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Colorectal cancer (CRC) is a malignant growth, known as
polyp, located on the inner lining of the large intestine,

which is constituted by the colon and rectum. Its development
begins when cells start growing continuously, modifying their
shape, size, and other related characteristics.1 This can lead to
cancer over time, and it can be presented in two ways, as
adenomatous polyps (adenomas), which are able to turn into
cancer, and as inflammatory or hyperplastic polyps, which are
more frequent and in general are not precancerous.2

In 2020, colorectal cancer represented the cancer with the
third highest incidence worldwide, after breast and lung cancer,
estimating more than 1.9 million new cases, and ranked in
second place in terms of mortality with a total of 935 173
deaths according to the Global Cancer Observatory
GLOBOCAN 2020.3−5 The most important predictor of

CRC survival is its stage at diagnosis: if an early diagnosis of
colon cancer can be provided, a relative 5-year survival rate has
been proven to be around 90% for patients diagnosed with
localized-stage disease, declining to approximately 71% and
14% for those diagnosed with regional and distant stages,
respectively.1 Therefore, preventive CRC screening tests are
generally recommended to be carried out in the population
over 50 years old due to a higher risk of enduring this disease
over this age.
Currently, other causes that can lead to the development of

these tumors are related to unhealthy lifestyle habits such as
being overweight or obese, smoking, intaking processed meat,
having a sedentary lifestyle, and excessively consuming alcohol.
In addition to these factors, some others that do not depend
on the individual can be classified into the following categories:
(1) having a predisposition to diseases and conditions such as
the presence of polyps in the colon and/or rectum and
inflammatory diseases such as Crohn’s disease and ulcerative
colitis, (2) having previously suffered from colorectal cancer,
which increases the risk of subsequent cancer, and (3) having
genetic factors, such as Lynch syndrome and familial
adenomatous polyposis (FAP), or family factors, since the
incidence has been shown to be higher in those with relatives
who have developed colorectal cancer.6

Nowadays, the detection of cancerous polyps is carried out
by visual analysis of the structure of the colon and rectum with
colonoscopy and sigmoidoscopy being the first and the most
widely used techniques with the highest sensitivity and
detection rate of this kind of pathology. However, colonoscopy
procedures have the clear disadvantage of being highly
invasive, a fact that implies an increase of certain risks, such
as intraperitoneal or extraperitoneal perforation of the colon,
along with the requirement of a tedious and not pleasant
preparation process prior to the procedure as well as possible
anxiety effects.7−9 For this reason, noninvasive techniques
included in the “omics” sciences, such as genomics,
proteomics, transcriptomics, or metabolomics, are in full
swing in the field of biotechnology, contributing in a

Special Issue: Fundamental and Applied Reviews in
Analytical Chemistry 2022

Published: November 22, 2021

Reviewpubs.acs.org/ac

© 2021 The Authors. Published by
American Chemical Society

417
https://doi.org/10.1021/acs.analchem.1c04360

Anal. Chem. 2022, 94, 417−430

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ana+M.+Salmero%CC%81n"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ana+I.+Trista%CC%81n"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ana+C.+Abreu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ignacio+Ferna%CC%81ndez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.analchem.1c04360&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c04360?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c04360?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c04360?goto=recommendations&?ref=pdf
https://pubs.acs.org/toc/ancham/94/1?ref=pdf
https://pubs.acs.org/toc/ancham/94/1?ref=pdf
https://pubs.acs.org/toc/ancham/94/1?ref=pdf
https://pubs.acs.org/toc/ancham/94/1?ref=pdf
https://pubs.acs.org/toc/ancham/94/1?ref=pdf
https://pubs.acs.org/toc/ancham/94/1?ref=pdf
https://pubs.acs.org/toc/ancham/94/1?ref=pdf
pubs.acs.org/ac?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.analchem.1c04360?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/ac?ref=pdf
https://pubs.acs.org/ac?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


fundamental way to the understanding and prediction of basic
biological issues such as cancer diseases.10,11 Multiple omics
approaches, either alone or in combination, can be applied to
explore the heterogeneity of a certain disease and even in a
patient’s response to treatment.
Clinical metabolomics aims to identify small molecule

metabolites present in patient-derived samples and has
attracted much attention to support the discovery of novel
biomarkers, which can assess not only the choice of the best
treatment for each patient but also the ideal personalized dose
regimen. Clinical biomarkers can be dynamic and static. The
first ones are commonly employed in patient care and for
treatment assessment since they help to define disease
progression and the patient's response to the treatment. Static
biomarkers are prognostic and aim to predict the clinical
response and typically reflect aspects of the physiological state
of a patient related to drug treatment response or disease
progression dynamics.12 Overall, metabolomics is involved in a
range of clinical applications, including the identification of
diagnostic biomarkers of certain diseases, the elucidation of
illness mechanisms, the discovery of novel drug targets, and the
prediction of treatment reactions. Along with the response of
patients to therapies, it is relevant to be able to create more
personalized options, contributing to precision medicine. Thus,
pharmacometabolomic studies are showing promising results
for predicting drug efficacy and toxicity.13 Metabolomics
supports the relevance of viewing each individual as a different
combination of biochemical, physiological, and environmental
interactions.14

We perform herein a review of the published investigations
dedicated to the research of the metabolic changes produced in
blood serum samples of patients with colorectal cancer, mainly
involving nuclear magnetic resonance (NMR) alone and/or in
combination with other analytical platforms, with the aim of
providing a cutting-edge list of potential biomarkers of this
disease. Due to the scarce contributions in the most recent
years that dealt with the main topic of this Review, the covered
time period consisted of 12 years from July 2009 up to June
2021. This Review is also intended to adequately summarize
some of the advances made in the subject and to provide a
generic application guide for future studies. Some important
considerations on how to perform a NMR-based metabolomics
project in a clinical setting are also given. Moreover, a brief
section mentioning additional NMR-based metabolomics
studies on other biological matrices different from serum,
such as urine or feces, were included in order to demonstrate
the potential and versatility of this technique.

