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Abstract

We compared the classic static stereoscopic luster phenomenon with a recently described

dynamic variant (‘‘counter modulation’’) to investigate whether they are related to the same or

different processes. In the experiments, we presented pairs of center-surround stimuli

haploscopically and measured the effect of the contrast between center colors on perceived

luster. The center colors were either static or temporally modulated. In addition, we examined

five color conditions (one achromatic, two equiluminant, and two mixed conditions) and three

background conditions that influence the channel-wise polarities of the contrast of the two

centers to the common surround. The results for static and dynamic stimuli differed in several

ways, suggesting that they depend on different mechanisms: Compared with the static version, in

dynamic stimuli, luster was perceived at markedly lower contrasts, did not depend on the sign of

the contrast polarities, and appeared more steady. However, both phenomena seem also similar in

some respects: In both cases, equiluminant stimuli led to lustrous impressions that were

considerably less strong than those evoked by stimuli containing luminance variation, and the

strength of the perceived luster was generally boosted with reversed contrast polarities.
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Introduction

When in the middle of the 19th century Heinrich Dove (1851) discovered the phenomenon of
stereoscopic luster, this established the research field of material perception (Adelson, 2001;
Fleming, 2014). Dove used two perspective line drawings of a truncated pyramid with
inverted intensities and found that the faces of this geometric body yielded a lustrous
appearance when the two images were haploscopically fused by means of a stereoscope
(Figure 1(a)). This discovery triggered the interest of many other researchers who offered

Corresponding author:

Franz Faul, Philosophische Fakultät, Christian-Albrechts-Universität zu Kiel, Olshausenstr 62, 24118 Kiel, Germany.

Email: ffaul@psychologie.uni-kiel.de

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further

permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

i-Perception

2019 Vol. 10(3), 1–26

! The Author(s) 2019

DOI: 10.1177/2041669519846133

journals.sagepub.com/home/ipe

https://orcid.org/0000-0002-7158-2920
https://doi.org/10.1177/2041669519846133
journals.sagepub.com/home/ipe


different explanations for this phenomenon (for a more detailed overview, see Mausfeld,
Wendt, & Golz, 2014).

One approach assumed that the lustrous appearance was the result of some sort of conflict
at a physiological level—a response of the visual system indicating its inability to combine
these two discrepant monocular intensity signals (Brewster, 1861; Dove, 1851, 1859; Rood,
1861). In contrast, Oppel (1854) and von Helmholtz (1867) attributed a functional meaning
to this phenomenon. They assumed that it results from a mechanism of the visual system that
exploits a physical regularity of light reflection: As a first approximation, the reflective
behavior of a glossy surface can be described as a combination of an ideal diffuse
(Lambertian) and a specular reflection. The magnitude of the diffuse component depends
only on the angle between the surface normal and the direction to the light source, whereas
the specular component also depends on the viewing direction. As a consequence of the latter
property, left and right eye in general receive different amounts of reflected light from the
same point of a glossy surface, because the viewing directions of the two eyes differ slightly
(Figure 1(b)). Thus, whenever different luminances occur at corresponding retinal areas, the
visual system may infer that this is caused by light reflected from a glossy surface
(Jung, Moon, Park, & Song, 2013). Note that in the following, we will use the terms luster
and gloss interchangeably since it is at present not clear how these two subjectively similar
phenomena relate to each other—it is the main aim of this study to examine this relationship
more closely. From this view, the phenomenon of stereoscopic luster demonstrates the role of
binocular cues for the perception of glossiness (Blake & Bülthoff, 1990; Mausfeld et al., 2014;
Sakano & Ando, 2010; Wendt, Faul, Ekroll, & Mausfeld, 2010; Wendt, Faul, & Mausfeld,
2008). The Oppel–Helmholtz interpretation has been widely accepted by subsequent
researchers in this field (e.g., Brücke, 1861; Bühler, 1922).

However, the functionalistic interpretation of Oppel and Helmholtz was challenged by
findings from Anstis (2000). A first critical observation was that reversed contrast polarities
in the two monocular stimuli were crucial for a lustrous appearance: In his flat center-
surround stimuli, strong lustrous impressions occurred only when a spatial decrement in
one eye was paired with a spatial increment in the other (‘‘inc-dec pairing,’’ i.e., when one
center patch had a lower luminance than its surround, the other a higher luminance). It is
unclear how this condition can be related to an ecological gloss situation: If the surround is
interpreted as the diffuse component of a glossy surface and the central patches as locations
from which light is reflected specularly to the observer, then the central patches should never

(a) (b)

Figure 1. (a) Two perspective line drawings of a truncated pyramid with inverted intensities similar to the

stimuli used by Dove (1851). The stereoscopic fusion of these two half-images makes the stimulus appear

lustrous (stimulus is arranged for uncrossed viewing). (b) The reflective behavior of a glossy surface can be

described by the BRDF—the bidirectional reflectance distribution function (Nicodemus, Richmond, Hsia,

Ginsberg, & Limperis, 1977). Since the specular component (represented by the specular lobe) is directionally

selective, the two eyes of an observer generally receive different amounts of light from the same surface point

(dashed arrows).
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be decremental, because the specular component always adds light. A second critical
observation was that a very similar effect could also be obtained under monocular viewing
conditions, where the two single stimuli were presented alternately at a flicker rate of
16Hz (for another interesting method to produce a lustrous effect with a static monocular
stimulus, see Pinna, Spillmann, & Ehrenstein, 2002). These results obviously challenge an
interpretation in terms of a binocular cue that relates to a physical regularity of surface
reflectance and instead support the alternative interpretation that ascribes stereoscopic
luster (as well as monocular luster from flicker) to a neuronal conflict. More specifically,
Anstis (2000) interprets this conflict as a competition between ON and OFF visual pathways
(Schiller, 1992), activated by spatially incremental or decremental light patterns, respectively
(see also Burr, Ross, & Morrone, 1986; Georgeson, Wallis, Meese, & Baker, 2016;
Pinna et al., 2002).

In a recent article, a new variant of stereoscopic luster was described that is evoked by
center-surround stimuli in which the luminances of the center patches are temporally
modulated according to a Gaussian function (Mausfeld et al., 2014). The Gaussian
intensity functions in the two monocular half-images were shifted in time so that the right
eye received the intensity peak 150ms later than the left eye (Figure 2). This led to strong
impressions of luster if the width of the Gaussians was chosen properly. Contrary to what
Anstis (2000) found with his stimuli, the impression of luster elicited by such dynamic stimuli
was unaffected by changes in the surround luminance. In particular, a spatial inc-dec pairing
was not necessary for the effect. It was found that the lustrous impression occurred within a
time interval during the stimulus presentation that was located between the two peaks of the
Gaussians, that is, where a temporal decrement (i.e., a decreasing intensity curve) in one
center was accompanied by a temporal increment in the other center (i.e., an increasing
curve; see the shaded area in Figure 2). This counter modulation may actually serve as a
dynamic binocular cue for glossiness. As Figure 3 illustrates, similar temporal intensity
functions are produced by real gloss situations, for instance, when an observer moves
around a glossy object while fixating a certain point on its surface.

Further investigations with this type of stimuli showed that the presence of counter
modulation in itself is not sufficient to generate luster: If the intensity baseline of the
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Figure 2. In a former study (Mausfeld et al., 2014), two haploscopically presented center-surround stimuli

were used where the luminances of the center patches changed according to a Gaussian function. The two

intensity functions were temporally shifted between the left eye (gray curve) and the right eye (black curve)

by 150 ms. The shaded area shows the time interval during which a temporal decrement in the left eye was

combined with a temporal increment in the right eye.
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temporal intensity functions for both eyes was increased relative to the modulation phase,
so that the baseline did no longer constitute the lowest luminance, then the impression of
luster gradually diminished with increasing baseline intensity. This observation also seems to
be in agreement with physical regularities: The bottom graphs in Figure 3 show that the level
of the constant intensity baseline is determined by the diffuse component of the surface.
As mentioned earlier, the amount of light that is produced by the specular component will
always add to this base level. Therefore, intensity modulations below this baseline would be
physically implausible—which could explain why the lustrous sensations rapidly diminished
when the baseline was increased.

