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Background: Coronary stenosis severity determines ischemic symptoms and adverse
outcomes. The metabolomic analysis of human fluids can provide an insight into the
pathogenesis of complex disease. Thus, this study aims to investigate the metabolomic
and lipidomic biomarkers of coronary artery disease (CAD) severity and to develop
diagnostic models for distinguishing individuals at an increased risk of atherosclerotic
burden and plaque instability.

Methods: Widely targeted metabolomic and lipidomic analyses of plasma in 1,435 CAD
patients from three independent centers were performed. These patients were classified
as stable coronary artery disease (SCAD), unstable angina (UA), and myocardial infarction
(MI). Associations between CAD stages and metabolic conditions were assessed by
multivariable-adjusted logistic regression. Furthermore, the least absolute shrinkage and
selection operator logistic-based classifiers were used to identify biomarkers and to
develop prediagnostic models for discriminating the diverse CAD stages.

Results: On the basis of weighted correlation network analysis, 10 co-clustering
metabolite modules significantly (p < 0.05) changed at different CAD stages and
showed apparent correlation with CAD severity indicators. Moreover, cross-
comparisons within CAD patients characterized that a total of 72 and 88 metabolites/
lipid species significantly associated with UA (vs. SCAD) and MI (vs. UA), respectively. The
disturbed pathways included glycerophospholipid metabolism, and cysteine and
methionine metabolism. Furthermore, models incorporating metabolic and lipidomic
profiles with traditional risk factors were constructed. The combined model that
incorporated 11 metabolites/lipid species and four traditional risk factors represented
better discrimination of UA and MI (C-statistic � 0.823, 95% CI, 0.783–0.863) compared
with the model involving risk factors alone (C-statistic � 0.758, 95% CI, 0.712–0.810). The
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combined model was successfully used in discriminating UA and MI patients (p < 0.001) in
a three-center validation cohort.

Conclusion: Differences in metabolic profiles of diverse CAD subtypes provided a new
approach for the risk stratification of unstable plaque and the pathogenesis decipherment
of CAD progression.

Keywords: coronary artery disease, metabolome, lipidome, severity, glycerophospholipid metabolism, diagnostic
marker

INTRODUCTION

Coronary artery disease (CAD) refers to underlying coronary
artery atherosclerotic lesions that cause vascular lumen stenosis
or occlusion and insufficient blood supply and result in
myocardial ischemia, hypoxia, or necrosis (Malakar et al.,
2019). Despite the advances in medical treatment,
percutaneous coronary intervention, and surgical therapies,
atherosclerotic CAD persists as a major clinical problem
leading to a significant proportion of mortality of aging
populations (Zhou et al., 2019; Virani et al., 2020). CAD can
be stratified into stable coronary artery disease (SCAD), unstable
angina (UA), and myocardial infarction (MI) according to the
clinical symptoms, the extent of arterial blockage, and the
condition of myocardial damage (Shao et al., 2020).
Atherosclerotic plaque accumulation and development become
chronic, complicated, and dynamic over time. The detailed
mechanisms of plaque formation and development are poorly
known. Thus, novel biomarkers for patients with risks of plaque
instability and rupture need to be identified to delay onset and
improve treatment.

Emerging metabolomics is a powerful tool to systematically
investigate the functional small molecule in biological fluid
samples. An abnormal metabolome can reportedly characterize
CAD, further providing clues for physiological and pathological
explorations (Wishart, 2016; Tzoulaki et al., 2019). Elevated
plasma trimethylamine N-oxide levels can predict a future risk
of major adverse cardiac events (MACE) and an increased
prevalence of cardiovascular disease (CVD) (Dannenberg
et al., 2020; Gencer et al., 2020). Short-chain fatty acids and
primary and secondary bile acids affect CVD progression (Fan
et al., 2016; Tang et al., 2019). Previous studies highlighted the key
role of lipid species in the formation and subsequent disruption of
atherosclerotic plaques, including ceramides, sphingomyelin,
phosphatidylcholines, and cholesterol esters (Wang D. D.
et al., 2017; Poss et al., 2020). Altered lipid metabolism
correlated with inflammation and oxidative stress, such as the
oxidation of phospholipids and cholesterol in LDL and played an
important part in the formation of lipid-laden foam cells within
the intima to the necrotic lipid core of unstable plaque (Meikle
et al., 2011; Lu et al., 2017; Zhong et al., 2019). However, the
relationship between plasma metabolic profiling and detailed
characterization and quantification of atherosclerosis burden at
different CAD stages needs to be systematically elucidated.

