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More than 330 million people are still living in extreme poverty in
Africa. Timely, accurate, and spatially fine-grained baseline data
are essential to determining policy in favor of reducing poverty.
The potential of “Big Data” to estimate socioeconomic factors
in Africa has been proven. However, most current studies are
limited to using a single data source. We propose a computa-
tional framework to accurately predict the Global Multidimen-
sional Poverty Index (MPI) at a finest spatial granularity and cov-
erage of 552 communes in Senegal using environmental data
(related to food security, economic activity, and accessibility to
facilities) and call data records (capturing individualistic, spatial,
and temporal aspects of people). Our framework is based on
Gaussian Process regression, a Bayesian learning technique, pro-
viding uncertainty associated with predictions. We perform model
selection using elastic net regularization to prevent overfitting.
Our results empirically prove the superior accuracy when using
disparate data (Pearson correlation of 0.91). Our approach is used
to accurately predict important dimensions of poverty: health,
education, and standard of living (Pearson correlation of 0.84–
0.86). All predictions are validated using deprivations calculated
from census. Our approach can be used to generate poverty maps
frequently, and its diagnostic nature is, likely, to assist policy mak-
ers in designing better interventions for poverty eradication.

poverty mapping | Gaussian process | mobile phone | remote sensing

More than 330 million people are still living in extreme
poverty in Africa (1). Consequently, the goal to “eradicate

extreme poverty for all people everywhere by 2030” tops the list
of the 17 Sustainable Development Goals adopted by world lead-
ers at the United Nations summit in September 2015. The lack
of good-quality and fine-grained data to assess poverty regularly
features in discussions of the development agenda for Africa (2,
3). Timely measurement and availability of data are vital in end-
ing poverty.

Despite the nature of the strategies used to reduce poverty,
governments and development agencies need a baseline depic-
tion. Poverty maps provide such a spatial distribution of the
socioeconomic deprivations and help policy makers assess the
impact of interventions. For efficient targeting of policies at
microregions and specific demographics, poverty maps should
be made available at the finest administrative unit of planning.
Also, these values should be disaggregated into individual dimen-
sions of poverty, like deprivations in education, standard of liv-
ing, health, and so forth (4).

Currently, the most reliable way to estimate poverty is
through intensive socioeconomic household surveys. However,
this approach is costly and time consuming and can only be real-
istically carried out for a small sample of households. The extrap-
olation of the local poverty estimation to a larger scale is tra-
ditionally done by exploiting links between census (wide area)
and survey (smaller area coverage) data through small area esti-
mation methods (5, 6). These techniques depend on the timely
availability of census, which is typically collected every 10 y and
whose analysis is delayed for poorer economies by years, making
timely updates of poverty challenging.

Recently, there has been a growing interest in realizing the
potential of “Big Data” to understand societal development in
Africa. However, most current studies are limited to using sin-
gle source datasets, such as mobile phone data (7) or satellite
imagery (8). Since poverty is a complex phenomenon, under-
standing it using multiple lenses obtained from diverse datasets
will help to chart more accurate maps for poverty.

Several studies highlight that significant spatial variation of
poverty may be due to a variety of geographic factors, includ-
ing agrometeorological conditions, accessibility and proximity to
markets, access to land, and so forth (9, 10) (see Table S3). Earth
Observation Satellites collect data on metrics such as night-
time lights, vegetation cover, and meteorological conditions.
The unique features of such datasets are their global coverage,
high revisit capability, and free availability. A complementary
resource lies in Geographic Information Systems (GIS) analysis.
In particular, proximity to important services (schools, hospitals)
and density of infrastructure (such as roads) are all factors that
might contribute to alleviating poverty (11).

While satellite and GIS data are apt to observe and under-
stand the availability of and access to natural resources and
manmade structures, they lack information about population
structure, especially the socioeconomic ties, cultural interac-
tions, and micro- and macrobehavior that is essential to under-
standing poverty. One way to study societal interactions is pro-
vided by the widespread use of digital technologies (12). The
Internet is still finding ground in sub-Saharan Africa. However,
mobile phones are a prevalent technology, with adoption rates
of more than 70%, even with 43% of population living in abject
poverty (13). Such widespread use of mobile phones generates an
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Table 1. Summary statistics and characteristics of the data used—CDRs, environment, census, and MPI

Summary statistics CDRs Environment data Census Poverty index

Timeline January–December 2013 1960–2014 2013 2013
Number of total calls and text 11 billion N/A N/A N/A
Number of unique individuals 9.54 M N/A 1.4 M N/A
Spatial granularity of available data Antenna level (1666) Vector data—100 m−1·km Household level Region level (14)
Cost incurred in data collection Low/no cost Low/no cost US$29 million Very high cost,

and preparation (data exhaust) (data exhaust) and human expertise
Frequency of update of data Real time ∼1 y 3–5 y 3–5 y

unprecedented volume of data called call data records (CDRs).
CDRs capture how, when, where, and with whom individuals
communicate. These data, traditionally used by the telecommu-
nication companies for billing purposes, capture both micro- and
macropatterns of human interaction, while preserving the indi-
vidual anonymity via spatial and temporal aggregation.

Poverty has traditionally been measured in one dimension,
usually income or consumption, called income poverty. Another
internationally comparable measure is the Global Multidi-
mensional Poverty Index (MPI), which is used in this study.
Global MPI is a composite of 10 indicators across three critical
dimensions—education (years of schooling, school enrollment),
health (malnutrition, child mortality), and standard of living
conditions (see Global MPI). Throughout the paper, “poverty”
refers to the Global MPI, and “dimensions” refers to education,
health, and standard of living. MPI is calculated as a product of
the incidence or headcount of poverty (H) and the average inten-
sity (A) across the poor. H is the proportion of the population
that is multidimensionally poor. A is the average proportion of
indicators in which poor people are deprived.