In this brief summary of previous findings, we contrasted three different methods to elicit
phenomenal luster, namely, static binocular stimuli, alternating monocular presentation, and
counter modulation in dynamic binocular stimuli, and two different interpretations of the
resulting phenomena, namely, a relatively low-level conflict hypothesis and a functionalistic
hypothesis that relates binocular luster to normal gloss perception. Neither of the two
hypotheses can fully explain the observations made so far: The conflict hypothesis can
account for the observations made with static binocular and monocular stimuli, but fails
to explain the occurrence of luster in dynamic binocular stimuli, because in this case,
incompatible spatial contrast polarities, on which this explanation rests, are not necessary
for the effect. The functional explanation, on the other hand, seems in line with the findings
made with the dynamic binocular stimuli. However, the role of the spatial contrast polarity
that influences luster in static binocular stimuli remains unclear in this approach, and for
obvious reasons, it can also not explain the occurrence of monocular luster. A possible
explanation of this state of affairs could be that both hypotheses are wrong or incomplete.
Alternatively, one may assume that the similarity of the phenomenal impressions elicited in
the three experimental situations is deceptive and conceals the fact that they actually
have different causes. This does not exclude the possibility that several factors contribute
in a given situation.

The General Approach Used in the Current Experiments

In the present article, we report the results of a number of experiments with which we
investigated the plausibility of the assumption that static and dynamic stimuli trigger different
mechanisms. Our main strategy was to compare the strength of lustrous effects produced by the
two binocular stimuli (i.e., classical static binocular stimuli vs. counter-modulation stimuli) under
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Figure 3. When an observer moves around a glossy object while fixating a certain point on the surface, the

reflected light will produce overlapping intensity functions in the two eyes.
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several color conditions that differ with respect to their physical plausibility (considered relevant
by the functionalistic hypothesis) and at the same time systematically influence the spatial
contrast polarities (considered relevant in the conflict hypothesis).

The control of the polarities of the spatial contrast between center and surround in
the experiments is essential, because they play a central role in the conflict hypothesis.
If the phenomenon of stereoscopic luster is actually due to a neuronal conflict between
discrepant signals from corresponding visual pathways, luster should only be observed
when the contrast polarities in the two monocular half-images are reversed. We used
stimuli in which the contrast polarity in each of the three color channels was either
identical or reversed by choosing appropriate colors for center and surround. In this way,
we were able to compare the strength of perceived luster with and without conflict.

At the same time, we investigated five different color conditions that determined the
binocular color difference between the center patches of the two half-images. Each color
condition was related to an axis in color space. Besides isolated variations in luminance
along a purely achromatic axis, we also examined two equiluminant chromatic axes and
two mixed axes with simultaneous variations in chromaticity and luminance. From the
physical perspective underlying the hypothesis of Oppel and Helmholtz, the five color
conditions are not all equally plausible in realistic gloss situations. Although some glossy
materials exist, whose chromatic properties vary to some extent with changing angles between
surface normal, light source direction, and viewing direction (e.g., certain kinds of fabric,
such as shot silk or changeable taffeta, see Lu, Koenderink, & Kappers, 2000), it is obviously
not this chromatic variability that is responsible for the perceived glossiness. Thus, from this
perspective, the two equiluminant color conditions are presumably the most unrealistic ones
in our study and should lead to comparatively weaker lustrous sensations. Perceived
glossiness is usually associated with differences in luminance, since, as mentioned earlier,
the light that is reflected in a specular manner from a surface always adds to the diffusely
reflected light. The three remaining color conditions include luminance variations and should
therefore be more likely to evoke lustrous impressions. The two mixed color conditions
comprise also variations in chromaticity. If the underlying mechanism of the visual system
is exclusively sensitive to luminance information and ignores chromatic information, this
should make no difference.

Methods

General Construction of the Stimuli

Pairs of center-surround stimuli were haploscopically fused by means of a mirror stereoscope
(ScreenScope, Monitor Version). The stimuli were presented on a TFT monitor (EIZO
CG243W) with a screen width of 52 cm and a screen height of 32.5 cm (image resolution:
1920 by 1200 pixels). The monitor was calibrated according to a standard procedure as
described in Brainard (1989) using a JETI specbos 1211 spectroradiometer. The center
patch of each monocular half-image was a square with a side length of 3.67� of visual
angle, and it was embedded in a common background that filled the entire screen.
To facilitate the fusion of the stimuli, the center regions in both monocular half-images
were flanked by one-pixel thick right angles near each corner with a side length of 1.95� of
visual angle in all experiments. Depending on the luminance of the background, these fusion
locks either appeared in a white or black color.

The five color conditions were each related to a specific line segment in color space. The
line segments were constructed from five base chromaticities: Beside an achromatic base color
(at the chromaticity of the daylight equivalent D65), four additional chromaticities were
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chosen at the maximum distance to the achromatic point that was realizable inside the gamut
of the monitor for a luminance of 50 cd/m2 (see Figure 4).

The first color condition was given by a line segment in the u’v’L-color space (Wyszecki &
Stiles, 1982) through the achromatic point and endpoints at 0 cd/m2 and 50 cd/m2 (top section
in Figure 5). The four nonneutral chromaticities formed the endpoints of two line segments
that were parallel to lines corresponding to the S and the L-M axis of the MacLeod-Boynton
chromaticity diagram (MacLeod & Boynton, 1979; see left diagram in Figure 4). This way the
S and L-M cone excitations could be varied in isolation in some stimulus conditions.
Two equiluminant color conditions were defined by combining these line segments in the
chromaticity diagram with a constant luminance of 25 cd/m2. The lines through the red and
green chromaticities and through the blue and yellow chromaticities are referred to as the
equiluminant r and equiluminant b condition, respectively (see Figure 5). In the mixed r
condition, the green chromaticity was combined with a luminance of 50 cd/m2 and the red
chromaticity with one of 0 cd/m2. In the mixed b condition, the yellow chromaticity was
combined with a luminance of 50 cd/m2 and the blue chromaticity with 0 cd/m2 (Figure 5).
The line segments corresponding to the five color conditions intersect at the central white
point (D65) at 25 cd/m2 (see Figures 4 and 5).