The goals of the present study were to comprehensively
investigate the plasma metabolomic and lipidomic signatures

associated with increased CAD severity and to evaluate the
significantly differential metabolites and lipid species for their
use in discriminating the subgroups of CAD, thereby providing
an enhanced understanding of disease progression. Herein, we
performed a widely targeted metabolomic and lipidomic
evaluation in plasma of patients with SCAD, UA, and MI and
identified specific features of metabolite profiles that are
associated with increase in CAD severity and can be used to
differentiate these three subgroups. The subsequent pathway
analysis revealed that glycerophospholipid metabolism was the
most significantly altered metabolic pathway. Disease diagnostic
classifiers for discriminating between different CAD subgroups
were constructed and validated based on novel metabolic markers
and traditional risk factors.

MATERIALS AND METHODS

Study Population
An overview of the workflow is depicted in Figure 1. This study
was a two-stage study that included a total of 1,435 Chinese
subjects with CAD. In the discovery cohort (N � 942), we
evaluated the association of plasma metabolome and lipidome
with CAD using consecutively enrolled samples with clinical and
demographic information obtained from Guangdong Provincial
People’s Hospital (Cai et al., 2018) in 2010–2014. In the
verification cohort (N � 493), we enrolled multi-center
patients with CAD from three centers (including Guangdong
Provincial People’s Hospital, Xiangya Hospital of Central South
University, and the First Affiliated Hospital of Sun Yat-sen
University) from 2017 to 2018.

All subjects were 18–80 years andmet the diagnostic criteria of
CAD. They were further stratified into three subgroups (SCAD,
UA, and MI) on the basis of a detailed diagnosis performed by
cardiologists, their symptoms, ischemic changes in
electrocardiogram, laboratory measurements, and coronary
angiographic results. The specific diagnostic criteria of CAD
subtypes are summarized under Supplemental Materials:
Supplementary Methods. The exclusion criteria were as
follows: 1) severe renal dysfunction, serum creatinine >3.0 mg/
dl, renal transplantation, or dialysis; 2) liver dysfunction,
alanine aminotransferase >135 U/L, or cirrhosis; 3) during
pregnancy or lactation; 4) malignant tumors or
hemodialysis; 5) autoimmune disorders; and 6) unavailable
information. Demographic information, medication history,
and biochemical measurements were collected according to
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standard procedures and obtained from the hospital electronic
case system.

Ethics Statement
The study fully complies with the guidance of the Helsinki
Declaration. The Medical Ethical Review Committee of
Guangdong Provincial People’s Hospital granted ethics
approval (GDREC2010137 and GDREC2017071H). Written
informed consent was obtained from all subjects.

Plasma Sample Collection
Each eligible subject fasted for at least 8 h tominimize the influence
of nutrition on metabolite levels. The subjects’ venous blood
samples were collected in ethylene diamine tetraacetic acid
(EDTA) vacutainer tubes in the morning (between 9 AM and
12 PM) after overnight fasting and cooled in a freezer (4°C)
immediately. Plasma was separated by centrifugation (2095 g,
10 min, 4°C) within 2 h and refrigerated at −80°C until analysis.

Severity Evaluation of Coronary Artery
Disease Via Angiographic Analysis
Coronary angiography (CAG) was performed to define the extent
and severity of CAD in patients with suspected symptoms whose
clinical characteristics and results of noninvasive testing indicated a
high likelihood of CAD and who are amenable to, and candidates

for coronary revascularization (Fihn et al., 2014). CAG was
performed using the standard technique and images of coronary
angiograms were obtained from Syngo Dynamics cardiovascular
imaging software (Siemens Medical Solutions, United States, Inc,
Malvern, Pennsylvania). The complexity and burden of
atherosclerotic CAD were evaluated using an angiographic
scoring system (SYNTAX scores) (Thuijs et al., 2019; Takahashi
et al., 2020) and diagnosed by two professional cardiologists
blinded to the clinical outcome (details are presented in the
Supplemental Materials: Supplementary Methods).