■ METABOLOMICS UNDERGOING NMR IN CLINICAL
STUDIES

Omic sciences attempt to comprehensively study and interpret
the complex interactions between molecules in biological
systems. As technological advances progress, omic sciences are
becoming more notable in the clinical setting,15 allowing the
development of earlier personalized diagnoses to patients and
in some instances preventing the progress of the disease.16

Metabolomics allows one to obtain a picture of the final
state of an organism, offering current information on cellular
activity.17 Until recently, metabolomics has been applied less
broadly than other omics, and it has sometimes been referred
to as a “complementary analysis” to the rest of them.18 This is
the case for many reasons: high subject-to-subject and
intrasubject variability, a limited number of annotated

metabolites, dependence on the use of complex and usually
expensive analytical platforms, and the fact that interpretation
of the results requires a special combination of technical,
statistical, and biological or physiological knowledge.12,19,20

Although having controversial factors, this omic science has
emerged in recent years as a powerful tool in the search for
potential biomarkers associated with diseases,21 such as
colorectal cancer,22,23 and as a source of classification and/or
prediction models. Some of the main advantages of this
discipline are listed herein: (1) it allows to obtain a
significantly smaller data set in comparison to other omics,
simplifying data processing; (2) the obtained data (profile of
metabolites) is able to faithfully reflect multiple aspects of
cellular physiology and the current status of the organisms; (3)
the identification and quantification of these metabolites are
reliable and reproducible and allow one to correlate the
fluctuations on their concentration levels and metabolic fluxes
with phenotype information.24,25

Metabolomics studies are supported by different high-
resolution analytical platforms, such as mass spectrometry
(MS) hyphenated to separation methods such as gas (GC) or
liquid (LC) chromatography and of course NMR,26 enabling
to reach the set of metabolites involved in several cellular
processes in a certain biological system. NMR is one of the
most widely used techniques and is presented as a robust and
versatile platform that performs the measurement, identifica-
tion, and quantification of a large number of metabolites, even
in complex mixtures, in a reliable and repetitive way. It
simultaneously provides quantitative and, when needed,
structural information. In recent years, it has achieved a drastic
gain in sensitivity (signal-to-noise ratio) thanks to the use of
cryogenically cooled NMR probes, the so-called cryoprobes.
NMR has been demonstrated to overcome many of the
disadvantages of other analytical techniques, for instance: (1) it
performs a nondestructive and noninvasive analysis of the
sample, (2) it does not require a previous separation or
derivatization step, (3) it does not depend on the ionization of
the analytes, (4) there is no need to use a mass analyzer since
there is no dependence on the mass-to-charge ratio (m/z),27,28

(5) it has no matrix effect, and (6) the quantification of the
metabolites does not rely on calibration curves to quantify the
concentration and recovery because only one internal standard
is usually added for quantification purposes.29−31

Routine “omic” NMR spectroscopy suffers from several
drawbacks, but probably, the most important one is the fact
that 1H NMR complex spectra may be inevitably crowded,
which hampers the identification and quantification of
metabolites.32 Nevertheless, there are strategies that overcome
signal overlap, which can be obtained by spreading the
resonances in a second dimension using 2D NMR spectros-
copy or by applying specific filters, such as Carr-Purcell-
Meiboon-Gill (CPMG) or diffusion modules.33,34 This and
other important considerations will be briefly detailed in the
next section.

■ SETTING A NMR-BASED CLINICAL
METABOLOMICS STUDY

NMR metabolomics has fully expanded the understanding of
cellular and physiological metabolism, helping researchers to
identify multiple unexpected biochemical associations in
different conditions and diseases, for example, in cancer,35−37

autism,38,39 infertility,40,41 major depression disorder,42,43

anorexia nervosa,44,45 etc. Since metabolite levels within an
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individual vary over time, in order to obtain the most
satisfactory results and to detect associations with a disease,
clinical metabolomics studies must attend some specific
considerations for controlling and decreasing within-individual
and technical variability through an adequate study design.
Commonly, NMR-based metabolomics studies employ well-

known biofluids collected from the patients with the most
common being blood serum or urine, where the location of the
main peaks and the compositions are already almost
established. Some other fluids include cerebrospinal fluid,
bile, eye humor, and saliva. Also, tissue extracts are being
extensively studied although they eventually give worse results
than those from intact tissues directly based on the fact that
metabolic changes are usually more concentrated in the tissue
itself.30,46

In a metabolomics study, the experiment design and
sampling method are of utmost importance and must be
accurately defined. There are some patient-specific factors that
may affect interindividual variation, such as gender, age,
weight, or lifestyle, so appropriate selection criteria of the
individuals must be applied.25 Furthermore, when the aim of
the research is the discovery of biomarkers for case-control
situations, it can lead to inappropriate oversimplifications,

contributing to the presence of intra- and interindividual
variability in metabolic signatures. For this reason, the
collection of repeated samples in triplicate is of great
relevance.12 Other important factors that may be taken into
consideration in a metabolomics study involve the sample
storage, sampling size, and time.12 Regarding the former, an
adequate temperature for clinical samples, which is −80 °C, is
required, allowing the steadiness of the metabolome at least for
6 months.47,48

In this section, we describe some relevant aspects to take
into consideration when developing a NMR-based metab-
olomics project in a clinical setting to allow for the
optimization of the process.