The study focuses on Senegal, a sub-Saharan country that
suffers from persistently high poverty. This study uses mobile
phone data in the form of CDRs, and data related to food secu-
rity (availability and access components), economic activity, and
access to services are grouped together as environmental data
(Table 1). The CDR variables capture not only the basic phone
use statistics of a user but also the regularity, diversity, and spa-
tiotemporal variability in the user’s mobile interactions. Tables
S1 and S2 detail the variables extracted from CDR and envi-
ronment data, respectively. The poverty maps are produced at
the spatially finest level of policy planning, called “communes,”
and validated at that level using the concurrent census data.
Current poverty maps, based on Global MPI (see Fig. 1) and
consumption-based measures (14), do not exist uniformly for
all communes of Senegal. The map produced by our analysis is
available for all 552 communes (see Fig. 2). Such maps can be
generated frequently in between cycles of surveys and census,
since CDR and environmental data are available at fine temporal
granularity.

Table 2. Spatially cross-validated results of the predictions of MPI, headcount of poverty (H), and intensity of poverty (A), along with
the individual indicators for poverty given by our model using disparate datasets

Multisource data CDR Environment

Poverty indicators
and dimensions Corr. Rank corr. RMSE Corr. Rank corr. RMSE Corr. Rank corr. RMSE

MPI 0.91 (0.06) 0.88 (0.06) 0.08 (0.01) 0.89 (0.07) 0.86 (0.07) 0.08 (0.01) 0.84 (0.09) 0.80 (0.10) 0.10 (0.02)
H 0.91 (0.07) 0.85 (0.08) 10.79 (3.96) 0.90 (0.08) 0.84 (0.08) 10.76 (2.60) 0.83 (0.11) 0.75 (0.11) 13.65 (4.86)
A 0.86 (0.05) 0.85 (0.07) 4.71 (0.96) 0.83 (0.07) 0.82 (0.08) 4.98 (1.14) 0.81 (0.07) 0.79 (0.08) 5.36 (0.75)
Education 0.86 (0.05) 0.84 (0.05) 11.84 (1.88) 0.82 (0.05) 0.81 (0.07) 13.08 (1.68) 0.76 (0.07) 0.74 (0.07) 14.98 (3.03)
Health 0.49 (0.15) 0.50 (0.16) 12.76 (2.12) 0.50 (0.12) 0.52 (0.12) 12.91 (1.92) 0.36 (0.23) 0.35 (0.23) 13.91 (2.32)
Standard of living 0.83 (0.11) 0.75 (0.13) 14.82 (3.92) 0.81 (0.11) 0.74 (0.11) 15.24 (3.45) 0.73 (0.18) 0.64 (0.20) 17.88 (4.50)

The results are compared when single source data are available. Corr., Pearson’s r correlation; rank corr., Spearman’s rank correlation; RMSE, rms error. For
both types of correlations, all P values were less than 10−20. An SD associated with the multiple runs for each measurement is reported within parentheses.

Our objective is to present a computational framework that
integrates disparate data sources to accurately predict the Global
MPI and its individual dimensions at the finest level of spa-
tial granularity. This framework consists of models trained inde-
pendently on each data source. Each source-specific model
uses Gaussian process (GP) regression (GPR) (15) to infer
poverty values. GP falls under the class of kernel methods,
where the choice of different kernel functions enables one to
learn different nonlinear relationships between the indepen-
dent and target variables. Each GP-based model provides a
probabilistic estimate of poverty for a given commune, includ-
ing the mean and variance of the estimates. The variance pro-
vides a measure of uncertainty, which allows us to combine
the predictions from the multiple data sources. An impor-
tant advantage of this methodology is that the different data
ecosystems need not share any data between them. The indi-
vidual datasets remain private within their specific ecosystems,
and only the output predictions and the associated variances
are shared.

Results
GP Model for Predicting Poverty from a Single Data Source. To pre-
dict poverty for a commune from a single data source (CDR or
environment), the following model is assumed:

yi = β>xi + f (xi) + ε [1]

where yi is the target poverty value and xi is a vector of indepen-
dent variables derived from the particular data source for the ith
commune. The first term is a linear combination of the indepen-
dent variables. The function f () models the nonlinear relation-
ship between yi and xi . The residual term, ε, models the remain-
ing unexplained noise and is modeled as a zero-mean Gaussian
random variable—that is, ε ∼ N (0, σ2

n).
Without the nonlinear term, f () in Eq. 1, the model is equiva-

lent to ordinary linear regression. However, a linear model is not
rich enough to capture the relationships between the target and
the independent variables (see Fig. S6), thus motivating the need
for a nonlinear term.
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Fig. 1. Details about the target country, Senegal. On the Left is a composite map of Senegal. Black dots depict the location of mobile towers (antennas).
The Voronoi tessellation formed by these towers is shown in gray. The commune (which is the finest administrative unit in Senegal) boundaries are shown
in red. There are 552 communes with 431 rural communes and 121 urban centers. The navy blue boundaries are those of regions, which are the coarsest
administrative units in Senegal. There are 14 regions that are named in the map. On the Right is the current (2016) map of Global MPI for four divisions of
the country (West, North, South, and Center).

Instead of assuming a fixed parametric form for f (), we adopt
a nonparametric approach, by assuming a GP prior on f (). The
generative process thus becomes:

f (x) ∼ GP(m(x), k(x, x′)) [2]

yi ∼ N (β>xi + f (xi), σ2
n), ∀i [3]

A GP is a stochastic process, indexed by x∈ Rd . Any finite sam-
ple generated from it is jointly multivariate normal (15). m(x) is
the mean of f (x) and k(x, x’) is a kernel function that defines
the covariance between any two evaluations of f (x)—that is,
m(x) =E[f (x)], and k(x, x′) =E[(f (x)−m(x))(f (x′)−m(x′))].
For model simplicity, we assume that m(x) = 0, which is a stan-
dard practice in GP-based methods (15).

