.
(E) HCT116 cells were seeded into a 6-well plate and then treated with EN (32 µM) for 24 h. When the
cell clusters grew to the appropriate size, cells were stained and photographed. (F) Image J was used to
calculate the number of clones, and it was statistically analyzed by SPSS22. ** p < 0.01.
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3.2. EN Inhibits Angiogenesis in Human Colon Cancer Cells

Angiogenesis has been closely associated with tumorigenesis [24]. To see whether
EN also had the ability to inhibit angiogenesis, we first examined the effect of EN on
human umbilical vein endothelial cells (HUVECs). The MTT assay was used to measure
cell viability. In HUVECs, the cytotoxicity of EN was shown to occur in a dose- and time-
dependent manner (Figure 2A). In the presence or absence of VEGF, the IC50 values of EN
in HUVECs at 48 h were different, and they were 55.57 µM and 45.11 µM, respectively.
Matrigel, a solubilized basement membrane preparation, can induce HUVECs to form blood
vessels on it. We further observed the inhibitory effect of EN on HUEVC tube formation
in a 96-well plate precoated with Matrigel. The branch number and total branch length
showed that the number and density of new blood vessels were concentration-dependently
decreased (Figure 2B,C), indicating that EN inhibits the VEGF-enhanced tube formation
ability. Moreover, the VEGF-enhanced migration in HUVECs was also suppressed by an
increase in the EN concentration (Figure 2D). Meanwhile, the cell number of migration was
significantly decreased (Figure 2E). In addition, Western blotting was also performed to
detect the expression levels of VEGFR2, and it was observed that EN downregulated the
phosphorylation level of VEGFR2 in HUVEC and HCT116 cells (Figure 2F). Meanwhile,
we used VEGFR2 conjugated to PE to label EN-treated HCT116 cells, and the fluorescence
intensity was significantly decreased by flow cytometry (Figure 2G). The above findings
confirmed that EN inhibits angiogenesis in human colon cancer cells.
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Figure 2. EN inhibits HUVEC and HCT116 cell angiogenesis. (A) HUVECs were treated with EN (0,
8, 16, 24, and 32 µM) for 24 h, 48 h, and 72 h with or without VEGF (50 ng/mL). Cell viability was
measured by MTT assay. (B) Matrigel (30 µL) was precoated on the bottom of the 96−well plates,
and 100 µL of cell suspension and 100 µL of EN diluent were added on the top. After incubating
at 37 ◦C for 9 h, the tube was photographed with a microscope. Scale bar: 50 µm. (C) Image J was
used to calculate the number of branches and the total length of the branches of the blood vessels.
(D) HUVECs were seeded into the 6−well plates and then treated with EN (32 µM) with or without
VEGF (50 ng/mL) for 24 h. After creating a vertical cell wound, cell culture medium was replaced,
and migration level was recorded by taking photos of the same location every few hours. Scale bar:
200 µm. (E) Transwell migration assay. HCT116 cells were treated with EN (0, 5, and 10 µM) for 48 h.
Cells that remained on the upper surfaces of the Transwell chambers were removed, and then the cells
were fixed and stained. Cells were photographed and counted by image J. * p < 0.05. (F) HUVECs
were treated with different concentrations of EN with VEGF (50 ng/mL) for 24 h. HCT116 cells were
treated with different concentrations of EN (0, 8, and 16 µM) and for different times (0, 6, and 12 h)
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with EN (16 µM). Cells were harvested for Western blotting to evaluate the expression levels of
VEGFR2. (G) HCT116 cells were first treated with EN (16 µM) for 24 h, and then cells were harvested,
fixed, and permeabilized. After VEGFR2 conjugated to PE staining, flow cytometry was performed
to determine cellular fluorescence intensity. * p < 0.05.