NMR Data Acquisition. When measuring biological
samples by NMR, it is frequently necessary to perform the
suppression of water, especially in body fluids, since they
usually present a substantial difference in water concentration
regarding their own metabolites. Therefore, experiments such
as the presaturation of the solvent signal employing a
continuous wave pulse are generally performed. For instance,
1D-NOESY PRESAT, in combination with the presaturation
module, introduces a 90° triple pulse sequence that effectively
eliminates such signals without causing increased distortions in

Figure 1. Basic steps of a NMR-based metabolomics study through the fingerprinting method: (A) baseline correction, phase correction, and
calibration to the reference, which is usually placed at 0 ppm, (B) NMR spectra normalization to total intensity, (C) bucketing of the spectral data,
obtaining a data matrix, which can be subjected to scaling and centering, (D) statistical data analysis, distinguishing between multivariate and
univariate approaches, and (E) the analysis of disturbed metabolic routes.
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adjacent signals.49 Also, other methods such as excitation
sculpting or WATERGATE solvent suppression are occasion-
ally employed.50

Furthermore, it may also become necessary to ensure the
elimination of signals based on molecular weight for which the
so-called diffusion filters are used.49 Those employ a
combination of radiofrequency pulses and magnetic field
gradients, whether monopolar or bipolar, that manages to
attenuate signals of smaller molecules, usually those from the
solvent employed, although they evidence a disadvantage: the
rest of the metabolites also suffer attenuation in their signals to
a greater or lesser extent depending on their size. Transverse
relaxation time (T2) filters such as CPMG are also applied,
which constitutes the most employed sequence in the study of
serum samples51 and eliminates signals with a small T2 that are
usually associated with systems with long correlation times
generally present in macromolecules such as proteins.52

The profiling process, which is in fact, the identification of
metabolites in one-dimensional NMR spectra, is carried out
through direct assignment using multiplicities and chemical
shifts with the help of databases such as the Human
Metabolome Database (HMDB), multiple tools available
such as the Chenomx software, and some packages available
for R such as BATMAN or ASICS. Thus, the confirmation of
the assignments is performed using different homonuclear
bidimensional spectra such as 1H,1H−COSY or 1H,1H-
TOCSY and heteronuclear spectra such as 1H,13C-HMQC,
1H,13C-HSQC, 1H,13C-HMBC, 1H,15N-HMQC/HMBC, and
1H,31P-HMQC/HMBC, where even more detailed information
on the structure of the metabolites is obtained.53,54

Metabolomics Analysis Strategy. Similarly to the rest of
the omic sciences, metabolomics studies require large numbers
of samples and generate a large amount of data, so reducing
their size is a special need in order to obtain a more adequate
and correct interpretation of the results. For this purpose,
chemometrics methods are employed.55 Chemometrics is the
discipline that combines mathematical and statistical proce-
dures to extract the most relevant information from the
experimental data set, thus improving the process of
interpretation and providing quality results.56,57 Nowadays,
chemometrics techniques are primarily used in chemistry for
signal processing, experimental designs, variable reduction,
data exploration, multivariate data analysis, and pattern
recognition.58,59

Metabolomics analyses, in global terms, can be divided
according to whether there is some type of prior knowledge
about the metabolites of interest or whether there is no
information about them.60 The first one, targeted metab-
olomics, focuses on the monitoring of previously selected
compounds based on known metabolic pathways or pays
attention to those biomarkers strongly associated with the
study condition. Thus, these metabolites must be appropriately
assigned and quantified in the samples. The second one drives
untargeted metabolomics analyses and therefore focuses on the
unbiased study of the spectral profile as a whole, considering
every single signal present in the sample.61 To do this, two
basic approaches can be utilized: (a) the fingerprinting and/or
(b) the profiling method.62,63 The former performs a rapid
evaluation of the total metabolites present in the spectra by
transforming them into data matrices using the bucketing
method (or binning), where small spectral regions or “buckets”
with a width between 0.02 and 0.04 ppm are taken and are
later used to carry out the pertinent statistical analyses and

perform classifications.64 The latter consists of studying the
entire spectrum using specific peak alignment algorithms and is
used to determine the concentrations of all quantifiable
metabolites in biological samples, providing useful information
from a biochemical point of view.65

The process of analysis through the fingerprinting method
follows a series of steps, which will be collected and briefly
discussed in the following sections: (1) NMR Spectral
Processing (Figure 1A−C), (2) Statistical Data Approaches
(Figure 1D), and (3) Pathway Analysis (Figure 1E).66

NMR Spectral Processing. Baseline Correction, Phase
Correction, and Calibration to Reference. This step involves
the transformation of the spectral data into their optimal
version for the subsequent statistical analysis. It includes the
following: checking for the absence of data; adjusting the
baseline; referencing the spectrum so that the signal from the
internal standard is located at the same chemical shift in all
spectra; multiplying the spectrum by functions that soften or
accentuate the spectral resolution; applying algorithms that
minimize fluctuation in the chemical shifts as a consequence of
variations in temperature; suppressing defective spectral
regions or areas where there are signal shifts, usually coming
from acidic groups or exchangeable protons.30,64