Given a training set of examples,D = {xi , yi}Ni=1, the GP prior
on f (), and other terms in Eq. 1, the posterior distribution of y∗
(for an unseen input vector, x∗) is a Gaussian distribution, with
the following mean and variance (see GP Regression Model for
details):

ȳ∗ := E[y∗] = β>x + k>(K + σ2
nI )
−1

y [4]

σ2
∗ := var[y∗] = k∗ − k>(K + σ2

nI )
−1

k + σ2
n [5]

Here, y = [y1, y2, . . .]
>, and K is a matrix that contains the ker-

nel function evaluation on each pair of training inputs—that

Fig. 2. Quantiles of predicted (Left) and actual (Right) MPI at the commune level. The urban centers are depicted by small circles on the map. The communes
in the Dakar and Thiès regions are shown enlarged.

is, K [i , j ] = k(xi , xj )—and k is a vector of the kernel compu-
tation between each training input and the test input—that is,
k[i ] = k(x∗, xi), k∗= k(x∗, x∗)—and I is an identity matrix.

Choice of Kernel Function. The role of the kernel function is to
specify how the function values f (x) and f (x′) vary as the func-
tion of their corresponding inputs x and x′. We use the following
kernel function:

k(x, x′) = σ2
f exp

(
−‖ x− x′‖2

2`2

)
exp

(
−‖ xs − x′s‖2

2`2s

)
[6]

where xs and x′s are the spatial coordinates (latitude, longitude)
of the commune centers corresponding to x and x′, respectively.
The first exponent term captures nonlinear dependencies in the
feature space. The second exponent term plays the same role,
but in the geographic space and models, the spatial autocorrela-
tion is a continuous function, which is same as Kriging, a widely
used method in geostatistics (16). The parameter σ2

f is the vari-
ance of the stochastic process f , l is the process length scale for
the feature space part, and ls is the process length scale for the
spatial part.

The quantities β, `, `s , σ
2
n , and σ2

f are estimated by maxi-
mizing the marginalized log-likelihood of the training data, as
discussed in Materials and Methods. To remove the effect of
spurious features, we couple the GP model with elastic net

Pokhriyal and Jacques PNAS | Published online October 31, 2017 | E9785

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1700319114/-/DCSupplemental/pnas.201700319SI.pdf?targetid=nameddest=STXT


regularization (17) during the model learning phase. This allows
for automatic relevant feature selection and learning a parsimo-
nious model that improves interpretability.

Combining Source-Specific Models. To predict poverty for a com-
mune, we use two independently trained models specified in Eq.
1, corresponding to the two data sources of CDRs and environ-
mental data. Each model produces a posterior Gaussian distri-
bution, denoted by yic ∼ N (ȳic , σ

2
ic) and yie ∼ N (ȳie , σ

2
ie) for

the CDR and environmental data, respectively. The combined
poverty estimate, yi , is assumed to be a mixture distribution con-
sisting of two Gaussians, defined above, and the mixing weights
defined as:

wic =

1
σ2
ic

1
σ2
ic

+ 1
σ2
ie

,wie =

1
σ2
ie

1
σ2
ic

+ 1
σ2
ie

[7]

The weights assign greater importance to the source that pro-
vides a smaller predictive variance, signifying higher confidence
in the prediction for the particular commune. The mean and the
variance for the combined poverty estimate are (see Estimating
Moments of a Mixture Distribution):

E[yi ] = wic ȳic + wie ȳie

var[yi ] = wicσ
2
ic + wieσ

2
ie + wicwie(ȳic − ȳie)2 [8]

Predicted MPI Poverty Values. The predicted map of MPI for
microregions—that is, 552 communes of Senegal—is depicted
in Fig. 2, Left. Compared with the current poverty map in Fig.
1, our map highlights heterogeneity in the existence of poverty
within each macroregion. The communes toward the interior of
the country have more poverty compared with the rest. The west
regions, containing the capital city Dakar, and communes neigh-
boring the coastal boundary are less poor than the rest of the
country. Of special interest is the spatially large division in the
south, consisting of the regions of Tambacounda, Kedougou, and
Kolda, which are depicted as one color on the current map in Fig.
1 but have communes of varying poverty values spread through-
out. Interestingly, the communes in the Kedougou region in the
extreme southeast corner of Senegal are predicted as wealth-
ier than other communes within the region. The communes
in the region of Ziguinchor, in the southwest corner, are
wealthier compared with other communes in the south. This is
attributed to the fact that Ziguinchor is the second largest city
in Senegal, with the economic advantage of being a port and a
tourist center.

The 121 urban centers are shown as small circles on the map
and, in general, have less poverty values compared with rural
communes. The population in urban centers is generally richer
than the population living in adjacent rural communes. This is
true even for very poor communes of Senegal in the regions of
Kaffrine and Tambacounda in the center, for which the contrast
is even higher. The urban centers bordering with the neighbor-
ing country Mauritania, in the northeast, are wealthier; this could
be attributed to the economy of the Senegal river basin and to
cross-border trade. The predominantly urban areas in Dakar are
shown enlarged in the map. All communes in Dakar are more
well-off than the rest of Senegal because of the concentration of
economic activity over the years.

A quantitative validation of the predictions is provided against
commune-level poverty values estimated from census data (see
Fig. 2, Right) using cross-validation (CV) procedures (details in
Materials and Methods). A standard CV is often performed to
ensure that the model generalizes to out-of-sample data. We per-
formed a standard 10-fold CV, where the data are randomly split
into 10-folds. Each time, ninefolds are used for training, and
singlefold is used for evaluation, meaning we randomly assign

90% of communes to the training set and evaluate the remain-
ing 10% of communes. This procedure is repeated 250 times to
provide a robust assessment of the variability of model param-
eters and prediction statistics. Using standard CV, the model
gives a Pearson’s correlation of 0.94, with a P value of <0.0001.
Though training and evaluation data are selected randomly, the
above-described method of validation may prove to be insuf-
ficient, as the poverty deprivations tend to be spatially corre-
lated. Thus, a model may appear to perform well when eval-
uated this way, even though it may have poor extrapolation
power in the spatial sense. The above results are provided for
comparison.