Widely Targeted Metabolomic Analysis and
Data Preprocessing
The hydrophilic and hydrophobic compounds were extracted
from each plasma sample and detected via ultra-performance
liquid chromatography and electrospray ionization-tandem mass
spectrometry (UPLC-ESI-MS/MS) system in the positive and
negative ionization modes in Metware Biotechnology (Wuhan,
China). Details for the sample preparation and UPLC-MS/MS
experiment parameters are provided in the Supplemental
Materials: Supplementary Methods.

In total, 202 metabolites (including nucleosides, hormones,
carbohydrates, organic acids and derivatives, and amino acids
and derivatives) and 667 lipid species (including ceramides,
cholesteryl esters, diacylglycerol, lysophosphatidic acid,

FIGURE 1 |Overview of workflow chart for data generation and analysis. CAD, coronary artery disease; cTnI, cardiac troponin I; hs-CRP, high-sensitivity C-reactive
protein; LASSO, least absolute shrinkage and selection operator; MI, myocardial infarction; SCAD, stable coronary disease; UA, unstable angina; SYNTAX scores,
Synergy between percutaneous coronary intervention with TAXUS and Cardiac Surgery scores; UPLC-MS/MS, ultra-performance liquid chromatography-tandemmass
spectrometry.
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lysophosphatidylcholine, lysophosphatidylethanolamine,
lysophosphatidylserine, monoglyceride, phosphatidic acid,
phosphatidylcholines, phosphatidylglycerol, phosphatidylserine,
phosphatidylethanolamine, and triacylglycerol) were identified
and quantified.

Quality control (QC) samples were utilized for the
normalization of the data. A QC sample was created via
pooling aliquots from all samples and was injected every 10
samples throughout the run to assess the instrument’s stability.
Highly stable QC data showed that the run had great repeatability
and reliability (Supplementary Figure S1).

For metabolomic and lipidomic analyses, raw signals with
more than half of the missing rate in the QC samples (those
with zero ion intensity) were removed. Missing metabolomic
data were imputed by replacing the missing value with a
minimum value of the metabolite quantified. To adjust
signal drift, we applied the Quality Control–based Robust
LOESS (LOcally Estimated Scatterplot Smoothing) Signal
Correction (QC–RLSC) algorithm for analytical batch effect
correction (Luan et al., 2018), which is an effective way to
normalize the metabolic features to the QC samples within an
analytical block. The dataset of discovery cohort after batch
effect correction is available in Supplemental Materials:
Supplementary Table S3. The dataset was then scaled by
pareto scaling with procedures of mean centering and
scaling to the square root of standard deviation (van den
Berg et al., 2006). Then, the matrix was exported for further
analysis.

Clustering of Metabolites Using Weighted
Correlation Network Analysis.
A metabolic network was constructed by the weighted
correlation network analysis (WCNA), which used
metabolites’ pairwise correlations to identify modules of
highly correlated metabolites (Pei et al., 2017). An
unsigned weighted metabolite co-expression network was
constructed. Considering the scale-free topology fit index
and mean connectivity, the soft-thresholding power β � 4
and min module size � 5 were chosen for the analysis.
Spearman correlation between metabolite modules and
clinical parameters was calculated using R. The
Benjamini–Hochberg method was used to control the false
discovery rate (FDR). Hub metabolites indicated a high degree
of connectivity in biological interaction networks and ,thus, they
were considered biologically important. Clusters of co-abundant
plasma metabolites were identified using the “WGCNA”
package in R.

Statistical Analysis
Among the baseline characteristics of the study population,
continuous variables were described using medians
(interquartile ranges) and were compared using
Mann–Whitney U tests (non-normal distribution). Categorical
variables were presented as counts (percentages) and were
compared with Chi-squared tests. Statistical significance was
determined as p < 0.05.