Normalization. In NMR analysis, identical sample volumes
are usually acquired to make all samples comparable with each
other. However, in the case of samples corresponding to
biofluids, there are multiple external variables that can affect
the concentration of metabolites, such as the hydration status
of each individual or even possible experimental inaccuracies
or technical errors.53,67 In order to obtain comparable volumes
and concentrations, a normalization step should be applied,
which manages the correction of these dilution or concen-
tration factors between samples. In metabolomics, a series of
methods are used although normalization is generally achieved
by considering the intensity of the total area of the spectrum68

and by dividing the values of the peak integration of the
buckets by the sum of all of them, so that the sum of all these
divisions must provide a value equal to unity.30,67,69,70

Bucketing. As mentioned before, the total of the
metabolites in the NMR spectra are assessed through their
transformation into data matrices constituted by minor spectral
areas (between 0.02 and 0.04 ppm of the width) called
“buckets”. Once the “buckets” table has been obtained, the
multivariate statistical analysis of the data is carried out. For
this, the purpose of the study must be kept in mind, which may
be (a) the visualization of the general differences between
samples, such as trends or correlations, (b) the detection of
statistical significant differences between groups, (c) the
highlight of spectral regions that contribute the most to the
observed differences, and/or (d) the construction of a
predictive model for the correct classification of new samples.64

After this step of bucketing, multivariate analysis techniques
are usually used to extract information from the data with the
aim of providing biological knowledge on the studied matter.71

This data analysis focus on the spectral profile and any
information on biological variation can overlap, so centering
through the mean of the data is a fairly common step, since it
enables to compensate for this problem, focusing on biological
variation and the possible differences and similarities between
the samples. However, those metabolites that are more
abundant in the samples will show higher values in the data
table, so they will end up contributing more to the model that
is generated later.69 In order to avoid this bias, scaling methods
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are employed. Among the different alternatives available, the
most used are (1) unit variance, which compares all
metabolites in order to their correlations, increasing its
measure error; (2) pareto scaling, which decreases the relative
importance of higher values, leaving the data structure
relatively complete; (3) range scaling, which compares all
metabolites in order to their biological response range; (4) vast
scaling, which focuses on metabolites with small fluctuations;
(5) level scaling, which focuses on the relative response.69,70,72

Statistical Data Approaches. The obtained “buckets”
table must be subsequently subjected to statistical data analysis
(Figure 1D) in order to obtain prospective information. For
this purpose, statistical methods such as multivariate or
univariate analysis can be implemented in metabolomics
investigations, offering both of them advantages and
disadvantages. Multivariate statistical methods are essential to
be incorporated into metabolomics research, since these are
able to correlate effects with patterns of metabolites.73 These
can explain classifications attributable to variations in biological
measurements and can create combinations of variables, called
components, by their correlations and inter-relationships.74

Multivariate analysis techniques are generally divided into
(a) unsupervised methods and (b) supervised methods.
Unsupervised methods are used to summarize, explore, and
discover natural groupings (clusters) of unlabeled data.75 Some
examples include principal component analysis (PCA), k-
means (KM), and partition around medoids (PAM).64 In
contrast, in supervised methods, a labeled set of training data is
employed to estimate or map the input data to the desired
output, resulting in a classification problem and allowing the
prediction of new (unlabeled) cases.76−78 Examples of
supervised methods include partial least squares discriminant
analysis (PLS-DA), orthogonal partial least squares discrim-

inant analysis (OPLS-DA), k-nearest neighbors (kNN), and
artificial neural network (ANN) techniques.79,80

Once applied, both unsupervised and supervised methods
must be correctly validated to avoid overfitting issues through
techniques such as cross-validation or bootstrapping. In
addition, there are methods such as the receiver operating
characteristic (ROC) curves, where the proportion of false
positives generated in the model is controlled via the area
under the curve (AUC).81 An AUC is a measure of the
accuracy of the diagnostic test in which a value of 1.0 indicates
a perfect test, whereas an AUC value of 0.5 shows the test is no
better than random chance, and therefore, it has no diagnostic
or prognostic value. It is important to mention that special
precaution must be taken to interpret AUCs obtained from a
small number of samples since they are inherently noisy.82

Occasionally, multivariate analysis techniques can ignore
important variables, as all metabolites are concurrently studied.
For this reason, univariate analysis is a critical phase in
metabolomics research, which can also assist in the
determination of those metabolites with the strongest response
under the investigated conditions. However, it is important to
highlight that this kind of analysis does not consider inter-
relationships between metabolites concentrations.74 In order to
find statistical significance in sample comparisons, methods
such as the Student’s t-tests or the Wilcoxon test are
commonly applied when comparing two groups, while the
analysis of the variance (ANOVA) or Kruskal−Wallis tests are
utilized when having more than two assemblies.83

In order to evaluate the possible misconceptions related to p
values and confidence intervals, Bonferroni and Bonferroni-
Holm and Sidak corrections can be applied to mitigate Type I
errors (related to the improper rejection of the null hypothesis,
such as a false positive),84 contributing to the control of the

Figure 2. Connectivity network visualization obtained by using the program VOSviewer selecting the co-occurrence option. The data set was
generated from Web of Science by introducing the keywords “metabolomics” or “metabonomics” and “colorectal cancer” or “colon cancer” or
“colorectum cancer”.
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general error proportion. Thus, the Benjamini-Hochberg
approach can be employed for the assessment of false
discovery rates in univariate analysis.64,74,85