To measure the extrapolation ability of the model to spatial
areas that were not represented in the training data, we use a
spatial CV procedure (18) (details in Materials and Methods).
Here, the training and evaluation sets are sampled from geo-
graphically distinct regions ensuring that the model is tested
rigorously. The experiments were repeated 250 times with ran-
dom samples of training and evaluation sets, while ensur-
ing that all communes are represented in the evaluation. We
report Pearson’s and Spearman’s correlations, and rms error
(RMSE), averaged over the multiple CV runs. The predictions
in Fig. 2, Left have a spatially cross-validated Pearson’s cor-
relation of 0.91 and rank correlation of 0.87, with P values
less than 10−20 for both tests, indicating strong significance.
This emphasizes the efficacy of our model in predicting poverty
values accurately at the finest spatial granularity, using multi-
source data.

As a comparative study of how our model performs using
multisource and single-source data, we experimented with three
datasets—Multisource, CDR, and Environment—to predict H,
A, and MPI at the commune level (see Table 2). We report highly
accurate results for all three targets (H, A, and MPI). Rank cor-
relations are preserved, as we report a Spearman’s correlation
of 0.85 for both H and A. The values of Pearson’s r correla-
tion are much higher than rank correlation, across all prediction
tasks, indicating the linear correspondence of the poverty val-
ues with the predicted ones. We report significantly low P values
(< 10−34) for spatial CV compared with standard CV, signify-
ing more stable performance. For detailed results, see Table S5.
Table 2 shows that combining multiple data sources (CDRs and
environmental data) results in a consistent improvement of accu-
racy over using the individual data sources. The improvement is
more pronounced in detailed results for all of the indicators of
poverty and given in Table S5.

Fig. 3, Left plots the relationship between MPI values pre-
dicted by our model and those estimated from census. We
observe a linear relationship, in general, for MPI, with lower val-
ues for urban areas (shown in red) and higher values for rural
areas (shown in blue). Predominantly urban communes of Dakar
and a few urban centers are underestimated for poverty (i.e.,
they are predicted richer than they are). Likewise, there are very
few rural communes, where poverty is overestimated. We also
observe that for communes with lower population densities, the
predicted variance is comparatively higher than it is for com-
munes with higher densities, signifying that lesser numbers of
data points in the vicinity of a given commune contribute to its
higher variance (see Fig. S5).

Predicted Values for the Dimensions of Poverty. Global MPI con-
sists of 10 individual deprivation indicators grouped along
three dimensions: (i) education (indicators—years of schooling
and school attendance), (ii) health (indicators—child mortality
and nutrition), and (iii) standard of living (indicators—cooking
fuel, sanitation, access to drinking water, electricity, and floor
and asset ownership). Each individual deprivation indicator is
taken as the target of our model, and the averaged spatially
cross-validated results, along the three dimensions, are reported
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Fig. 3. Predictive power of the Gaussian process model. Left denotes the comparison of actual and predicted MPI values for all communes and urban
areas of Senegal. The rural and urban areas are differentiated using blue and red colors, respectively. The size of the circle denotes the variance of the MPI
prediction for that commune. Top Right shows how the actual and predicted values compare for asset ownership, while Bottom Right shows the comparison
for years of schooling.

in Table 2. Detailed results for each of the 10 indicators are given
in Table S5.

Referring to Table S5, we note that the accuracy of the model
is high for some deprivations and good for most deprivations.
All deprivations are better predicted using CDR data, probably
because they characterize the individual behavior while environ-
mental data depict conditions that might have an influence on
poverty (see Tables S1 and S2). Fig. 3, Top Right compares our
predictions for asset ownership with those estimated from the
census. Rural communes depicted (by blue) are clustered closely
toward high deprivation. The urban areas have, generally, lower
deprivation than rural areas, though it is spread out.

Indicators related to education—years of schooling and school
attendance—are predicted well, because use of short message
service (SMS) is indicative of literacy (19). The environmental
data also perform well, because they capture the distance to
schools, main roads, and urban centers, all of which facilitate
access to educational attainment. Fig. 3, Bottom Right shows that
all areas of Senegal are deprived in education, as the rural (in
blue) and urban (in red) points are spread evenly on the plot.
However, rural areas tend to dominate at the very high depriva-
tion index, while very low deprivation areas are urban.

The model performs poorly for the indicators within the
health dimension—that is, child mortality and nutrition. This is
attributed to the fact that our data are not representative of the
children population, and thus, the features extracted from CDR
data do not capture this deprivation. A similar inference can be
drawn for poorer correlations for nutrition. Moreover, the vali-
dation of deprivation values computed from the census for nutri-
tion indicators are based on two hunger-related questions, as
detailed nutritional information is not available to us (see Table
S7 for details).

Dimensions of Poverty—Interpretation of Weights. Figs. S2 and S3
display the features deemed important by our model for the
environment and CDR data, respectively. The important fea-
tures are those for which the corresponding entries in the coef-
ficient vector, β, are high in magnitude. We ignore child mortal-
ity and nutrition, as our model does not perform very accurately

for these two indicators. The following interpretations are given
for information purposes. These are, by no means, indicators of
causality.