Each of these color conditions was combined with three background conditions, referred
to as incremental, decremental, and in-between. The colors of the incremental and
decremental backgrounds were determined by one of the endpoint colors in each color
condition (see Table 1, Figure 5). In the in-between condition, the same achromatic
background color with a luminance of 25 cd/m2 was used in all five color conditions
(middle column in Figure 5). The labeling of the background condition refers to the sign
of the contrast between center and surround: If the LMS color code of the surround is
subtracted from that of the center patch, then the resulting contrast vector can have any
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Figure 4. The chromaticity coordinates of the five base chromaticities used to construct the five different

color conditions (see Figure 5) are shown both in the MacLeod-Boynton chromaticity diagram (MacLeod &

Boynton, 1979) and the CIE 1976 (u’, v’) -UCS chromaticity diagram. The central achromatic point has the

chromaticity of D65. The remaining chromatic points were grouped to two pairs of colors (red-green and

blue-yellow). The chromaticities of these colors were chosen such that they were close to the gamut of the

monitor at a luminance of 50 cd/m2 (represented by the light gray polygon).
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combination of positive and negative signs (cf. Mausfeld & Niederée, 1993). The last column
of Table 1 shows the contrast codes of the two half-images resulting in the three background
conditions. In the incremental and decremental conditions, these contrast codes had always
equal signs. In the in-between background condition, they generally had opposite signs, that
is, the contrast polarities were reversed between the two monocular half-images of the same
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Figure 5. Schematic representation of the five different color conditions (rows) as they were examined in

Experiment 1, each with its three different background conditions (columns). The top panel in each of the five

sections schematically depicts the respective line segment in color space that is given by two endpoint colors

(see Figure 4). The achromatic midpoint color is identical for all five color conditions (D65 with a luminance of

25 cd/m2). The three different background conditions for each color condition were determined by the midpoint

color (‘‘in-between’’ background condition) and the two endpoint colors (‘‘incremental’’ and ‘‘decremental’’

background condition, respectively, see the bottom panel in each section). The colors of the center patches were

also located on the same line segment in color space (disks with black border, here as an example with a

binocular color contrast of 0.5). In the adjustment task of Experiment 1, the binocular color contrast between

the monocular center patches could be interactively manipulated by the subjects (see Figure 6(a)).
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stimulus. This means that the stimuli in the latter case fulfilled the inc-dec condition, which
according to Anstis (2000) should produce strong lustrous impressions. Note that for the
equilumiant r color condition, the labels ‘‘incremental’’ and ‘‘decremental’’ are somewhat
misleading, because the contrast polarities were generally mixed across the three different
color channels. In the mixed b condition, there is also the peculiarity that under the in-
between background condition, there is no reversal of contrast polarity in the S-channel
but only in the L- and M-channels (see Table 1).

The color coordinates p1 and p2 of the left and right center patches of the stereoscopic stimuli
were always located on the same line segment in color space defined by the respective color
condition. The color contrast between p1 and p2 was varied by way of a parameter c, 0� c� 1,
which controlled the convex mixture between the achromatic point w¼ (wu’, wv’, wL)

T at
25 cd/m2 and the endpoints e1 and e2 of the corresponding line segment (see Figure 6(a)):
pi¼ ceiþ (1�c) w, for i¼ 1, 2. Note that the mixture is done separately in chromaticity space
and luminance and not in a three-dimensional color space. This ensures that the mixed
condition is a simple combination of the equiluminant and the achromatic condition.

In the classic static stimuli, the colors of the two center patches are constant during each
trial (p1static¼ p1 and p2static¼ p2). In the dynamic counter-modulation stimuli, the colors of
the two center patches were temporally modulated. At each time t during the stimulus
presentation, the colors p1dynamic and p2dynamic were convex mixtures of the two original

Table 1. For Each of the Five Color Conditions, the Color Coordinates for the Different Background

Conditions Are Shown.

Background condition u’v’L LMS Contrast polarities

Color condition: achromatic

Incremental (0.198, 0.468, 0) (0, 0, 0) þ� þ� þ� þ� þ� þ�
In-between (0.198, 0.468, 25) (18.946, 8.514, 28.377) �� �� �� þ� þ� þ�
Decremental (0.198, 0.468, 50) (37.892, 17.028, 56.753) �� �� �� �� �� ��

Color condition: equiluminant r

Incremental (0.287, 0.456, 25) (21.007, 6.869, 28.965) �� þ� �� �� þ� ��
In-between (0.198, 0.468, 25) (18.946, 8.514, 28.377) þ� �� þ� �� þ� ��
Decremental (0.141, 0.476, 25) (17.681, 9.522, 27.909) þ� �� þ� þ� �� þ�

Color condition: equiluminant b

Incremental (0.211, 0.388, 25) (19.364, 8.683, 61.126) �� �� �� �� �� ��
In-between (0.198, 0.468, 25) (18.946, 8.514, 28.377) þ� þ� þ� �� �� ��
Decremental (0.184, 0.555, 25) (18.631, 8.383, 3.473) þ� þ� þ� þ� þ� þ�

Color condition: mixed r

Incremental (0.287, 0.456, 0) (0, 0, 0) þ� þ� þ� þ� þ� þ�
In-between (0.198, 0.468, 25) (18.946, 8.514, 28.377) �� �� �� þ� þ� þ�
Decremental (0.141, 0.476, 50) (35.362, 19.043, 55.817) �� �� �� �� �� ��

Color condition: mixed b

Incremental (0.211, 0.388, 0) (0, 0, 0) þ� þ� þ� þ� þ� þ�
In-between (0.198, 0.468, 25) (18.946, 8.514, 28.377) �� �� þ� þ� þ� þ�
Decremental (0.184, 0.555, 50) (37.262, 16.766, 6.947) �� �� þ� �� �� þ�

Note. Both in the CIE 1976 (u’,v’) UCS system (including luminance L) and in cone excitations LMS (Stockman, MacLeod, &

Johnson, 1993, for 2�). The incremental and the decremental color codes also represent the endpoints of the line segment

that was used to determine the colors of the center patches under each color condition (see Figure 5). The last column

schematically shows the relationship of the contrast polarities for each color channel between the two monocular half-

images of the stimuli under each background condition. A reversal of contrast polarities between the two eyes only occurs

under the in-between background condition.
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colors p1 and p2, where the mixing factors ai(t) followed a temporal Gaussian function (see
Figure 6(b)): pidynamic¼ ai(t) p

1
þ (1�ai(t)) p

2.
The Gaussian weighting function had a width of 100ms and was scaled to a range between

0 and 1. The Gaussians were temporally shifted by 150ms between the two half-images. In
our first experiment, they were presented within a time window of 1400ms (see Figure 6(b)).
The peak of the functions was reached after 625ms in one eye and after 775ms in the other.
In Experiments 2 and 3, the duration of the time window was reduced to 600ms (with peaks
at 225 and 375ms, respectively). The narrower time interval was due to the fact that constant
portions of the Gaussians were cut off on the left and right side. The reason for this
modification was that Experiments 2 and 3 involved the comparison of the lustrous
impressions between different stimuli, and we wanted to avoid that the subjects base their
judgment on stimulus features other than the lustrous impression, for instance on the relative
intensities of the baselines of the Gaussians.

During each trial of the experiments, the stimuli were presented as long as the subjects
needed to make their decisions. For dynamic stimuli, this means that they were immediately
repeated after the time window ended, resulting in a seamless sequence of cycles until the
subjects fulfilled their task.

Experiment 1—Contrast Threshold for Lustrous Impressions

The aim of Experiment 1 was to determine the absolute threshold for perceived luster in each
stimulus condition, that is, the minimum binocular contrasts evoking an impression of luster.
It was also taken into account that in some conditions, a lustrous impression cannot be
achieved. In addition to the two presentation modes ‘‘static’’ and ‘‘counter modulation,’’ a
further dynamic presentation method was used, which served as a control. This additional
condition differed from ‘‘counter modulation’’ only in that there was no temporal peak
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Figure 6. (a) Illustration of how the two monocular center patch colors for our static stimuli were derived

from three different example values for the binocular color contrast c (0.15, 0.5, and 0.85 from top to

bottom). The contrast value determines the relative position of the two patch colors between the central

achromatic point and the two end points of the respective color line element (see Figures 4 and 5). (b)

Construction of the dynamic stimulus: For the left and the right eye of the observer, the temporal weighting

functions for the mixing factor a are shown (here, as an example, for the equiluminant r condition where the

temporal variations in the colors of the two monocular center patches are schematically shown for a

binocular color contrast of 0.85). The two colors from the static case determine the boundaries of the color

variation, that is, the baseline and the peak of the Gaussians.
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separation between the two monocular intensity functions, that is, both eyes saw identical
temporal color functions. In this way, we tested whether the presence of counter modulation
is indeed a necessary condition for triggering a gloss impression in the dynamic case or
whether such an impression can be produced by mere temporal color changes alone.