Pathway Analysis. The final objective of the metabolo-
mics studies, illustrated in Figure 1E, is the correct
interpretation of the results obtained in the statistical analysis
by recognizing the up- and downregulated biomarkers and the
disturbed metabolic pathways that may be affected by the
condition/disease under study. There are multiple databases,
such as KEGG, Reactome, and MetaCyc, that list different
metabolic pathways and their involved metabolites. In
addition, there are also online tools that help with the analysis
and understanding of the data, such as MetaboAnalyst,86 which
examines the metabolites present in the biological matrix,
providing the possible involved pathways and, therefore,

helping in the assessment of the biological importance of the
results. In addition, to obtain a complete analysis and
knowledge of the subject, it is advisable to consult previous
publications that have been able to provide relevant
information on the subject in question.64,86

■ NMR ANALYSIS OF SERUM SAMPLES OBTAINED
FROM PATIENTS WITH COLORECTAL CANCER

The working data set constituting a total of 687 publications
was obtained from a Web of Science search87 in the Web of
Science Core Collection by introducing the keywords
“metabolomics” or “metabonomics” and “colorectal cancer”
or “colon cancer” or “colorectum cancer” and covering the
period from 2004 to October 2021. Figure 2 shows a network

Figure 3. Annual number of publications from 2004 to October 2021. The data set was generated from ISI Web of Science by introducing the
keywords “metabolomics” or “metabonomics” and “colorectal cancer” or “colon cancer” or “colorectum cancer” and “NMR” or “nuclear magnetic
resonance”.

Figure 4. Network of citations obtained by using the program CitNetExplorer. The data set was generated from Web of Science by introducing the
keywords “metabolomics” or “metabonomics” and “colorectal cancer” or “colon cancer” or “colorectum cancer” and “NMR” or “nuclear magnetic
resonance”.
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visualization of the most shared keywords provided by the
VOSviewer software88 when applied to this data set.
As it is observed, some clusters of words were established to

emphasize, for example, the relevance of multivariate analysis
techniques in the metabolomics research of CRC (through the
terms “curve”, “auc”, “roc”, “opls-da”, “pls-da”, “accuracy”,
“specificity”, “sensitivity”, “value”, “area”, and “test”), the
importance of NMR spectroscopy and mass spectrometry in
this topic (with the terms “NMR spectroscopy” and “flight
mass spectrometry”), and the description of some colorectal
cancer biomarkers and disturbed pathways reported by several
metabolomics studies of this disease (such as “glycolysis”,
“lactate”, “glutamate”, “glucose”, “arginine”, and “lipid
metabolism”).
When a second search is performed by introducing “NMR”

or “nuclear magnetic resonance” to the same previous
keywords, the resulting output was reduced to a set of 146
contributions published from 2004 to October 2021. The
following graphic illustrates a positive trend in which a
considerable increase in the number of publications on this
topic occurred starting in 2009. As previously discussed,
analytical techniques have progressed and improved over the
last years, especially NMR, which has increased its sensitivity
by up to a factor of 5 mostly due to the development of
cryoprobes, which have contributed to the development of
metabolomics as an increasingly applied field of research, as
the upward trend of Figure 3 reflects.
An analysis of some of these publications was further

performed using the CitNetExplorer software89 to obtain a
citation network including the articles, reviews, and book
chapters involved (Figure 4). As it could be observed, all of
these publications conjoin in the popular publication of 1956
by Warburg et al. ( marked in green)90 in which the Warburg
hypothesis, which explains the alleged root cause of cancer, was
formulated. The publications that employ serum samples for
the NMR-based metabolomics analysis of colorectal cancer,
which constitutes the main topic of the current review, appear
in orange, while the articles marked in blue are those focused
on the analysis of tissue, feces, and urine samples, some of
which will be also mentioned further below. A total of 10
contributions were obtained for the former case, including
Ludwig et al.,91 Backshall et al.,92 Bertini et al.,93 Farshidfar et
al.,94 Zamani et al.,95 Chen et al.,96 Deng et al.,97 Vahabi et
al.,98 Gu et al.,7 and Di Donato et al.99

Table 1 highlights some of the most important metab-
olomics investigations dedicated to the study of colorectal
cancer specifically in serum samples through NMR with the
general aim of obtaining biomarkers of this disease.
The study by Ludwig et al.91 employed multidimensional

2D-1H,1H-TOCSY NMR spectra for the metabolomics analysis
of 38 serum samples positive in colorectal cancer, 8 of them
also being confirmed in adenoma, and 19 control samples. The
application of PCA and PLS-DA models to NMR data allowed
them to conclude that the cancerous samples showed higher
levels of lactate, pyruvate, and ketone scaffolds (acetate,
acetoacetate, and 3-hydroxybutyrate) than the control ones. In
this work, they were able to significantly reduce the
measurement time of the 1H,1H-TOCSY spectra due to the
substitution of the Fourier transform by the Hadamard
transform, thus being able to deconvolute crowded NMR
spectra.91

In 2011, the team of Keun92 accomplished the first study to
report the capacity of 1H NMR metabonomics to predict

adverse effects and toxicity severity associated with the
administration of the chemotherapy medication capecitabine
in serum samples of patients with colorectal cancer. For this
purpose, a generated PLS-DA model was able to correlate the
presence of higher levels of polyunsaturated fatty acids and
choline phospholipids with higher grade toxicity over the
treatment period; however, this model did not reach
significance by cross-validation.92