Referring to Fig. S2, nighttime lights appear to be the most
important feature regardless of the predicted dimensions, con-
forming to the current research (8, 20). Nighttime lights show
a strong correlation with MPI (Spearman correlation of −0.66).
Urban areas and road density, two other important indicators
of economic activity, are relevant but to a lesser extent. Even
though the coefficient values of each dimension are not directly
comparable, since each dimension was taken as a separate tar-
get, it is interesting to note that the weights of nighttime lights
intensity for electricity and asset ownership deprivation are the
highest. This result confirms previous findings (21) that access to
electricity is correlated with nighttime lights (Spearman correla-
tion of −0.67). Additional observations regarding water depriva-
tion, food security (access component), and climate are given in
Interpretation of Weights—Along the Dimensions of Poverty.

A similar analysis for the CDR features reveals several inter-
esting insights regarding the relationship between poverty and
the individual characteristics captured in CDR features. While
we considered CDR features for each month individually, for the
ease of visualization (see Fig. S3), we average the monthly values
of the weights associated with each feature.

Here we discuss the CDR features that were selected by
the model as the strongest predictors for the various targets.
These features are listed in Table S6. One of the strongest
negative predictors for most of the targets is the number of
active days (for call and text), which characterizes that indi-
viduals in wealthier communes have monetary resources to
recharge their phone and make/receive calls. The ratio of calls
vs. text shows the preference for calls and emerges as an impor-
tant factor to predict education-based deprivations. The feature
“interevent time call” measures the irregularity in responding
to calls/text and emerges as a positive predictor for depriva-
tions. Features that indicate diversity in communication, such
as entropy of contacts and interactions per contact (call and
text), report a negative relationship to poverty. These results con-
firm previous findings (7, 22, 23) that diversity of an individual’s
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relationships is positively correlated with his or her economic
wellbeing. However, for features such as percent pareto inter-
actions and balance of contacts, which are proportional to an
individual’s diversity in communication, we report a positive rela-
tionship with poverty. This counterintuitive relationship needs to
be further studied in the context of telecommunication patterns
in Senegal.

We observe a negative relationship between the “activeness”
of an individual in his or her mobile interactions and poverty.
For instance, the delay in responding to text has a positive rela-
tionship to poverty. Interestingly, the feature of percent initi-
ated interactions (calls) has, again, a positive relationship to
poverty, signifying that in Senegal individuals living in more
deprived communes are more likely to initiate calls (for request
of resources, etc.) than those living in less deprived communes.
The mobility patterns of individuals, captured using spatial fea-
tures such as number of frequent antennas, entropy of anten-
nas, and total number of antennas used by an individual, indi-
cate a negative relationship to poverty. Thus, individuals living
in more deprived communes tend to move fewer antennas than
those living in less deprived communes. This observation should
be viewed cautiously because of sparse antenna density in rural
communes.

Discussion
The technological advances over the past decade have led to
building of communication devices (like phones) and sensors
(like satellites and weather and ground sensors) that produce and
store a myriad of data. In this work, we show how these novel
sources of data, which are characterized by their volume, vari-
ety, and associated uncertainty, can be used to generate accurate
poverty maps.

We outline several challenges that lie in establishing relation-
ships between auxiliary data sources (that are not collected to
directly measure socioeconomic deprivations) and poverty. The
first challenge occurs due to the varying spatial granularity at
which the different datasets are available; this requires an aggre-
gation mechanism to link them. CDR data are available for each
subscriber, while environmental data have mixed spatial resolu-
tion, from very accurate vector data to low-resolution satellite
imagery (1 km). On the other hand, census data are available for
individuals or households, depending on the response variable.
However, given that the individual information is anonymized
for both CDRs and census data, there is no obvious way to link
the records across these two datasets. In this work, we localize
the individuals and/or households to their respective communes,
or urban centers, by using their census information (details in
Materials and Methods). This lets us calculate the commune-level
deprivations. For CDRs, the individuals are localized to their
home antennas based on their most frequent night location. The
CDR and environmental data are aggregated to commune levels.
Though we have taken a commune as the level of aggregation,
the framework allows for the same analysis at even finer spatial
resolutions.

A key concern associated with using CDR data for population-
level analyses is the selection bias arising from mobile phone
ownership. In Senegal, however, there were 92.93 mobile phone
subscriptions per 100 inhabitants in 2013, which implies that most
of the population owns cell phones (24). The second challenge is
the bias arising when using data from only one provider. How-
ever, the provider of the data used here, Sonatel, had nearly 62%
of the cell phone market in 2013 (25). The third concern is that
some demographic subgroups like children and the ultra poor are
left out by the analysis while only using CDR data. Also, results
may be biased toward urban regions, rather than rural regions,
because of factors like lack of electricity in rural areas.

Here, we used two distinct types of environment data. The
first type includes static natural/physical environment variables

(like elevation, soil types, etc.) or long-term dynamic phenom-
ena (like climate). The second type includes human-induced
aspects, like urban areas, roads, access to facilities, and so forth.
Though the natural environment acts as a constraint in design-
ing poverty eradication plans, effective policies and sustainable
approaches should be made an integral part of policy planning.
Environmental features derived from satellite images (nighttime
lights, NDVI, etc.) have the potential to be computed in near
real-time to monitor the impact of shocks such as natural haz-
ards, armed conflicts, or crop pests that can rapidly cause serious
deprivations. However, for reliability, these variables need to be
aggregated for a longer period, typically at an annual level for
nighttime lights and for the growing season for NDVI. Open-
StreetMap (OSM) data, which are used to map facilities and
roads, are crowd-sourced and therefore have the (theoretical)
potential to be updated in near real time. This capability could
be limited in African countries. Due to the above constraints,
1 y is probably the relevant period for consistent monitoring of
poverty with our method (compare with 3–5 y for a detailed and
costly census).