Each of the 45 stimulus conditions (5 Color Conditions� 3 Background Conditions� 3
Presentation Methods) was presented four times, resulting in a total of 180 trials that were
presented in random order. The task of the subjects was to adjust the color contrast between
the center patches of the two monocular half-images and to find the contrast at which a
lustrous impression was just noticeable. The subjects were asked to deliberately oscillate
around the contrast value that they initially set as the absolute threshold, in order to
possibly find an even better setting. The adjustments were made with the ‘‘left’’ and
‘‘right’’ arrow keys of the keyboard. If the subjects failed to find a contrast value at which
they perceived luster, they should mark the respective stimulus as ‘‘not lustrous’’ by use of the
‘‘up’’ or ‘‘down’’ arrow key. As a feedback, ‘‘not lustrous’’ was then displayed on the screen
below the test stimulus, replacing the default message ‘‘lustrous.’’ In each trial, the test
stimulus was presented together with an additional matte reference stimulus that always
had a constant and identical color for both patches of the two half-images (D65 at 20 cd/
m2 with binocular color contrast of 0.0). A comparison of the test stimulus with the matte
anchor stimulus facilitated the detection of weak impressions of luster in the test stimulus.
The test stimulus was always presented above the reference stimulus on the screen with a
center-to-center distance of 9.15� of visual angle.

After the subjects had made their settings, they pressed the ‘‘return’’ key to move to the
next trial. A dark adaptation interval of 3 seconds was inserted between trials.

If an experimental task requires difficult judgments, subjects sometimes use secondary
stimulus features as a criterion instead of the perceptual criterion that is actually
demanded. In the present experiment, for instance, the subjects could refer to the
interocular color difference between the center patches rather than the lustrous impression
and this could invalidate the threshold measurement. We aimed to prevent this by carefully
instructing the subjects to use only the impression of luster as criterion. This instruction was
first given in written form. In addition, the subjects had to complete a set of eight example
stimuli prior to the experiment while the instructor was present. During this training session,
the subjects were first asked to describe their impressions while freely manipulating the
binocular color contrast between the two monocular center patches. We used this
procedure to introduce the subjects to the phenomenon of binocular luster, since most of
them were unfamiliar with it. When the subjects started to report something like a
shimmering, shiny, glossy, lustrous, or similar appearance, they were told that this is the
perceptual criterion to be used in the present task. This way we could also ensure that the
subjects were able to haploscopically combine the two monocular half-images. Furthermore,
the rating task at the end of each trial additionally served as a reminder to use only the
lustrous appearance for a judgment of the stimuli.

Subjects

Seven subjects took part in all three experiments who all had normal color vision as tested by
means of the Ishihara plates (Ishihara, 1967), one of them being an author of the present
article (G. W.). Five of the subjects were females, two were males, and their age was between
18 and 46 years (median¼ 23). All experiments of this study were carried out in accordance
with the Code of Ethics of the World Medical Association (Declaration of Helsinki), and
informed consent was obtained for experimentation with human subjects.
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Results

Figure 7 shows the results of the experiment, averaged across six of the seven subjects. The
data of one subject were excluded since there were very few ‘‘lustrous’’ classifications, even in
conditions where the stimuli were judged as ‘‘lustrous’’ in 100% of the cases by the remaining
subjects, and the threshold settings for those stimuli that were perceived as lustrous were also
extraordinarily high. Each of the graphs refers to one of the five color conditions. Within
each graph, the results for the static, the dynamic, and the control condition are displayed in
different colors. The horizontal positions of the data points refer to the three different
background conditions. Each data point represents the mean contrast setting across the six
subjects, after excluding settings that were marked as ‘‘not lustrous.’’ The relative proportion
of the settings that were perceived as lustrous is displayed as a colored disk segment within
each data point.

The most salient feature is the obvious similarity in the trends of the absolute threshold
settings in all color conditions that included luminance variations (see the plots in the right
column in Figure 7). This means that the additional variation in chromaticity in two of these
conditions has almost no effect.

Dynamic stimuli with luminance variation. In these conditions, the thresholds obtained with
dynamically presented stimuli were in general rather small (with mean values between
0.028 and 0.138) and much lower than those found in the static case. The absolute
differences between the background conditions were small, but some of them were
nevertheless statistically significant (a one-way analysis of variance [ANOVA] performed
on each of the three sets of dynamic stimuli with luminance variations revealed significant
differences in all three cases: for the achromatic condition, F(2, 68)¼ 36.63, p< .001, for the
mixed r condition, F(2, 69)¼ 10.16, p< .001, and for the mixed b condition, F(2, 69)¼ 16.26,
p< .001). A Bonferroni post hoc test revealed that in both the achromatic and the mixed b
color condition, the mean settings under the incremental condition differ significantly from
those under the decremental and the in-between conditions, whereas in the mixed r color
condition, the means in the in-between condition differ significantly from those of the
remaining two background conditions. Furthermore, the dynamic stimuli appeared
lustrous almost throughout.

Static stimuli with luminance variation. The luster perceived in statically presented stimuli
(orange data curves in Figure 7) depended much stronger on the background conditions:
While the contrast values in the in-between condition were also low (with mean values
between 0.077 and 0.143), considerably higher values were obtained in the remaining two
background conditions (with mean values ranging from 0.368 to 0.647). A large number of
the stimuli in the incremental and decremental conditions were judged as not lustrous at all.
The proportion of lustrous impressions was particularly low in the decremental conditions
(40.3% on average compared with 81.94% in the incremental conditions).

Equiluminant stimuli. In the two equiluminant color conditions, it is much more difficult to
identify a clear trend in the data, as there were very strong differences between the subjects,
which is why the respective data plots showing the mean contrast settings across subjects (left
column in Figure 7) do not provide a representative picture: The percentage of ‘‘lustrous’’
classifications ranged from 8.33% (i.e., 4 of 48 stimuli) to 95.8% with an average of 54.43%
for the six subjects. These subjects rated 52.78% of the static equiluminant stimuli and
52.08% of the counter-modulation stimuli as ‘‘lustrous.’’ Usually, stimuli in the in-between
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background condition received more ‘‘lustrous’’ classifications than those in the decremental
and incremental conditions. With the exception of one subject, the subjects chose slightly
lower contrast thresholds in the dynamic case. The background conditions generally had a
much lower and less systematic impact on the threshold settings than in the color conditions
with luminance variation.

Control stimuli. Significant differences between subjects also occurred in the control condition:
With only 1 or even 0 ‘‘lustrous’’ classifications for the total set of 60 control stimuli (i.e.,
1.67% and 0%, respectively), the majority of the subjects (four out of six) judged these
stimuli as nonlustrous. However, two of the subjects judged these stimuli as ‘‘lustrous’’ in

static stimulus presentation

dynamic stimulus presentation

the colored disk segment within each
data point represents the proportion of
‚lustrous‘ classifications

decremental in-between incremental

0.

0.2

0.4

0.6

0.8

1.

Background condition

C
on

tr
as

tt
hr

es
ho

ld

achromatic

decremental in-between incremental

0.

0.2

0.4

0.6

0.8

1.

Background condition

C
on

tr
as

tt
hr

es
ho

ld

equiluminant r

decremental in-between incremental

0.

0.2

0.4

0.6

0.8

1.

Background condition

C
on

tr
as

tt
hr

es
ho

ld

mixed r

decremental in-between incremental

0.

0.2

0.4

0.6

0.8

1.