Later, Bertini et al.93 employed 1H NMR to study the
metabolic profile of 153 samples of metastatic colorectal cancer
serum and 139 control samples with the aim of obtaining valid
biomarkers and predicting patient survival. First, they applied
PLS-DA for dimension reduction, followed by a canonical
analysis (CA) evaluation that revealed good discrimination and
a support vector machine (SVM) model for classification. In
this analysis, they observed lower and higher levels of 6
(alanine, citrate, leucine, pyruvate, tyrosine, valine) and 8 (3-
hydroxybutyrate, acetate, formate, glycerol, lipids, glycopro-
teins, phenylalanine, and proline) metabolites, respectively, in
metastatic colorectal cancer samples, leading to a possible
metabolic signature, which may offer an independent tool to
predict overall survival. In addition, they verified different
metabolic shifts between patients with shorter and longer
survivals.93

In the same year, Farshidfar et al.94 conducted research
employing GC-MS and 1H NMR with the aim of distinguish-
ing the stage of colorectal cancer in 42 serum samples of
patients with coloregional colorectal cancer (cancer stages II
and III), 45 samples of patients with liver-only metastases, and
25 samples of patients with extrahepatic metastases (cancer
stage IV in both cases). A PCA exploratory analysis followed
by an OPLS-DA model allowed them to differentiate serum
metabolic profiles of patients with metastases and between
metastases appearing in different organs.94

In 2014, Zamani et al.95 carried out a metabolomics study
using 1H NMR of 33 serum samples corresponding to a
positive group in colorectal cancer and 33 control samples with
the aim of obtaining a prediction model and possible
biomarkers. The application of PCA and PLS models to 1H
NMR data showed a positive discrimination between both
groups, caused by a decrease in the levels of pyridoxine,
orotidine, s-adenosylhomocysteine, pyridoxamine, glycocholic
acid, β-leucine, 5-methylcytidine, taurocholic acid, 3-hydrox-
ybutyric acid, 7-acetocholesterol, 3-hydroxyisovaleric acid, l-
fucose, cholesterol, and l-palmitoylcarnitine for the cancer
group together with an increase in glycine. In addition, they
highlighted the ratio of lithocholic acid/deoxycholic acid as a
possible biomarker of colon cancer.95

Furthermore, Chen et al.96 conducted an investigation into
the 1H NMR metabolic profile of 44 patient samples with
colon polyps and 58 control samples along with numerous
demographic parameters, performing seemingly unrelated
regression (SUR) for the correlation of the metabolites and
the biological groups. They were able to obtain valine as a
slightly significant metabolite for patients with polyps, as they
had a reduced sample size, but could report 11 groups of
metabolites that were significantly different between polyps
and control samples.96

A year later, in 2016, the group of Raftery97 carried out a
metabolomics study using LC-MS and 1H NMR on serum
samples from a positive group for colorectal cancer of 28
subjects, a total of 44 individuals with polyps, and a third group
of 55 controls. They generated an algorithm where all variables
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were examined, removing one of them in each iteration and
employing the remaining ones for PLS-DA. Variables with the
highest prediction accuracy for the test samples in Monte
Carlo Cross Validation (MCCV) were kept for the subsequent
iteration, resulting in a 30% test set and a 70% training set, the
portion where PLS-DA was performed to predict the
classification of the test set samples. Colon cancer samples
displayed higher levels of glucose, lower levels of adenosine,
and alterations in the levels of pyruvate and glutamine, while a
decrease in orotate and an increase in adenosine were found in
the group positive for polyps. Alterations in the levels of amino
acids, fumarate, citrate, oxaloacetate, linolenic acid, and lipids
were observed for both cancer and polyp groups compared to
the controls.97

Vahabi et al.98 investigated the differences in the 1H NMR
metabolic profile of 16 colorectal cancer samples between 0−I
stages (8 samples) and I−IV stages (8 samples), similarly to
Farshidfar et al.94 An OPLS-DA model showed decreased
levels of pyridoxine and increased contents of glycine,
cholesterol, taurocholic acid, cholesteryl, and deoxyinosine
for the II−IV stages of colorectal cancer samples.98

In 2019, Gu et al.7 conducted a 1H NMR metabolomics
analysis of 40 serum samples from colon cancer patients, 32
samples positive for polyps, and 38 controls, and several
models [PCA, PLS-DA, OPLS-DA, random forest (RF), and
SVM methods] were applied to the 1H NMR data to identify
possible biomarkers. A total of 23 metabolites were elucidated,
reporting an increase in the levels of lactate, glycine, serine,
choline, and 3-hydroxybutyrate and a decrease of citrate and
succinate for colorectal cancer samples. Also, higher levels of
lactate, glutamate, choline, polyunsaturated fatty acids, and N-
acetyl glycoproteins and lower levels of acetate, glycerol,
glutamine, alanine, and aspartate were found for the polyps
samples. Furthermore, they could determine that the acetate/
glycerol and lactate/citrate ratios were important biomarkers
for the presence of polyps and colorectal cancer, respectively.
Recently, Di Donato et al.99 hypothesized that NMR-based

metabolic fingerprinting could improve risk stratification in
patients with early colorectal cancer and investigated serum
samples of 94 elderly patients with early stage colorectal cancer
(65 relapse free and 29 relapsed after a 5 year median
followup) and 75 elderly patients with metastatic colorectal
cancer. Prognosis was assessed using Kaplan−Meier curves,
and a PCA-based kNN analysis was able to distinguish
between relapse free and metastatic colorectal cancer groups,
mainly due to lower levels of glutamine and histidine in
patients with metastatic colorectal cancer.99