3.3. EN Inhibits Autophagy in Human Colon Cancer Cells

To clarify the effect of EN on autophagy, Western blotting was performed to detect
the LC3 expression level after EN treatment. LC3 is the marker of autophagosomes, which
represents the level of autophagy. As shown in Figure 3A, the EN treatment resulted
in a significant decrease in LC3-II in both HCT116 and SW620 cells. Meanwhile, the
autophagy flux level was also examined using the autophagy inhibitor CQ, which inhibits
autophagosome–lysosome fusion [29]. The EN treatment also decreased the level of LC-II
in the presence of CQ (Figure 3A), indicating a reduced autophagic flux level. In addition,
we also observed the formation of GFP-LC3 puncta under EN treatment. The rapamycin
treatment significantly increased the number of GFP-LC3 puncta, but the enhancement of
autophagosome formation was attenuated by the addition of EN (Figure 3B). We confirmed
that EN decreases the level of autophagy. Moreover, the effect of EN treatment on the fusion
of autophagosomes and lysosomes was also determined. mRFP-GFP tandem fluorescent-
tagged LC3 (tfLC3) stably expressing cells were treated with EN in the presence or absence
of rapamycin. As shown in Figure 3C, the EN treatment significantly attenuated the
increased ratio of RFP/GFP-LC3 puncta by rapamycin, indicating the weakened formation
of autolysosomes.
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Figure 3. EN inhibits autophagy in colon cancer cells. (A) CQ (10 µM) and EN (16 µM) were used to
treat HCT116 or SW620 cells for 12 h. The cells were then harvested, and Western blotting analysis
was performed. (B) HeLa cells with stable expression of GFP−LC3 were seeded in the chambers and
pretreated with rapamycin (200 nM) for 2 h. After that, cells continued to be treated with EN (16 µM)
for 12 h. A confocal microscope was used to photograph the formation of GFP−LC3 puncta. Scale
bar: 25 µm. Image J was used to calculate the number of GFP−LC3 puncta. ** p < 0.01. (C) As in (B),
L929 cells with stable expression of RFP−GFP−LC3 were treated with EN in the presence or absence
of rapamycin. A confocal microscope was used to photograph the formation of autolysosomes.
Scale bar: 25 µm. Image J was used to calculate the number of autophagosomes and autolysosomes.
** p < 0.01. (D) HCT116 and SW620 cells were pretreated with rapamycin or EBSS for 2 h and then
continued to be treated with EN (16 µM) for 24 h. Western blotting was used to detect LC3 levels.
(E) HCT116 cells were first transfected with Flag−Beclin−1 and then treated with EN (16 µM) for
24 h. Western blotting analysis was used to detect the LC3 level.
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In human colon cancer cells, a similar result was also detected. HCT116 and SW620
cells were first pretreated with rapamycin or EBSS to activate autophagy, and then EN was
added to both cells. As shown in Figure 3D, the EN treatment decreased the enhancement
of autophagy either by rapamycin or EBSS starvation. In addition to the pharmacologic
induction of autophagy, the genetic induction of autophagy was also performed through
Beclin-1 overexpression. In HCT116 cells, Beclin-1 overexpression increased the autophagy
level, but the EN treatment attenuated the upregulation of autophagy (Figure 3E).

3.4. EN Inhibits Autophagy through Activating the mTOR Pathway

Among the autophagy-related signaling pathways, mTOR kinase is a key regulatory
molecule. The study of mTOR dates back to the discovery of rapamycin, which is a
secondary metabolite secreted by soil Streptomyces [30]. In order to reveal the mechanism
of EN-mediated autophagy inhibition, we examined the expression of upstream and
downstream proteins of the mTOR pathway. In HCT116 cells, after EN treatment, the
phosphorylation levels of ERK, mTOR, and S6 proteins were elevated, and the level of
TSC2 was decreased (Figure 4A, Supplemental Figure S2A), indicating the activation of
the mTOR signaling pathway. With increases in treatment time and dose, the activity of
mTOR was further enhanced in a time- and dose-dependent manner. Similar results were
also observed in another human colon cancer cell, SW620 cells (Figure 4B, Supplemental
Figure S2B). We speculated that autophagy inhibition by EN may be attributed to the
activation of the mTOR signaling pathway.
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Figure 4. EN activates the mTOR signaling pathway and inhibits autophagy. (A) HCT116 cells were
treated with different concentrations of EN (0, 8, 16, and 24 µM) or with EN (16 µM) for different times
(0, 6, 12, and 24 h). Western blotting was used to analyze the phosphorylation levels of ERK, mTOR,
and S6. (B) As in (A), SW620 cells were treated with EN and harvested for Western blotting analysis.
(C) HCT116 cells were pretreated with rapamycin (200 nM) for 2 h and then continued to be treated
with EN (16 µM) for 24 h. Cells were harvested and lysed for Western blotting to detect the expression
levels of mTOR, S6, and LC3. (D) As in (C), SW620 cells were pretreated with rapamycin and then
continued to be treated with EN. Cells were harvested for Western blotting analysis. (E) HCT116 cells
were first transfected with Flag-Beclin-1 for 24 h and then treated with EN (16 µM) for 24 h. After
fixation and permeabilization, cells were incubated with VEGFR2 conjugated to PE, and a confocal
microscope was used to detect cell fluorescence. Scale bar: 25 µm. (F) As in (D), cell fluorescence
intensity was quantified by flow cytometry and was statistically analyzed. * p < 0.05, ** p < 0.01.
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To clarify the role of the mTOR pathway in the autophagy inhibition by EN, HCT116
cells were treated with EN in the presence of rapamycin. Rapamycin is a targeted drug
for mTOR in mammals and is often used as an inducer of autophagy because it can block
signals required for cell growth and proliferation to mimic cell starvation [31]. As expected,
under rapamycin treatment, EN failed to activate mTOR activity and induce autophagy
(Figure 4C,D, Supplemental Figure S2C,D), confirming that the mTOR pathway is a key
mediator in autophagy inhibition. Similar results were also observed in SW620 cells. In
addition, we also determined the role of autophagy inhibition in the anti-angiogenesis of
EN. As shown in Figure 4C,D, rapamycin treatment activated autophagy. However, under
the EN treatment, the upregulation of VEGFR2 was significantly attenuated (Figure 4E,F),
suggesting that EN may exert its anti-angiogenesis effect by inhibiting autophagy.