The linear regression analysis, adjusted for traditional
Framingham risk factors, including age, sex, hypertension,
diabetes mellitus, smoking, low-density lipoprotein cholesterol
(LDLC), high-density lipoprotein cholesterol (HDLC), and
triglycerides (TG) (Senthong et al., 2016), was applied to
examine the associations of metabolomic and lipidomic
profiles with SYNTAX score, SYNTAX score Ⅱ, hs-CRP, and
cardiac troponin I (cTnI) levels.

To assess the association of individual metabolomic and
lipidomic signatures against the different stages of CAD, we
performed adjusted logistic regression of metabolomic and
lipidomic profiles against SCAD vs. UA and UA vs. MI to
estimate the odds ratios (ORs) and 95% confidence intervals
(CIs). To avoid potential confounders, traditional risk
factors, including age, sex, hypertension, diabetes mellitus,
smoking, LDLC, HDLC, and TG, were used as covariates for
adjustment. Subjects with missing covariates were omitted.
Statistical significance was determined as a p-value of <0.05.
Open database sources, including the Kyoto Encyclopedia of
Genes and Genomes (KEGG) databases (http://www.
genome.jp/kegg/) and the MetaboAnalyst (https://www.
metaboanalyst.ca) (version 4.0), were used to identify the
highly enriched metabolic pathways based on the
significantly differential levels of metabolites and lipid
species.

In the development of diagnostic models to classify CAD
subgroups, firstly, the following were added to develop the
traditional risk factor-based model in a stepwise regression
(forward and backward) with the aim to minimize the Akaike
information criterion (AIC): age, sex, hypertension, diabetes
mellitus, smoking, LDLC, HDLC, and TG (traditional risk
factors); APOA and Lp(a) (risk lipid traits); and left
ventricular ejection fraction (LVEF, heart function indicator).
This procedure was performed within 10 iterations of a 5-fold
cross-validation framework (“MASS”, “caret” packages).
Subsequently, metabolites and lipid species that were
nominally significantly (p < 0.05) associated with UA (vs.
SCAD) and MI (vs. UA) in the adjusted logistic regression
analysis were included into least absolute shrinkage and
selection operator (LASSO) penalized models (“glmnet”
package) to further reduce the number of markers and select
the most powerful predictive features. In the LASSO selection
analysis, the optimal value for the tuning parameter λ was
determined via 5-fold cross-validation (200 iterations). We
adopted the largest value of lambda, such that the error was
within one standard error of the minimum, known as “1-se”
lambda. The relative contribution of features to classification
assignment (UA vs. SCAD andMI vs. UA) was determined by the
occurrence frequency in our multivariate model training. The
feature was selected with an occurrence frequency of more than
100 times.

To evaluate the predictability of the models, a binary logistic
regression model was then fitted using the chosen biomarkers as
the covariates; this model was generated as follows: combined
diagnostic score (probability) � 1/1 + exp [-(intercept + coefficient1
(biomarker1) + coefficient2 (biomarker2) . . . + coefficient n
(biomarker n))]. The area under the curve (AUC, equivalently
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known as C-statistic) of the receiver operating characteristic
(ROC) was applied to calculate the proportions of concordant
pairs among all pairs of observation with 1.0 indicating perfect
prediction accuracy. Moreover, the continuous net reclassification
improvement (NRI) and integrated discrimination improvement
(IDI) were calculated in assessing the models. The 95%

confidence intervals (CIs) were estimated for each parameter.
The difference of combined diagnostic scores between CAD
subgroups in the validation cohort was examined by the
Wilcoxon rank sum test.

All the above analyses were conducted on the R platform
(version 3.6.1, http://www.R-project.org/).

TABLE 1 | Baseline characteristics of discovery cohort.