Correlation of Main Serum Biomarkers to CRC. In
general, it has been proven that the most relevant metabolites
found to be important biomarkers associated with colorectal
cancer are widely related to carbohydrate metabolism,
involving gluconeogenesis96,93 and specially glycoly-
sis,7,91,94,96,97,100,101 since an increase in activity in this pathway
can lead to an increase in malignant tumors, known as the
Warburg effect.90 This process involves an abnormal
accumulation of glucose, pyruvate, and lactate (initial,
intermediate, and final metabolites of glycolysis, respectively),
as reported in many of the studies previously discussed.7,97,91,93

Furthermore, lower amounts of other metabolites related to
glycolysis, such as citrate and succinate, were also indicated as
part of this Warburg effect.7,90 Citrate is also involved in the
citric acid cycle in combination with fumarate and
oxaloacetate, and its levels were found to change in the

serum of individuals with CRC cancer and polyps when
compared to the control ones.7,97

In turn, a high demand for amino acids by the growing
tissues can also cause alterations in the metabolic routes
associated with these compounds, and a consequent decrease
in their levels in carcinogenic samples has been reported, e.g.,
arginine, glutamine, proline, alanine, aspartate, and gluta-
mate,7,95,97,96,98 accompanied by an accumulation of ketone
scaffolds such as acetate, acetoacetate, and 3-hydroxybuty-
rate.95,91 Additionally, Deng et al.,97 Gu et al.,7 and Zamani et
al.95 reported a decrease in the levels of unsaturated and
polyunsaturated fatty acids, possibly due to perturbations in
the metabolisms of glycerolipids and fatty acids. Moreover, the
biosynthesis of primary bile acids and the metabolism of
vitamin B6 were referenced among others (cyanoamino acid,
thymine, methane, glutathione, fucose, and mannose metab-
olisms) by Zamani et al.95 and Vahabi et al.98 Alternatively,
Farshidfar et al.,94 focused on the comparison among serum
samples from individuals with coloregional and liver-only
metastases, reporting an accelerated galactose metabolism
being involved in colorectal cancer samples. Also, changes in
the metabolism of purine were commonly observed by Vahabi
et al.98 and Deng et al.97 as well as in choline metabolism by
Gu et al.7

Multivariate Data Analysis Methods. Most of the
studies reviewed herein applied the unsupervised technique
of PCA as a first step for the discrimination between groups
and to obtain potential biomarkers of colorectal cancer with
the exception of Bertini et al.93 who employed for this purpose
another technique of this sort, canonical analysis (CA). It is
worth mentioning the research developed by Di Donato et
al.,99 in which a PCA in combination with CA and kNN was
applied for the discrimination between groups. On the
contrary, Backshall et al.,92 Chen et al.,96 Deng et al.,97 and
Vahabi et al.98 did not employ PCA in their research. Further,
for the application of unsupervised techniques, supervised
linear multivariate techniques such as PLS-DA7,95,97,91,93,92 and
OPLS-DA7,94,98 were generally applied, and the associated
biomarkers were determined using different methods. Some of
these studies7,97,94 selected the variables associated with the
discrimination between disease and healthy individuals based
on their variable importance in projection (VIP) index values
given by supervised models, in which those variables with a
VIP value greater than 1 were considered statistically
significant for the model. Chen et al.96 employed other
statistical approaches like seemingly unrelated regression for
the identification of significant biomarkers.
Some studies also included nonlinear methods for the

classification and identification of the most discriminant
metabolites, for instance, the study by Bertini et al.,93 in
which a SVM model was implemented to the PLS scores by
applying the nonparametric Kruskal−Wallis rank-sum test for
the continuous variables and the Fisher exact test for the
categorical ones. Moreover, Gu et al.7 implemented an RF
classifier in combination with the correlation coefficients of
several discriminating metabolites found from a previous
OPLS analysis and selected the most important biomarkers
according to their frequency of being chosen by the algorithm,
and later, a SVM model was applied in order to validate the
obtained results. The results were supported by employing the
area under the ROC curve.
In order to validate the linear models of PLS-DA and OPLS-

DA, several of the studies employ the parametric cross-
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validation test CV-ANOVA, while the precision of the
nonlinear models was evaluated using AUC-ROC curves,
which make it possible to verify the proportion of false
positives derived from confusion matrices in combination with
their respective confidence intervals (CIs). Lastly, most of the
studies carried out metabolomics pathway analysis by perform-
ing the Holm-Bonferroni correction with the aim of
determining the most enriched ones.
Analytical Platforms, Acquisition Parameters, and

Processing. In general, the 1H NMR-based metabolomic
studies mentioned in this Review demonstrate a great power of
prediction, classification, and selection of biomarkers asso-
ciated with colorectal cancer; however, although the current
trend continues to increase, the number of articles that relied
solely on 1H NMR is still lower. Indeed, some of the studies
included in this Review performed the analysis of the
metabolic profiles in combination with other analytical
techniques. For example, in addition to NMR, Deng et al.97

applied LC-MS, while Farshidfar et al.94 utilized GC-MS. It is
of great importance to highlight these differences since,
depending on the equipment used, different metabolites can
be detected depending on the sensitivity and specificity of each
platform.
Concerning the publications using 1H NMR, the data

acquisition and processing parameters employed could also be
a cause of variability of the results. In general, most of the
discussed studies in this Review implemented the sequence
CPMG to suppress resonances involving high-molecular
weight molecules,91−93,95−99 some of them solely or in
combination with the presaturation of the water signal, as a
method of erasing the water signal from the serum
samples.7,91,92,94,96,97,99 Regarding the data processing param-
eters, including the type of normalization, scaling, and/or
transformation applied, these studies showed a general lack of
consensus among them and generally applied different
statistical approaches. In this sense, depending on the scaling
method used, several types of signals can be prioritized, which
can lead to misleading conclusions. Therefore, except for
Bertini et al.,93 most articles presented quite a small sample
size, an aspect that could have conditioned many of the
statistical results achieved, resulting in the possible variation of
some of the metabolites envisaged as biomarkers.
Differences in the selection of research participants, targeted