Another challenge is the ease of availability of data. Environ-
mental datasets are available to researchers for free and typi-
cally have no privacy constraints, especially at the resolution at
which it is analyzed here. CDR data are collected by commercial
telecommunication entities and might suffer from lack of acces-
sibility to researchers due to sharing constraints between differ-
ent organizations. However, our methodology requires no raw
data to be shared between different data-owning entities; only
the output predictions from each individual model and the asso-
ciated uncertainties are combined at the final step.

An important consideration is the number of features ex-
tracted from the data. Recent work (20) has used four features—
namely, call volume and mobile ownership per capita, night-
lights, and population density—to estimate the MPI of sectors
in Rwanda using a linear regression model. As a baseline for
our model, we used the same features and model to predict
MPI values at the commune level in Senegal. A spatially cross-
validated Pearson’s correlation of 0.84 was achieved with a
significant P value (<0.0001) (see Table S8 for comparison).
Although less features provide computational tractability of
analysis, they offer no insight into other features that could be
useful in understanding poverty. Also, linear models are lim-
ited in their ability by the linearity assumption and sensitivity to
outliers.

An important advantage of our GPR model is that each pre-
dicted poverty value is associated with an uncertainty (gen-
erated by the model). This highlights the strength of confi-
dence in the predictions and can be used as guidance by policy
makers. Comparing these source-specific uncertainties can
reveal which data hold a better signal for a specific predic-
tion (see Fig. 4). We note that for predicting A, the pre-
dictions of CDRs and environment data are comparable for
most of the communes. For predicting H, CDRs perform with
lower uncertainties than environmental data. These variations
may be attributed to multiple reasons, including resolution
and concurrency of data, demographics and mobile penetration
of the cellular provider, and spatial heterogeneity of poverty
deprivations.

Though we have discussed the methodology for predictions
at the commune level, our predictions of MPI and associated
dimensions can be successfully aggregated to coarser adminis-
trative units, if needed, for policy planning. Since we use global
MPI as the poverty index, its limitations, as noted by global MPI
researchers (26), are applicable to our study as well. In particu-
lar, global MPI does not include characteristics such as parents’
education, social norms and beliefs, empowerment, etc.

Additionally, it will be interesting to see how well this method-
ology can be used to predict other indicators of deprivation and
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Fig. 4. The uncertainty associated with each dataset evidenced by the most accurate one (denoted as CDR and ENV) for the average intensity of poverty
(A) (Left) and prediction of the headcount of poverty (H) (Right).

inequality, like the GINI index, at the microregional level. Apart
from being useful in producing interim statistics in between long
cycles of census and surveys, such methodology can also be
extended to places of conflict or remote areas that are difficult
to reach by census takers.

As described in the results, the interpretation of the model
coefficients provides some insights on the dimensions of MPI.
However, due to the number of variables, this interpretation is
still complex and not necessarily straightforward for policy inter-
vention. Conversely, the MPI dimensions are well-known fac-
tors for which policy planning is feasible (26). As an illustration,
Fig. S4 shows the highest predicted deprivation for each com-
mune within each dimension.

Lastly, though GPR model uncertainty is impacted by the bias
and inaccuracy of each data source (quality of soil type map,
interpolation of climatic data, missing facilities, mobile opera-
tor’s market share), a higher resolution and accuracy of the input
data should benefit the modeling relevance and quality.

Materials and Methods
Target Country. Senegal is a sub-Saharan country that ranks 170 on the
Human Development Index with a score of 0.466 and a population of 14.5
million (with 43.5% urban population) (27). As one of the poorest coun-
tries in the world, it has 52% of the population living in multidimensional
poverty (27). On the other hand, there are 98.8 mobile phone subscrip-
tions per 100 people (24). Senegal is composed of 14 coarsest administra-
tive units called regions, which are further divided into 45 administrative
units called departments. The finest level of administrative units is called a
commune. There are 552 communes (121 as urban centers and 431 rural)
(Fig. 1).

Data Sources.
CDRs. A CDR consists of an identifier with the caller and callee, the antenna
location of the caller, the time of the call, duration of the class, and a
flag indicating if the record is a text or a call. A CDR is generated each
time a call or text is placed. The data belong to the subscribers of Sonatel,
Orange, which is the dominant telecom provider in Senegal. The data are
anonymized and span a period from January 1 to December 31, 2013. They
contain more than 9.54 million unique aliased mobile phone subscribers.
The population of Senegal in 2013 was 14.13 million. Additionally, the
geographical coordinates of the mobile antennas are known, and shown
in Fig. 1.
Environmental Features. Based on literature, several environmental fea-
tures that may have a relationship with poverty have been explored (see
Table S1). They are either based on Geographical Information System (GIS),
Earth Observation data, or weather stations.
Census. The Agence Nationale de la Statistique et de la Demographie
(ANSD), which is the National Statistics Office of Senegal, provided us with

a 10% sample of the 2013 census [called RGPHAE (Recensement General
de la Population de l’Habitat de l’Agriculture et de l’Elevage)]. The data are
evenly sampled across the entire population of Senegal and are from 1.4 mil-
lion individuals, spread across 150,000 households, characterizing informa-
tion related to demographic statistics (mortality, fertility, migration, literacy,
occupation, etc.), along with habitat features, such as type of roof, floor,
access to drinking water, sanitation, and agriculture practices. The advan-
tage of the census is that it represents important national statistics at the
level of individuals. Brief statistics of the data sources are given in Table 1.

The mobile phone data used in this study can be obtained for repli-
cation purposes by contacting Zbigniew Smoreda (zbigniew.smoreda@
orange.com).

Feature Extraction.
CDRs. We have access to more than 11 billion mobile phone transactions
involving calls and texts for a year in Senegal. Each time a call or text is
placed, it is logged as a transaction. Missed, forwarded, and other undeliv-
ered calls were removed from the logs.