Background condition

C
on

tr
as

tt
hr

es
ho

ld

equiluminant b

decremental in-between incremental

0.

0.2

0.4

0.6

0.8

1.

Background condition

C
on

tr
as

tt
hr

es
ho

ld

mixed b

control condition

Figure 7. For each of the five color conditions (diagrams), the average settings of six subjects are shown,

separated by the different presentation methods (green and orange lines; the achromatic curves show the

settings of the control condition) and background conditions (horizontal position of the data points). The

colored disk segment within each data point shows the relative proportion of stimuli that were perceived as

lustrous. Error bars refer to� SEM.
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33.3% and 35% of the cases, respectively. The chance that a control stimulus was judged as
lustrous was in stimuli containing luminance variations about six times as high than in
equiluminant stimuli. There was also a slight preference to see luster in control stimuli that
additionally varied along a red-green chromaticity axis.

Discussion

The results obtained with the classical static presentation method generally confirm the findings
reported in Anstis (2000): A vivid and stable impression of luster could only be evoked if a spatial
increment was binocularly combined with a spatial decrement (i.e., when the two respective half-
images had reversed contrast polarities, as it was realized in the in-between background
condition). This is particularly pronounced in stimulus conditions that included luminance
variations (right column in Figure 7). Our finding that an additional variation along a
chromatic axis does not have any systematic effect on the thresholds (see the mixed r and the
mixed b condition in Figure 7) suggests that the chromatic content is either ignored or, to some
part, even ‘‘overlooked’’ by the visual system: As Jennings and Kingdom (2016) have found,
the sensitivity to detect chromatic differences between eyes is reduced when in addition luminance
contrasts are present. In the equiluminant conditions, the respective thresholds were considerably
higher, but lustrous sensations were nevertheless obtained in the majority of the cases.

Compared with the static stimuli, the counter-modulation stimuli were less dependent on
the background conditions, which influence the contrast polarities. As long as the stimuli
contained luminance variations, the counter-modulation stimuli were reliably perceived as
lustrous. In the equiluminant color conditions, in which the stimuli were less physically
plausible, the rate of lustrous impressions was considerably lower, at least on average.

These results seem to be largely in line with a conflict explanation of the static case and the
functional interpretation of the counter-modulation stimulus.

Furthermore, the results obtained with the control condition, that is, with dynamic stimuli
that lack counter modulation generally indicates that counter modulation is a crucial feature
to produce a reliable impression of luster, especially for those stimuli that include variations
in luminance. However, the fact that two of our subjects judged also some of the control
stimuli as lustrous suggests that temporal variations in luminance alone may be sufficient to
evoke perceived luster. One may speculate that the control stimuli had a similar effect as the
monocular flicker stimuli that Anstis (2000) found to be suitable to produce the perception of
luster. However, while Anstis used a flicker frequency of 16Hz, our control stimuli had a
temporal distance of approximately 350ms between the baseline and the peak of the temporal
color function (or the darkest and the brightest point of the function, respectively, see
Figure 6(b)), which is equivalent to a frequency of about 2.86Hz. In addition, Anstis
(2000) found that the lustrous effect of his flicker stimuli, as well as his static stimuli,
strongly depends on the luminance of the surround, that is, on the presence or absence of
reversed contrast polarities between eyes. Translated to our experimental design, this would
mean that the data curves representing the control condition in Figure 7 should be similar in
shape to the curves representing the static presentation method, which is not the case, because
the results obtained with the control stimuli show no systematic dependence on the
background condition.

Experiment 2—Equidistant Scale for Perceived Luster

In the second experiment, we investigated the quantitative relationship between binocular
color contrast and the strength of perceived luster. The purpose of this scaling experiment
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was twofold: On the one hand, we wanted to examine whether the shape of the scaling curve
depends on the presentation method (i.e., static vs. dynamic). On the other hand, we aimed to
construct a perceptually equidistant luster scale that could be used in the matching task that
was employed in Experiment 3.

There are a number of related studies that aim to establish a perceptual glossiness scale
(Billmeyer & O’Donnell, 1987; Ferwerda, Pellacini, & Greenberg, 2001; Harrison & Poulter,
1951; Obein, Knoblauch, & Viénot, 2004). These studies differ with respect to the kind of
gloss samples, objective gloss measures, and experimental methods they used. Obein et al.
(2004), for instance, defined a physical gloss measure for real surfaces and then determined a
psychophysical scale for perceived gloss. Our approach is different in that the physical
dimension is not directly related to surface properties but to binocular contrasts and that
the perceptual dimension is binocular luster, that is, a phenomenon where it is not yet clear
whether and, if so, how it is related to the perception of surface gloss.

In the scaling experiment, we used MLDS (‘‘maximum likelihood difference scaling’’) as
proposed by Maloney and Yang (2003; see also Knoblauch & Maloney, 2008). This method
is based on comparisons of the perceived differences in two pairs of stimuli that objectively
differ in a certain attribute. In our case, we used pairs (A, B) and (C, D) of stereoscopic luster
stimuli, where each stimulus pair differed in binocular color contrast. The same two
presentation modes (static vs. dynamic) as in Experiment 1 were used, but only the
combination of the ‘‘in-between’’ background condition with the achromatic color
condition was realized. These were the conditions where the smallest absolute thresholds
were observed which implies a large range of binocular contrasts leading to perceptual
luster. We tested 11 different contrast values. The minimum value was 0.04 (which was
sufficient to make the center patch discernable from its surround), and the remaining
values ranged from 0.1 to 1.0 in steps of 0.1. The combination of contrast values for each
quadruple of stimuli (A, B, C, and D) was restricted by the method of nonoverlapping
quadruples (cf. Knoblauch & Maloney, 2008), where the respective contrast values ci meet
the requirement cA< cB< cC< cD. With 11 different contrast values, this leads to 330
different nonoverlapping stimulus quadruples that were presented in random order during
the experiment.

During each trial, the two pairs of stimuli were displayed simultaneously on the screen,
one above the other with a vertical center-to-center distance of 7.44� of visual angle. For each
pair of these stereoscopic stimuli, the two center patches of each monocular half-image were
presented side by side with a horizontal distance of 5.15� of visual angle (see Figure 8).

The static and dynamic presentation methods were tested in different sessions. In each
trial, the subjects had to select that stimuli pair in which the difference in the strength of
perceived luster appeared larger. The subjects used the ‘‘up’’ and ‘‘down’’ arrow keys to select
and as feedback a one-pixel thick frame was drawn around the selected pair (see Figure 8).
The subjects pressed the return key to confirm their decision. The next trial started after an
adaptation period of 3 seconds during which the colors of all center patches of the display
were set to the background color (D65 at 25 cd/m2). Again, there was no time restriction for
the stimulus presentation, so that the subjects could use as much time as they needed to
perform the task. As part of the instruction, the subjects had to complete a set of six different
example stimuli prior to each of the two sessions while the instructor was present.

Results

Figure 9 shows the results of the scaling experiment for the static and the dynamic
presentation methods. In both diagrams, the scaling curves for five of seven subjects are
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shown as colored lines. The average scaling values are shown as black lines together with a
dashed black line that represents the fit of these averaged values with a power. The data from
two of the seven subjects were excluded, since they produced quite extreme, partially
nonmonotonic scaling curves whose shapes were either hard to fit with a power function
or whose exponents were far from the general trend (for instance, one subject’s data for the
static condition had an exponent of 0.187 while the exponent of the other subject was 3.136).
The scaling values were calculated with the MLDS package for R provided by Knoblauch
and Maloney (2008). Note that in Figure 9, only the course of the curves between the static
and the dynamic condition can be compared. The MLDS procedure does not provide
information about absolute values, and all curves are therefore normalized to a values
range from 0 to 1. A direct comparison of the relative strengths of perceived luster
between the different conditions is the subject of Experiment 3.