SCAD (N = 310) UA (N = 368) MI (N = 264) p Value

SCAD vs. UA UA vs. MI

Age, years 63.2 (56.9, 70.4) 65.0 (57.5, 72.5) 61.6 (52.9, 68.9) 0.066 <0.001
Male 243 (78.4) 286 (77.7) 228 (86.4) 0.91 0.0081
SBP, mmHg 132 (120, 145) 130 (120, 143) 124 (110, 135) 0.37 <0.001
BMI, kg/m2 24 (22, 27) 24 (22, 26) 24 (21, 26) 0.2 0.16
Current smokers 79 (25.6) 98 (27.1) 97 (37.0) 0.74 0.01
Comorbidities
Hypertension 200 (64.7) 235 (63.9) 129 (48.9) 0.88 <0.001
Hyperlipidemia 39 (12.6) 41 (11.1) 24 (9.1) 0.64 0.48
Arrhythmia 30 (9.7) 38 (10.3) 11 (4.2) 0.89 <0.001
Diabetes mellitus 83 (26.7) 100 (27.2) 75 (28.4) 0.99 0.80

Laboratory data
ALT, U/L 22.0 (17.9, 29.0) 23.5 (18.0, 33.0) 28.0 (19.0, 39.0) 0.049 <0.001
AST, U/L 23.0 (19.0, 27.0) 24.0 (20.0, 29.0) 26.0 (21.0, 36.0) 0.064 <0.001
GLUC, mmol/L 5.6 (5.0, 7.1) 5.8 (5.0, 7.3) 6.0 (5.1, 7.9) 0.21 0.13
eGFR, ml/min/1.73 m2 90.1 (76.0, 106.5) 87.5 (70.8, 103.6) 87.7 (71.2, 103.0) 0.08 0.57
CK, U/L 89.5 (64.0, 122.0) 86.0 (63.0, 116.0) 86.0 (62.1, 132.8) 0.41 0.60
CKMB, U/L 5.9 (4.3, 8.2) 6.6 (4.7, 9.2) 6.9 (5.0, 9.2) 0.04 0.34
TC, mmol/L 4.1 (3.5, 5.0) 4.2 (3.5, 4.8) 4.0 (3.5, 4.7) 0.47 0.18
TG, mmol/L 1.3 (1.0, 1.9) 1.4 (1.0, 1.9) 1.3 (1.0 1.8) 0.29 0.51
LDLC, mmol/L 2.4 (1.9, 3.1) 2.5 (2.0, 3.1) 2.4 (1.9, 3.0) 0.73 0.52
HDLC, mmol/L 0.97 (0.84, 1.12) 0.94 (0.81, 1.12) 0.85 (0.72, 0.99) 0.1 <0.001
APOA, g/L 1.07 (0.90, 1.23) 1.01 (0.89, 1.21) 0.93 (0.80, 1.09) 0.11 <0.001
Lp(a), mg/dL 151.0 (76.0, 400.9) 169.4 (80.9, 357.3) 238.1 (118.9, 457.8) 0.98 0.0053
CREA, μmol/L 80.7 (69.0, 93.0) 81.4 (71.0, 97.0) 85.0 (73.5, 100.0) 0.21 0.026
BNP, pg/mL 114.4 (41.2, 278.0) 168.7 (59.9, 549.0) 670.1 (280.3, 1749.0) 0.0025 <0.001
hs-CRP, mg/L 2.3 (0.7, 4.5) 2.1 (1.0, 6.4) 6.4 (2.2,15.2) 0.14 <0.001
cTnI, μg/mL 0.01 (0.005, 0.04) 0.02 (0.008, 0.02) 0.3 (0.04, 1.9) 0.025 <0.001

Medication
ß-blockers 277 (89.6) 319 (86.9) 239 (90.5) 0.33 0.20
ACEI or ARB 191 (61.8) 225 (61.3) 182 (68.9) 0.91 0.058
CCBs 95 (30.7) 113 (30.8) 49 (18.6) 1 <0.001
PPIs 152 (49.2) 176 (48.0) 127 (48.1) 0.81 1

Cardiac function
SYNTAX score 13.0 (8.0, 23.0) 14.0 (9.0, 22.0) 19.0 (10.0, 27.1) 0.76 <0.001
SYNTAX score Ⅱ 26.0 (22.0, 32.0) 27.0 (21.0, 34.0) 28.0 (22.0, 34.0) 0.09 0.57