To extract important features that quantify the mobile use pattern of
a subscriber, we focus on well-studied metrics capturing the individualis-
tic, spatial, and temporal patterns of the subscriber (28–30). The individual
aspects quantify the typical use pattern of an individual. Some of the metrics
that belong to this category are the number of active days, the number of
contacts, the average call duration, percent nocturnal, and so forth. Spatial
metrics are the ones that quantify the typical movement pattern of an indi-
vidual. Examples of spatial metrics for a subscriber include radius of gyra-
tion, entropy of antennas, and so forth. There are 43 core features (briefly
described in Table S2), extracted using the Bandicoot toolbox (31). All fea-
tures were calculated at monthly granularity capturing the temporal aspect
of a subscriber, resulting in 43× 12 CDR-based features.

The second step is to localize each subscriber, i, to his or her home
antenna. A home antenna, hi , is calculated as one from where the subscriber
makes the most nocturnal calls (from 7 PM to 7 AM) during each month. We
filtered out individuals who made less than five calls during each month and
who were not active for at least half of the year within the range of their
home antennas. This ensures that individuals are reliably allocated to their
home antennas. After the filtering step, the sample contained 6.19 million
individuals (65% of the original subscriber population).

We then computed the average feature value for each antenna site by
computing the average of the feature values for all individuals who consider
that antenna as their home:

m(f)
a =

1

Na

∑
i:hi=a

m(f)
i [9]

where m(f)
i is the fth feature value.

Finally, we compute the feature value for each commune as the weighted
average of all antennas whose voronoi polygon intersects with the com-
mune boundary as:
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m(f)
c =

1∑
wc,a

∑
wc,am(f)

a [10]

The weight wc,a is the ratio Area(c∩a)
Area(a) , which is a measure of how much of the

voronoi cell for antenna a falls within the boundary of commune c. To study
how well the Voronoi-based approach has performed in assigning people
to their communes, we study the correlation of the commune population
estimated by this approach and that calculated from census. The Pearson’s
correlation is reported as 0.85 with a P value of < 0.00001, thus ensuring
the validity of our approach.
Environmental features. In this study, we focus on three broad cate-
gories of environmental features: food security (divided into the availabil-
ity and access components), economic activity, and access to services (see
Table S1). These three categories cover most of the features that have
been shown to be significantly related to poverty in the literature (see
Table S3).

Food security is mainly described by agrometeorological measurements
(temperature, precipitation, slope, elevation, soil type) that drive agricul-
tural production (crop production), one of the most important inputs, along
with livestock and fishing, of food availability in the country. On the other
hand, access to staple food can be approximated by the average millet
prices observed in the markets (retail prices in 56 local markets). Millet
serves as the main local staple food crop in the country, making it a poten-
tially good indicator of poverty. In addition, proximity to main road and
urban centers was also computed to describe the connectivity to major
markets.

The economic activity corresponds to the intensity of urbanization.
Among the studied features, the nighttime lights are the most fre-
quently used to describe poverty using remote-sensing data (20). More-
over, a clear link between household wealth and the level of night
light emissions has been shown before (32). The underlying hypothesis
is that economic activity and urbanization are strong indicators of living
standards.

Finally, the access to services can help to predict some of the individual
indicators of poverty. In particular, the proximity to school, water towers,
and hospitals can be used to determine the deprivation in education, water,
and health, respectively.

The raw environmental data are available either in raster grid (at differ-
ent spatial resolutions) or in vector format. As a first step, all vector data
were converted into raster grid format. Then, all data layers were resam-
pled (using the nearest neighbor approach) at a spatial resolution of 100 m.
Pixel values falling within each commune’s boundary were averaged to give
a unique value for that commune.

All environmental data are available at high spatial resolution, with the
exception of crop production and millet prices (see Table S1 for the data
sources). Millet prices were available in 56 local markets, potentially miss-
ing some of the local heterogeneity. Production estimation features were
derived from the Direction de l’Analyze, de la Prévision et des Statistiques
Agricoles (DAPSA) database. The granularity of these features is at the
department level. Cultivated areas were masked using the 2005 1:100,000
Scale Senegal Land Cover Map produced by the Global Land Cover Net-
work based on the GlobCover 2005 map (33), which is the most accu-
rate map for Senegal (34). Since reliable information on the spatial dis-
tribution of each crop is unavailable, we made an assumption that they
were grown evenly within the cultivated areas of a specific department.
Therefore, the production of a specific department was distributed evenly
among all of the 100-m pixels that fell within the cropland of this depart-
ment. This raster was then used to aggregate the production estimations by
communes.

The Normalized Difference Vegetation Index (NDVI) is used as a proxy of
potential agricultural production within a department. The NDVI, defined
as the difference between near-infrared and red reflectances normalized
by the sum of the two parameters, is a useful yield proxy in regions where
water or soil fertility are the main limiting factors, such as Sahel (35, 36).
For each pixel within cultivated areas, NDVI values above 0.2 during the
growing season (July to November) were integrated (TNDVI), which limited
the contribution of bare soil to the signal.

Model Training. The unknown parameters of each source-specific model
in Eq. 1 are as follows: the parameter β of the linear component, the
hyperparameters of the kernel function `, `s,σ2

f , and the variance of the
error term σ2

n. These are estimated by maximizing the marginalized like-
lihood of the target poverty values in the training data y. The marginal-
ized likelihood is obtained by taking the integral of the likelihood times
the prior:

p(y|X) =
∫

p(y|f,X)p(f|x)df [11]

where the matrix X contains the training input vectors as rows and f is a
vector containing the latent function values for the inputs in X. The GP
prior means that p(f|X) ∼ N (0, K) and the likelihood is a Gaussian—that
is, p(y|f, X) ∼ N (Xβ + f,σ2

nI). The integration of Eq. 11 yields the following
marginalized log likelihood (15) of the training data:

log p(y|X) = −
1

2
(y− Xβ)>(K + σ

2
nI)
−1

(y− Xβ)

−
1

2
log |K + σ

2
nI| −

N

2
log 2π [12]

where N is the number of training examples.
To regularize the coefficients in β, we apply elastic net regularization on

the marginalized log likelihood to obtain the following objective function:

J(β, `, `s,σ
2
n,σ2

f ) = log p(y|X)− (αλ‖β‖2
2 + (1− α)λ|β|) [13]

The function J is maximized to estimate the hyperparameters using conju-
gate gradient descent (37).