A comparison of the two diagrams in Figure 9 indicates that the two presentation methods
lead to scaling curves that differ only slightly with respect to the exponent of the fitted power
functions (a Wilcoxon signed-rank test performed on the two related sets of individual
exponents revealed a nonsignificant difference with p¼ .59). For static presentation,
the fitted average curve is slightly closer to a linear function (with an exponent of 0.77)
than the one with dynamic presentation (with an exponent of 0.689). The ranges of the
exponents of the individual fit functions are also comparable between the presentation

Figure 8. Screenshot of the center area of our display during the second experiment showing a static

stimulus quadruple. The two pairs of stereoscopic stimuli that had to be compared by the subjects are

displayed one above the other. The two stimuli of each pair are presented side-by-side in the fused percept

(for instance, the leftmost patch in the top row represents the left half-image of Stimulus A while the third

patch in this row represents its corresponding right half image; accordingly, the second and the forth patches

represent the left and right half-images of Stimulus B, respectively). The subjects made their decision by using

the arrow keys of the keyboard, whereafter the selected pair was marked with a rectangular frame.
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methods (between 0.549 and 1.258 for static presentation and between 0.41 and 1.232 for the
counter-modulation stimuli).

However, despite these similarities in the scaling data, the reports of the subjects suggest
some fundamental differences with respect to the stability of perceived luster between the
static and the dynamic presentation method. Most of the subjects (five of the seven subjects
that originally took part in the experiment) noted that with static stimuli, they experienced
strong binocular rivalry, that is, the differently colored center patches of the two monocular
half-images seem to compete for perceptual dominance in the fused percept (see Blake &
Logothetis, 2002). The dynamic stimuli, in contrast, were generally experienced as stable and
easy to fuse, despite the fact that the lustrous impression only occurred during the brief
counter-modulation phase of 150ms (see Figures 2 and 6(b)). Only two of the subjects felt
somewhat irritated by the flashing character of these stimuli.

Discussion

The scaling data obtained with the two different presentation methods show that the
perceived luster induced by both types of stimuli depends in a similar way on the contrast
between the centers of both half-images. This observation suggests a similarity in the
responsible processes. It is at present unclear, how the interfering effect of binocular
rivalry, which is only found with statically presented stimuli, should be interpreted. It
could be an independent process specific for static stimuli that is not directly related to the
perception of luster. Alternatively, it may point to more fundamental differences between the
processes responsible for the impression of luster in static and dynamic stimuli.

Another reason for the lack of binocular rivalry in our counter-modulation stimuli could
be that there are different integration times for luster and rivalry: In the dynamic stimuli, the
lustrous impression only occurs during a small time period within each 600ms lasting cycle
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which is located between the peaks of the two monocular temporal color functions (Mausfeld
et al., 2014, see the shaded area in Figure 2). In the present study, this time interval was
150ms which seems sufficient to evoke the impression of luster (Formankiewicz & Mollon,
2009; Ludwig, Pieper, & Lachnit, 2007). However, for binocular rivalry to come to
awareness, which is characterized by an alternating perception of the two different
monocular inputs, this interval of 150ms might be too short (Blake & Logothetis, 2002).

Following the suggestions of one of the reviewers, we tried out a different kind of
temporal color function without a temporal offset between counter-modulation phases
(i.e., the stimulus comprised a seamless sequence of counter-modulation phases). Instead
of Gaussians, we used sinusoidal functions with a wavelength of 300ms which were
presented in antiphase to the two eyes. As an informal result, we actually found that
compared with our original counter-modulation stimuli, the new version appeared a
slightly more unsteady while the lustrous impression seemed to be unaffected. Compared
with the static stimuli, though, the degree of binocular rivalry was rather marginal. However,
there is another aspect in our counter-modulation stimuli that differs from the static ones and
that may also have contributed to the greater stability of the dynamic stimuli: Even within the
150-ms time interval of counter modulation, the binocular color contrast is not constant but
varies continuously from maximum to zero (at the crossing point between the two monocular
color functions) to maximum with swapped colors between eyes (see Figure 6(b)).

Experiment 3—Determining the Strength of Perceived Luster

In Experiment 3, we used a matching task to compare the relative strength of perceived luster
in static and dynamic stimuli under comparable conditions. The comparison was done
indirectly, by matching both the static and dynamic test stimuli for each of several context
conditions by an adjustable stimulus (‘‘comparison stimulus’’) presented in a fixed reference
condition.

The context conditions included two of the five color conditions already used in
Experiment 1, namely, the mixed r condition (as a representative of the three conditions
that include luminance variations) and the equiluminant r condition (as a representative of
the two equiluminant conditions). For both color conditions, all three background conditions
were tested (i.e., ‘‘incremental,’’ ‘‘decremental,’’ and ‘‘in-between’’). The binocular color
contrasts in the test stimulus were varied in three steps by setting c to 0.6, 0.75, or 0.9,
with the lowest value of 0.6 being approximately equal to the highest contrast value for
the absolute threshold for luster found in Experiment 1 under the chosen conditions (see
Figure 7). This resulted in 36 different stimuli (2 Presentation Modes� 2 Color
Conditions� 3 Background Conditions� 3 Binocular Color Contrasts). The setting for
each stimulus was repeated four times. The total set of 144 trials was presented in random
order during the experiment.

The dynamic comparison stimulus was presented in the achromatic color condition and
the in-between background condition, because in Experiment 1, this was the combination of
conditions for which the lowest absolute threshold for luster was found. We therefore
expected this combination to allow the largest possible variation in the strength of
perceived luster.

During each trial, the test and the comparison stimulus were displayed simultaneously,
one above the other. Because the backgrounds of the test and comparison stimuli may be of
different color, the entire screen was split in halves along the vertical axis. We balanced the
vertical position of the test and the comparison stimulus such that in half of the trials, the test
stimulus was presented in the top half while the comparison stimulus was shown in the
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bottom half and vice versa. The center patches of the two stimuli were presented with a
vertical center-to-center distance of 12.89� of visual angle.

The subjects were asked to match the perceived luster in the test and the comparison
stimulus as closely as possible by adjusting the binocular luminance contrast in the
comparison stimulus with the left and right arrow keys. The results of Experiment 2 were
used to establish an approximately equidistant luster scale for the comparison stimulus. To
this end, the original contrast values were transformed by a power function with exponent 1/
0.76 (see Experiment 2). If a given test stimulus did not evoke a lustrous impression at all, the
subjects should indicate this by pressing a corresponding key. Once the subjects completed a
trial, they confirmed their settings with the return key. The next trial started after a dark
adaptation period of 3 seconds. The start value for the binocular luminance contrast of the
comparison stimulus was chosen randomly from the interval [0, 1] in each trial. As in
Experiments 1 and 2, the subjects had to complete a set of five example stimuli under the
supervision of the instructor before the experiment was started.

Results

Figure 10 shows the results obtained in the two color conditions (rows) and the two
presentation methods (columns). In each diagram, the mean settings of the contrast values
in the comparison stimulus are plotted against the contrast values in the test stimuli for all
three different background conditions (lines in each diagram). Each data point represents the
average settings of the seven subjects in test stimuli that they had judged as lustrous. The
relative proportions of test stimuli that were classified as lustrous are shown by the size of the
colored disk segments within a data point.