Counts of Long-lesion 0.53 0.0017
1 74 (23.9) 87 (23.6) 97 (36.7)
2 25 (8.1) 30 (8.2) 23 (10.2)
3 5 (1.6) 2 (0.5) 3 (1.1)
4 - 1 (0.3) -
No. of SV 0.032 0.067
1 75 (26.8) 118 (35.0) 61 (25.3)
2 110 (39.3) 109 (32.3) 81 (33.6)
3 77 (27.5) 99 (29.4) 90 (37.3)
LVEF 65.0 (61.0, 69.0) 65.0 (60.0, 69.0) 54.0 (45.0, 63.0) 0.31 <0.001
LVMI 112.5 (97.9, 132.8) 112.7 (95.6, 135.8) 125.6 (103.7, 150.2) 0.73 0.0015

Data are shown asmedian (interquartile range) or n (%). p values were calculated usingMann–WhitneyU test for non-normally distributed continuous variables and the Chi-squared test for
categorical variables. ACEI, angiotensin converting enzyme inhibitor; ALT, alanine aminotransferase; APOA, apolipoprotein A; ARB, angiotensin receptor Blocker; AST, aspartate
aminotransferase; BMI, body mass index; BNP, B-type natriuretic peptide; CCB, calcium channel blocker; CK, creatine kinase; CKMB, MB isoenzyme of creatine kinase; CREA,
Creatinine; cTnI, cardiac troponin I; eGFR, estimated glomerular filtration rate; GLUC, glucose; HDLC, high-density lipoprotein cholesterol; hs-CRP, high-sensitivity C-reactive protein;
LDLC, low-density lipoprotein cholesterol; Lp(a), lipoprotein(a); LVEF, left ventricular ejection fraction; LVMI, left ventricular mass index; MI, myocardial infarction; No of SV, No. of stenosed
vessels; PPI, proton pump inhibitor; SBP, systolic blood pressure; SCAD, stable coronary artery disease; SYNTAX, Synergy between PCI with TAXUS and Cardiac Surgery; TC, total
cholesterol; TG, triacylglycerol; UA, unstable angina.
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RESULTS

Characteristics of the Study Population
A total of 1,435 CAD patients were included from three
independent centers in China (Figure 1). The discovery
cohort included 942 participants enrolled at Guangdong
Provincial People’s Hospital, which were further classified into
the following groups on the basis of the guidelines for diagnosis:
SCAD (N � 310), UA (N � 368), and MI (N � 264). The baseline
characteristics and laboratory data of each group are shown in
Table 1. With disease shifting, the disturbance in lipid
metabolism occurred with decreasing HDL-C and APOA but

increasing Lp(a). Inflammatory state increased, as significant
differences in hs-CRP levels were found between UA vs. MI
(p < 0.001). The systemic atherosclerotic burden of CAD was
determined using SYNTAX score system, and the median scores
of each group were as follows: SCAD, 13.0 (8.0, 23.0); UA, 14.0
(9.0, 22.0); and MI, 19.0 (10.0, 27.1). The SYNTAX score showed
a significant difference between SCAD vs. MI (p < 0.001) and UA
vs. MI (p < 0.001). TheMI group exhibited a higher proportion of
three-stenosed vessels (37.56%), a larger left ventricular mass
index (LVMI), and a lower LVEF. The median levels of cTnI, an
indicator of myocardial infarction, were 0.01 (0.005, 0.04), 0.02
(0.008, 0.02), and 0.3 (0.04, 1.9) μg/ml in the SCAD, UA, and MI

FIGURE 2 | Assessment of the metabolite modules associated with the CAD progression. (A) Heatmap of metabolite modules and major CAD risk factors. (B)
Heatmap of metabolite modules and major CAD phenotypes. (C) Boxplot of 10 significantly altered metabolite modules between CAD subgroups compared by the
Wilcoxon rank sum test. In (A,B), the colors varying from blue to orange indicate negative to positive correlations, and *FDR< 0.05, **FDR <0.01 by the spearman
correlation. In (C), boxes represent the inter-quartile ranges, lines inside the boxes denote medians and the asterisk represents p values < 0.05 by the Wilcoxon
rank sum test. APOA, apolipoprotein A; GLUC, glucose; HDLC, high-density lipoprotein cholesterol; LDLC, low-density lipoprotein cholesterol; LP(a), lipoprotein(a);
LVEF, left ventricular ejection fraction; LVMI, left ventricular mass index; No. of SV, No. of stenosed vessels; SBP, systolic blood pressure; TC, total cholesterol; TG,
triacylglycerol; other abbreviations as in Figure 1.
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groups, respectively. Significant differences in cTnI levels were
found with SCAD vs. UA (p � 0.025) and UA vs. MI (p < 0.001).