All codes used to replicate the results can be obtained by writing to the
corresponding author.

Regularization. Regularization techniques, such as those used in Lasso (38)
or Ridge regression (39), are often used to improve model performance,
especially when the data contain several irrelevant features. The L2 penalty,
imposed by Ridge regression, ensures shrinkage of regression coefficients to
avoid overfitting. On the other hand, the L1 penalty imposed by Lasso forces
the coefficients to be sparse, thereby providing feature selection. However,
neither of the two regularization methods have been found to universally
dominate the other (38). For instance, in the presence of groups of corre-
lated features, Lasso tends to select only one feature within each group,
which leads to poor interpretability of the estimated coefficients. Elastic net
regularization (17) is a weighted addition of L1 and L2 penalties and com-
bines the strengths of both Lasso and Ridge regression. It is known to select
a greater number of influential features than Lasso and has a lower false-
positive rate than ridge regression.

We used elastic net regularization to penalize complexity of the solu-
tion and to avoid overfitting on the limited training dataset. The elastic net
penalty is computed as:

αλ‖β‖2
2 + (1− α)λ|β| [14]

Our empirical results show that elastic net regularization results in better
prediction accuracy, compared with ordinary least squares, Ridge, and Lasso
regression.

Model Validation. This section details the steps followed to validate our
model, namely creating commune-level poverty statistics from census data
and methodology for spatial CV.
Creating commune poverty statistics from census. The 10% sample of
the 2013 RGPHAE census, used here, has survey responses for 150,000
households and 1.4 million individuals pertaining to their socioeconomic
indicators (literacy, birth and death in the family, etc.) and habitat (type
of house, access to electricity and drinking water, etc.). Some survey
responses are individualistic (like literacy and profession), while others
are associated with the entire household (like type of roof, sanitation,
electricity).

The first step is to assign the individuals to their respective households
using information from the fields in the census. The second step is to calcu-
late per-household deprivations in the poverty indicators of interest. Global
MPI computation (26) requires deprivations along three dimensions (with
10 indicators)—namely, health (child mortality, nutrition), education (child
school attendance, years of schooling), and standard of living (electricity,
sanitation, drinking water, flooring, cooking fuel, assets).

We follow the procedure similar to the widely used Alkire–Foster
methodology for computing MPI (40). First, we create a deprivation vec-
tor depveci,d corresponding to each household i in poverty indicators d =

1, . . . , D. Each vector entry is either 1 if yi,d ≤ zd , where yi,d is the achieve-
ment of household i in indicator d and zd is the cutoff score in indicator d, or
0 otherwise. A value of 0 for depveci,d implies nondeprivation of the house-
hold in that particular indicator. For the values of cutoff scores for different
indicators, see Table S7. We aggregate all households that are deprived in a
particular indicator, for each commune, and divide by the total number of
households in that commune. This score gives the proportion of households
deprived in a particular indicator within a commune.

Since MPI is a multiplicative combination of H and A—that is, MPI = H ×
A—we first calculate H and A. For H, we introduce a weight, wd , for
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each indicator d. For each household, we compute a weighted deprivation
score, ci =

∑D
d=1 wddepveci,d . The weights wd are assigned as follows. The

education- and health-related indicators are given a weight of 1
6 , while each

of the six standard of living indicators are given a weight of 1
18 . Thus, each

dimension has a weight of 1
3 .

Hj , which is the relative headcount of poor households in commune j, is
calculated as:

Hj =
1

Nj

Nj∑
i=1

I(ci > θ) [15]

where θ is a cutoff, whose higher values mean a higher cutoff for household
achievement, and I(ci > θ) is the indicator function. Nj is equal to the total
number of households in the jth commune.

To calculate A, we count only the poor households, and their depriva-
tions, as follows:

Aj =
1∑Nj

i=1 I(ci > θ)

Nj∑
i=1

I(ci > θ) ∗ ci [16]

The value of threshold θ is taken as 0.3. We varied θ from 0.2 to 0.75,
and the H and A values obtained in each run were correlated with region-
level H and A, available from University of Oxford’s MPI calculation [Oxford
Poverty & Human Development Initiative (OPHI)]. The results were stable
and peaked at 0.3, which is also the threshold value taken by OPHI for its
calculations.

Spatial CV. To measure the extrapolation capacity of the model on out-
of-sample data, spatial CV techniques, where training and evaluation sets
are sampled from geographically distinct regions, are more robust (18, 41).
The following spatial CV strategy was adopted: For each CV run, we first
randomly sampled a region r from the set of 14 regions and then randomly
sampled a commune c belonging to r. All communes that lie within distance
d of the commune c are included in the training dataset. The remaining
communes are included in the evaluation dataset.

This strategy ensures that communes from all regions of Senegal are repre-
sented in the training and evaluation datasets during CV. To ensure that the
training dataset has enough examples, we forced at least 40% of the com-
munes (225) to be included in the training dataset. To achieve this, d is initially
set to 100 km and is increased by 50 km until the size of the training dataset
meets the threshold. CV is repeated 250 times. We report the mean predictive
performance (using Pearson’s and Spearman’s correlation and RMSE values)
on the evaluation dataset, along with the SD across multiple runs.
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port de Présentation des Résultats Définitifs de la Campagne Agricole 2012-
2013 (Ministère de l’Agriculture et de l’Équipement Rural, Dakar, Senegal), Tech-
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