3.5. Autophagy Protects against EN-Caused Cell Death

In this part, we sought to find out the functional role of autophagy in EN-induced
cell death. Through the genetic induction of autophagy, Flag-Beclin-1 was transfected
into HCT116 cells to induce autophagy. Beclin-1 is one of the key proteins in the process
of autophagic protein degradation [32]. We first conducted an MTT assay to detect the
effect of Beclin-1 overexpression on cell proliferation. Beclin-1 overexpression significantly
increased cell viability under the EN treatment (Figure 5A), suggesting that autophagy
induction plays a protective role. In addition, we also determined the cellular redox status
in EN-treated cells. In HCT116 cells, EN decreased the intracellular ROS level, while it
increased the GSH level (Figure 5B). With Beclin-1 overexpression, the cellular ROS level
increased, and the EN treatment attenuated the upregulation of the ROS level and alleviated
oxidative stress (Figure 5C), indicating that EN possesses an anti-oxidant function.
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Figure 5. Autophagy protects against EN-induced cell death. (A) HCT116 cells were first transfected
with Flag-Beclin-1 and then treated with EN (16 or 32 µM) for 24 h. Cell activity was measured by
MTT assay. * p < 0.05, ** p < 0.01. (B) HCT116 cells were treated with EN (16 µM) for 24 h, and then
DCFH-DA (2 µM) or GSH (10 nM) were used for cell staining. Flow cytometry was used to measure
cell fluorescence. ** p < 0.01. (C) As in (A), EN-treated cells were stained with DCFH-DA (2 µM), and
flow cytometry was used to detect cell fluorescence intensity. * p < 0.05, ** p < 0.01. (D) Female Balb/c
nude mice were subcutaneously injected with SW620 cells to establish a xenograft tumor model,
and then tumor-bearing mice were treated with EN (10 mg/kg) every two days. Tumor diameter
was recorded, and tumor growth curves were plotted. * p < 0.05, ** p < 0.01. (E) At the end of the
experiment, the mice were sacrificed, and the xenograft tumors were removed and photographed.
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(F) The excised tumors were weighted and statistically analyzed. ** p < 0.01. (G) Part of the tumor
tissue was crushed and lysed for Western blotting. The expressions of p62, phospho-S6, and S6
were detected. (H) H&E staining and immunohistochemical staining of Ki-67 and p62proteins in the
paraffin-embedded tissues were performed. Scale bar: 200 µm. (I) An illustrative model of autophagy
inhibition in EN against colon cancer.

3.6. EN Inhibits the Tumorigenesis of Colon Cancer and Autophagy In Vivo

To confirm the in vitro study results, we used a xenograft model to determine the
tumor suppression activity of EN. No mice died during the experiment, and no significant
difference in body weight between the vehicle and EN treatment groups was observed.
The tumor-bearing mice were sacrificed 24 h after the last administration of EN, and the
tumor mass was removed. As shown in Figure 5D, treatment with 10 mg/kg EN inhibited
tumor xenograft growth. The tumor weight decreased by 58.8% in the EN treatment group
when compared with the vehicle (Figure 5E,F). These results demonstrate that EN exerts a
tumor-suppressive effect in vivo.

In addition, we also examined the autophagy level of the tumor tissue. The Western
blotting results showed that the levels of autophagy substrates p62 and phosphorylated S6
were upregulated after the EN treatment (Figure 5G), indicating the activation of mTOR
signaling and a decrease in the autophagy level. Meanwhile, H&E staining was performed
to detect the nuclear condensation of tumor tissues, and immunohistochemical staining
was also performed to detect the Ki-67 and p62 protein levels. Ki-67 is present during the
active phases of the cell cycle (G1, S, and G2 phase) but is absent in resting cells (G0) [33].
Thus, the high expression of Ki-67 represents the high proliferation rate of tumor cells. Our
results show that the level of Ki-67-positive cells (brown) was lower in the EN treatment
group than in the vehicle group (Figure 5H). On the contrary, the p62 level increased
with EN treatment and was consistent with the in vitro study results. The above results
demonstrate that EN inhibited the tumorigenesis of colon cancer and autophagy in vivo.