In general, the results confirm the trends we found in Experiment 1 (see Figure 7). A look
at the relative proportions of test stimuli classified as lustrous suggests that lustrous
appearances were only reliably evoked under the conditions in which luminance variations
were present (mixed r, see bottom row in Figure 10): In all background conditions with
dynamic stimuli and in the ‘‘in-between’’ condition with static stimuli, more than 95% of
the cases were judged to evoke perceptual luster (note that six of the seven subjects actually
had a rate of 100% for these four conditions, the remaining subject again reported strong
rivalry effects with the static stimuli). This indicates that the contrast polarities between
center and surround had a strong influence on perceived luster in static but not in
dynamic stimuli (compare the corresponding diagram in Figure 7). While on average, the
subjects judged 96.4% of the static stimuli to be lustrous when they had reversed contrast
polarities (i.e., in ‘‘in-between’’ background condition), this proportion dropped slightly to
an average value of 91.7% in the incremental condition and dropped to an average value of
only 5.95% in the decremental condition.

With respect to the strength of the perceived luster in the mixed r conditions, a clear
pattern can be seen: For each test contrast, the strength was maximal for stimuli with
reversed contrast polarities (‘‘in-between’’ background condition, see the mid gray curves
in the bottom diagrams of Figure 10), clearly lower for the incremental background
condition, and the weakest impressions of luster were always found in the decremental
background condition. Due to the large number of low cell frequencies in the static
case under the decremental background condition (bottom left diagram in Figure 10), we
calculated a two-way ANOVA separately for the static and the dynamic case with the factors
‘‘background condition’’ and ‘‘test contrast,’’ where in the static case, the background level
‘‘decremental’’ was omitted. For both presentation methods, we found significant main
effects for the factor ‘‘background’’ (in the dynamic case, F(2, 243)¼ 103.86, p< .001; in
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the static case, F(1, 156)¼ 71.99, p< .001) and the factor ‘‘test contrast’’ (in the dynamic case,
F(2, 243)¼ 27.24, p< .001; in the static case, F(2, 156)¼ 7.59, p< .001). A Bonferroni post
hoc test revealed significant differences between all levels of the factor ‘‘background’’ both
between the three levels of the dynamic and between the two levels of the static presentation
method.

Although the curves show the same order for the two presentation methods, they clearly
differ in their absolute values: Under static presentation, the average contrast settings were
considerably lower than for their dynamic counterparts (compare the corresponding curves
between the two bottom diagrams in Figure 10). This is particularly true for the settings
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Figure 10. Mean contrast settings of the comparison stimulus across all seven subjects plotted against the

contrast values of the test stimuli for all three background conditions. The rows contain the plots for the two

different color conditions, the columns for the two presentation methods. The error bars represent� SEM.
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under the decremental background condition (dark gray curves in the respective diagrams
in Figure 10), where in the static case, the stimuli even did not appear lustrous at all in
94% of the cases (79 out of 84 stimuli). We performed a three-way ANOVA on the
combined sets of static and dynamic data of the mixed r color condition with the factors
‘‘presentation method,’’ ‘‘background,’’ and ‘‘test contrast,’’ again with the background
level ‘‘decremental’’ excluded. We found significant main effects for all factors: for the
presentation method with F(2, 314)¼ 22.09, p< .001, for the background with
F(2, 314)¼ 170.48, p< .001, and for the test contrast with F(2, 314)¼ 24.12, p< .001.

In the equiluminant color conditions (top row in Figure 10), rather high proportions of
lustrous appearances were observed in the in-between background condition with both static
(83%) and dynamic (92.9%) presentation. For the two remaining background conditions
with consistent contrast polarities, these proportions were considerably lower. For the static
presentation method, the proportions of luster classifications were 25.0% and 35.7% (top left
diagram in Figure 10) and for the dynamic stimuli 46.4% and 53.6% (top right diagram in
Figure 10). However, the strength of perceived luster was generally very low for all
equiluminant stimuli, and there was no clear dependence of the contrast settings on the
background condition or even on the contrast value of the test stimulus.

Discussion

The strong effect of the background conditions on the strength of perceived luster in dynamic
stimuli (bottom right diagram in Figure 10) suggests that spatial contrast information also play
a role in counter-modulation stimuli. If one assumes—as it is done in the Oppel-Helmholtz
approach—that the visual system interprets the background as a diffusely reflecting part of the
surface and the center as highlight, then the only physically plausible center-surround
configuration is one in which both center patches are brighter than the surround. This could
explain why the lustrous impressions under the ‘‘incremental’’ condition were stronger than in
the ‘‘decremental’’ background condition. The fact, however, that the lustrous impressions were
strongest under the ‘‘in-between’’ background condition is not compatible with this reasoning.

A possible solution to this inconsistency could be that an independent effect based on
contrast polarity makes an additional contribution to perceived luster. This may also explain
some of the findings in the equiluminant color condition, that is, a condition that was
considered the least physically plausible one with respect to gloss, where also comparatively
high proportions of luster classifications were found in the in-between conditions.

The results in the static presentation condition (left column in Figure 10) indicate that the
perceived luster observed with these stimuli cannot be exclusively attributed to a mechanism
that simply responds to any kind of a neuronal conflict, because one would then expect that
the equiluminant and the mixed condition would lead to effects of similar strength in the in-
between condition. This is clearly not the case. To explain the observed difference, one needs
to additionally assume that the responsible mechanism is more responsive to conflicting
luminance information rather than to other channel-wise conflicts.

Rather high proportions of the static stimuli with luminance variations were judged as
lustrous in the incremental condition which does not produce any neuronal conflict in
terms of reversed contrast polarities. This is not in line with the assumption that perceived
luster depends solely on such conflicts. This suggests that even in the static case, contrast
polarity is not the sole cause of perceived luster. It seems possible that physical plausibility
plays also a role.

Also the fact that the lustrous impression was stronger under dynamic presentation
compared with the static stimuli (at least when luminance variations were present, see the
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bottom diagrams in Figure 10) might be somewhat surprising: Due to the construction of the
counter-modulation stimuli, the binocular color contrast was considerably lower at any point
in time during the presentation compared with that of their static counterparts. While in the
static case, this contrast had a constant magnitude, it varied over time in the counter-
modulation stimuli, ranging between 0% and about 70% of the magnitude of the
corresponding static stimuli (see the difference between the two curves in Figures 2 and
6(b)). From the perspective of a low-level mechanism that is based on interocular color
differences (see, for instance, Formankiewicz & Mollon, 2009; Malkoc & Kingdom, 2012),
one would generally assume a monotonic relationship between this interocular contrast and
the magnitude of the lustrous response—which is what we have found in Experiment 2
(see Figure 9). Therefore, one would expect stronger responses in the static case. If, on the
other hand, one considers the results of studies on the perception of surface gloss, it is a well-
established finding that dynamic stimuli, for example, rotating objects under a fixed
illumination are perceived as considerably glossier than static objects (Doerschner, et al.,
2011; Hartung & Kersten, 2002; Sakano & Ando, 2010; Wendt & Faul, 2018).

General Discussion

In this study, we investigated stereoscopic luster, that is, the phenomenon that certain pairs of
simple two-dimensional stimuli that are used as half-images in a stereoscopic presentation
can evoke a vivid impression of luster. The classic stimulus used to demonstrate this effect
comprises a pair of fixed achromatic center-surround stimuli that only differ in the luminance
of the center. For this type of stimulus, Anstis (2000) provided evidence in favor of a low-
level explanation of the luster that is perceived in the center region: The observation that the
effect did only occur when the luminances of the centers have a different contrast polarity
with respect to the common surround luminance, led him to conclude that the lustrous
impression is a side effect of the inability of the visual system to combine incremental and
decremental contrast information.

Our investigation was mainly motivated by recent findings obtained with a dynamic
variant of the classic stimulus, where the luminances of the two central patches are not
static, but vary systematically with time (Mausfeld et al., 2014). The fact that with this
stimulus luster was also seen without different contrast polarities challenged the low-level
explanation. The reported finding instead provided evidence for the hypothesis that the
perceived luster is the result of an interpretation of this stimulus as a dynamic, motion-
induced cue for glossiness.