population groups, and sampling procedures described in each
research study should be also considered. Generally, there is a
tendency to study differential metabolites between a group of
colorectal cancer, overall involving metastases, and a control
group. Nevertheless, some of the studies mentioned herein also
focused on the study of metabolic differences between samples
from patients with polyps and controls. In contrast, the study
by Farshidfar et al.94 focused equally on the location of the
cancer, making a distinction between coloregional, liver-only,
and extrahepatic as well as on the stage of this disease, a factor
that the team of Vahabi et al.98 also studied. On the other
hand, Backshall et al.92 employed samples derived from
patients before being treated with capecitabine in order to
relate their profiles to subsequent treatment toxicity, while Di
Donato et al.99 distinguished between early colorectal cancer
patients with and without relapse and elderly patients with
metastatic disease.

■ OTHER MATRICES ANALYZED THROUGH NMR
METABOLOMICS IN THE QUEST OF CRC
BIOMARKERS

Apart from serum, there are plenty of studies about colorectal
cancer that apply NMR metabolomics in other matrices. Table
2 shows seven of the most relevant studies with the principal
aims and results of each one being described. These include
three main types of matrices: fecal, tissue, and urine samples.
In the first group using fecal samples, two of these articles

need to be highlighted: Bezabeh et al.102 and Monleoń et al.,103

who investigated metabolic differences between feces samples
from healthy controls and colorectal cancer patients. Both used
NMR operating at different frequencies, and while Bezabeh et
al.102 only found spectral differences between groups (using a
400 MHz spectrometer), Monleoń et al.103 were able to find
some biomarkers associated with colorectal cancer (using a
600 MHz spectrometer), such as acetate or butyrate. For NMR
analyses, feces samples are not difficult to prepare,102−104 and
therefore, it could be a simple way to study this disease in a less
invasive way.
The second group related to tissue samples includes the

works of Chan et al.,105 Piotto et al.,106 and Jimeńez et al.107

(Table 2), who applied high resolution magic angle spinning
(HR-MAS) NMR spectroscopy to study samples coming from
tumors or adjacent normal mucosae obtained through biopsies.
An advantage of using HR-MAS is that a smaller amount of
sample is needed for the analysis and that the measurements
are carried out directly in the solid state. However, handling
tissue samples implies the use of an invasive collection method
that contradicts one of the main advantages of applying NMR
in metabolomics studies. HR-MAS analysis in tissue samples
was able to find principally lactate and glucose, among others,
as biomarkers for the disease.105−107 As previously discussed,
some of these same biomarkers were also elucidated in the
serum of patients with CRC7,91,97 but with the advantage that a
noninvasive collection method was applied.
The third group includes the studies of Wang et al.108 and

Kim et al.109 with urine samples. They employed NMR
operating at 400 and 500 MHz, respectively, to assess
metabolic changes in urine samples and were able to find
some specific biomarkers, such as taurine, alanine, and 3-
aminoisobutyrate, as well as distinguish between early stages of
colorectal cancer and esophageal cancer.108,109 There are some
studies, such as the one of Vahabi et al.,98 where they were also
able to distinguish between different stages of colorectal cancer
employing serum samples.
From Table 2, it is deduced that there is some variability on

NMR operation frequencies as a function of the matrix chosen,
but in terms of unraveled biomarkers, there is a trend that
agrees with the tendency observed in serum samples: the
Warburg effect is emphasized once again due to the increase of
lactate and the decrease in glucose detected in most matrices.
In Figure 5, we have summarized the different metabolites

found as biomarkers as a function of the matrix under study. In
addition, we have illustrated the different sets of metabolites
with an arrow pointing upward or downward depending on
whether the biomarker increases or decreases for the colorectal
cancer group, respectively.

■ CONCLUSIONS

NMR spectroscopy is presented as a powerful technique for
the identification of specific metabolites even in complex
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mixtures, showing great applicability in the field of clinical
metabolomics. There are currently scarce contributions of
NMR metabolomics approaches in the study of colorectal
cancer serum samples although, in general, all of them show
promising outcomes. On the basis of the multiple statistical
methods employed by each study, it can be concluded that
there is no standard procedure among them for the
identification of relevant biomarkers, which can lead to
multiple conclusions, since data processing and data
preparation are crucial steps to achieve correct interpretation
of the results. Nevertheless, most studies discussed in this
Review agreed on the role of colorectal cancer metabolites
involved in glycolysis, specifically referring to the Warburg
effect, which is a characteristic of carcinogenic samples. Also,
alterations in the amino acids content and in the metabolism of
glycerolipids and fatty acids were reported in most of the
studies.
It would be of great interest to continue exploring the

associated serum metabolic profiles to different stages of the
disease, consolidating sample sizes, aims, and interest groups,
and to increase the low number of studies in NMR
metabolomics addressing this topic. Also, researchers should
take into account the presence of other variables, such as the
patient’s age, the occurrence of other diseases, and the physical
state of the individual, since some investigations with those
aspects have also shown encouraging outcomes.106,108 Finally,
research in this field should be stimulated and correctly driven
to understand and predict basic biological issues associated
with colorectal cancer.
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