4. Discussion

EN is extracted from the root bark of Eurycoma longifolia Jack and is able to inhibit
the growth of a variety of cancer cells [34]. In this study, we investigated the inhibitory
effect of EN on colon cancer cell proliferation and angiogenesis and revealed the anti-cancer
mechanism of EN through inhibiting autophagy (Figure 5I).

Because pathways are not simply single-threaded, they have cross-influences, and they
respond to stimuli in a timely manner. The mechanism of autophagy is far more complex
than thought [35]. Here, the mTOR signaling pathway is the most important pathway in
regulating autophagy. Under normal conditions, mTOR is activated by nutrients; under
the conditions of nutrient and growth factor deprivation, amino acid deficiency, or low
cellular energy levels, mTOR is inhibited and autophagy is activated [36]. In our study, EN
treatment resulted in autophagy inhibition, which was attributed to the activation of the
mTOR signaling pathway (Figure 4). It was accompanied by the increased phosphorylation
levels of upstream or downstream molecules of mTOR kinase in human colon cancer cells,
such as ERK, S6, and mTOR itself. Similar results were also detected in an in vivo study
(Figure 5G,H). When mTOR was inhibited by rapamycin or EBSS starvation, EN failed to
decrease the autophagy level of colon cancer cells, confirming the importance of mTOR
in mediating autophagy. In addition to the inhibition of autophagosome formation, EN-
mediated mTOR activation also influenced the fusion of autophagosomes and lysosomes.
mTORC1 has been proven to be the key point in the completion of autophagy flux [37,38].
In EN-treated cells, we found that EN reduced the number of autolysosomes, with or
without rapamycin treatment (Figure 3C).

It is known that ROS is a crucial regulator of cell homeostasis in various pathways.
Some stimuli that induce ROS generation can regulate autophagy as well [39,40]. ROS
induces autophagy by the upregulation of Beclin-1, the oxidation of ATG4, and by causing
mitochondrial dysfunction. In our study, Beclin-1 overexpression activated autophagy and
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resulted in an increase in cellular ROS levels (Figure 5C). Under EN treatment, autophagy
was inhibited, and ROS levels also decreased. In addition, the changes in ROS level also
affected cell apoptosis [41]. Excess cellular ROS have been proven to be able to activate cell
apoptosis. As an antioxidant, GSH depletion is an early hallmark observed in apoptosis [42].
However, in EN-treated cells, the cellular ROS level was decreased, while the GSH level
was increased (Figure 5B), indicating that EN has antioxidant activity. It was not consistent
with the effect of the ROS level on the positive regulation of apoptosis. We guess that
EN-mediated autophagy inhibition may regulate cell apoptosis through other pathways
instead of the ROS level. However, much work is still needed in the future.

VEGFR is a receptor of VEGF, which is an important positive factor promoting angio-
genesis. Our results demonstrated the positive regulation of autophagy in angiogenesis
(Figure 4D). When autophagy was activated by rapamycin, cellular VEGFR2 expression
was also increased. It was reported that autophagy promotes angiogenesis via the AMPK-
mTOR signaling pathway [43]. However, under treatment with anti-angiogenesis agents,
the expression levels of VEGFR2 and ERK were decreased, and ERK is the positive down-
stream target of VEGFR2 [44,45]. In our study, VEGF was added with a concentration
of 50 ng/mL in HUVECs, and VEGFR2 was decreased in response to the EN treatment
(Figure 2E). Under the EN treatment, the phosphorylation level of ERK increased at first
and then began to decline with time (Figure 4A,B). We guessed that the phosphorylation
of VEGFR2 may happen very fast and, with the treatment time increasing, its activity
decreased, which led to a reduction in ERK activity.

Based on our results, autophagy improves cell survival in the EN-treated colon can-
cer cells (Figure 5). Thus, we can improve the anti-colon-cancer efficacy of EN through
autophagy inhibition. In a future study, we plan to combine EN with other autophagy
inhibitors and investigate their synergistic effect in the treatment of colon cancer. For
example, CQ, an autophagy inhibitor, not only has the ability to suppress cancer cell pro-
liferation [46] but also to enhance the efficacy of other anti-cancer drugs [47]. In addition,
other autophagy inhibitors are also available in the application of cancer therapy, such as
spautin-1 [48].

Taken together, our results demonstrated that EN inhibits autophagy by activating the
mTOR signaling pathway. In EN-treated cells, autophagy improves cell survival, which may
be associated with its positive regulation of angiogenesis and cellular oxidative stress. We
can make a bold prediction that EN will exert a more potent anti-tumor effect in combination
with other autophagy inhibitors, angiogenesis inhibitors, or ROS inhibitors, which provides
the possibility for the development of traditional medicine in cancer therapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27144398/s1, Figure S1: EN inhibits human colon
cancer cell proliferation.; Figure S2: EN activates the mTOR signaling pathway and inhibits autophagy.
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