To investigate whether the mechanism underlying the effects observed with these types of
stimuli are similar or different, we directly compared the perceived luster elicited by the classical
static stimulus and the dynamic stimulus under comparable conditions. We varied the contrast
relations of the central patches to the surround and the plausibility of an interpretation of the
central patch as a highlight of a glossy surface, that is, stimulus properties, which play an
important role in the low-level and the more high-level explanation, respectively.

The results obtained in three experiments are not as clear-cut as we expected. We indeed
found evidence that supports the assumption that the perceived luster caused by static and
dynamic stimuli are different phenomena that rely on different mechanisms, which seem to
some extent compatible with the explanations proposed by Anstis (2000) and Mausfeld et al.
(2014), respectively. However, the perceived luster in both types of stimuli was also partially
affected by the kind of information that according to the proposed explanations should
predominantly determine the effect in the other type. As a consequence, the result pattern
obtained for both types of stimuli in all the experiments also show many similarities.
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A common finding for both types of stimuli was that strong perceived luster does only
occur in stimuli containing variations in luminance. This is in line with expectations derived
from an interpretation in terms of a physical gloss situation. For the classical stimulus
configuration, this finding suggests that a simple reversal of contrast polarities between the
two monocular half-images is in itself not sufficient to generate strong percepts of luster.
Apparently, the underlying mechanism is restricted to conflicts in the luminance channel and
does not generalize to conflicts in cone-excitations. It might also be that this asymmetry is due
to the fact that the absolute contrasts in our equiluminant stimuli were considerably weaker
than those realized in stimuli that varied in luminance (see Table 1). However, Jung et al.
(2013) found that purely chromatic stimuli were generally less able to produce gloss
impressions than stimuli containing luminance variations, even if chromatic and luminance
contrasts were made equally strong perceptually.

In support of the neuronal conflict explanation for the classical phenomenon of
stereoscopic luster, we found that static stimuli without reversed contrast polarities were
characterized by (a) comparatively high absolute contrast thresholds for perceived luster
(Experiment 1), (b) a strongly reduced strength of perceived luster (Experiment 3), and (c)
low proportions of classifications as lustrous (Experiments 1 and 3). However, there was one
interesting exception from this rule: Stimuli with luminance variations, in which both
monocular half-images were incremental relative to the background, were perceived as
fairly lustrous. Since these two stimulus features are in line with physical regularities in
ecological gloss situations, this could indicate that the underlying mechanism of the visual
system combines different kinds of information rather than exclusively respond to conflicting
contrast information.

The findings with dynamic stimuli in general differed considerably from the results
obtained with static stimuli: Dynamic stimuli with luminance variations reliably evoked
perceived luster at very low contrast thresholds in almost 100% of the trials, independent
from spatial contrast information. Furthermore, the perceived luster appeared considerably
steadier than that obtained with the static stimuli. This is indicated by the reports of the
subjects, who often experienced binocular rivalry with static stimuli but not with dynamic
stimuli. The matching experiment (Experiment 3) revealed that the strength of the perceived
luster actually depends on spatial contrast information: In agreement with expectations
derived from physical regularities found in glossy materials, the spatially incremental
stimuli produced slightly stronger lustrous impressions than spatially decremental stimuli.
But, contrary to what one would expect from this functional perspective, the strength of
perceived luster was even higher when reversed contrast polarities were involved. This finding
suggests that the mechanism responsible for luster in dynamic stimuli takes the compatibility
with the physical regularities of ecological gloss situations into account but is not immune
from low-level effects from neuronal conflicts.

In summary, we actually found systematic differences between the static and dynamic
version of stereoscopic luster. However, the assumption that the luster evoked by static
stimuli can be explained by a low-level process and the luster evoked in dynamic stimuli
by a more high-level process referring to physical regularities in glossy materials seems too
simple. Although these two explanations actually account for more aspects of the data in the
situation for which they were proposed, there are also observations that do not fit. A possible
solution for this finding could be that both processes are involved in each stimulus situation,
but that the weight with which they contribute to perceived luster differs.

It would be interesting to see whether investigations from the field of brain research could
throw some more light on this matter. Assuming that the classical phenomenon of stereoscopic
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luster results from a conflict at an early physiological level while counter modulation might be a
regular cue in the perception of surface gloss, one may expect different brain regions along the
visual pathway to be involved in the processing of the two stimuli. Using imaging techniques,
researchers have already identified a number of cortical areas that seem to be related to the
perception of glossy objects which include regions in V2, V3, V4, VO-1, VO-2, CoS, LO-1, and
V3A/B (Wada, Sakano, & Ando, 2014) as well as in V3B/KO and in the posterior fusiform
sulcus (Sun, Ban, Di Luca, & Welchman, 2015).

It is also possible that differences in the visual processing already take place at an early
physiological level, where the two monocular signals are combined into different types of
binocular channels (Henriksen & Read, 2016; Kingdom, 2012). There is a growing body of
studies dealing with the detection of interocular differences in color or luminance
(Formankiewicz & Mollon, 2009; Jennings & Kingdom, 2016; Malkoc & Kingdom, 2012;
Meese, Georgeson, & Baker, 2006), some of them indicating that the underlying mechanisms
are located at this level (Georgeson et al., 2016; Kingdom, Jennings, & Georgeson, 2018).
In this context, phenomena as binocular luster and binocular rivalry, which could be
different responses of the same mechanism, serve as cues signaling the presence of
interocular differences (Georgeson et al., 2016; Jennings & Kingdom, 2016; Malkoc &
Kingdom, 2012). From this view, it would not be necessary to assume different
mechanisms for the joint occurrence of luster and rivalry, as it was found in the present
study exclusively with static stimuli. One may rather ask whether the absence of binocular
rivalry in our counter-modulation stimuli can be taken as an indication that such dynamic
signals are processed in a different mechanism. However, as we have already pointed out
in the discussion section of Experiment 2, our static and dynamic stimuli are hard to
compare in this regard, since in the counter-modulation stimuli, the interocular color
differences varied considerably over time, which may have contributed to a better fusion.
The finding, however, that the counter-modulation stimuli were generally perceived as more
lustrous compared with their static counterparts (see Figure 10), although—locally—they
were characterized by considerably lower interocular color differences, seems to challenge the
idea of a common mechanism that is based on such interocular differences in color or
luminance.

It is also currently unclear whether the processing of different subtypes of stimuli takes
place in a common or separate mechanism, namely, the processing of stimuli that are
characterized by consistent or reversed contrast polarities between eyes. Whenever we
referred to a conflict in the present context, we meant a conflict in terms of contrast
polarities and our results do indeed suggest that the binocular combination of increments
and decrements produces extraordinarily strong lustrous appearances (see Anstis, 2000).
However, we also found noticeable lustrous responses with stimuli that comprised equal
contrast polarities, especially with purely incremental stimuli, where a conflict only occurs
with regard to the size but not to the sign of the contrasts (see also Formankiewicz & Mollon,
2009; Sheedy & Stocker, 1984). Recently, Georgeson et al. (2016) have proposed a model that
takes different forms of binocular contrast discrimination into account, where binocular
luster—as a cue for an interocular contrast difference—appears as one of the model
components. In its current incarnation, this model predicts lustrous responses exclusively
for stimuli with opposite contrast polarities. Our present findings, however, suggest that
for a more complete model, that is, a model that represents a common mechanism, both
forms of conflict would have to be integrated: While moderate lustrous impressions can
already be elicited by an interocular color difference alone, this response will be boosted
when in addition reversed contrast polarities are involved.
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