The validation cohort from three centers included 493
participants. Their baseline characteristics are summarized in
Supplementary Table S11.

Identification of Modules Associated With
Multiple Clinical Traits
In the WCNA, 756 of the metabolites and lipid species in the
discovery set were parsed into 35 co-abundance modules,
whereas the gray module comprised unassigned metabolites
and lipids due to weak correlation with others. However, each
metabolite and lipid were further analyzed individually.

The correlations of thirty-five eigenmetabolites of the modules
and external traits are shown in Figures 2A,B (Detailed annotation
and information are listed in Supplementary Tables S2–S5). We
identified 16 of 35modules (45.7%) that were significantly associated
with major CAD phenotypes (either SYNTAX scores, number of
stenosed vessels, LVEF, LVMI, or cTnI levels). Moreover, by
abundance cross-comparison, 10 of these 35 modules (28.6%)
showed significant differences with p < 0.05 between CAD stages
(Figure 2C). Notably, the eigenmetabolites in darkmagenta module
(hexocylceramides) were positively correlated with hs-CRP levels
(Rho � 0.28, FDR <0.001), cTnI (Rho � 0.17, FDR � 0.0034), LVMI
(Rho � 0.14, FDR � 0.0030), and TG (Rho � 0.35, FDR <0.001) but
negatively correlated with LVEF (Rho � −0.12, FDR � 0.0077) and
HDL-C (Rho � −0.12, FDR � 0.0095) (Figure 2A). Moreover, the
dark gray module (lysoglycerophospholipids) was negatively
correlated with hs-CRP (Rho � −0.27, FDR <0.001) and cTnI
(Rho � −0.19, FDR <0.001) but positively correlated with APOA
(Rho � 0.23, FDR <0.001), HDLC (Rho � 0.18, FDR <0.001), and
TG (Rho � 0.17, FDR <0.001, Figure 2A).

Several modules also showed strong correlations with the
conventional lipid traits (Supplementary Table S2). Except for
the modules with triglyceride inside, sphingolipids such as Cer
and glycerophospholipids such as PEs and LPCs showed a close
correlation with TC, LDLC, HDLC, and APOA. For example, the
black module contains PE(P)s and dark red module contains
PC(O), both of which showed a decreasing tendency with disease
development (Figure 2C); these were positively correlated with
HDLC (Rho � 0.334, FDR � 1.20E-23; Rho � 0.371, FDR� 2.06E-
29) and APOA (Rho � 0.318, FDR� 4.83E-18; Rho � 0.339, FDR�
1.28E-20). Moreover, green (glycerophospholipids) and gray60
(ceramides), were positively correlated with TC (Rho � 0.541,
FDR � 3.84E-68; Rho � 0.360, FDR � 1.00E-27) and LDLC
(Rho � 0.506, FDR � 1.93E-58; Rho � 0.336, FDR � 6.43E-24).

Correlations Between Plasma Metabolite
Levels and Severity Indicators
The linear regression analysis of metabolites and lipid species to the
SYNTAX scores (atherosclerotic burden), cTnI (myocardial
necrosis), and hs-CRP (inflammatory state) was conducted by
adjusting for traditional risk factors, including age, sex,
hypertension, diabetes mellitus, smoking, LDLC, HDLC, and TG.
Numerous metabolites and lipid species showed strong association

for one or more severity indicators (Supplementary Tables S6–S9).
Three lipid species, namely, the hexosylceramide HexCer(d18:1/22:
0) and the alkylphosphatidylcholine PC(O-32:0) and PC(O-42:3),
were consistently significantly (p< 0.05) correlated with four severity
indicators (Supplementary Figure S2A, Supplementary Tables
S6–S9). We also found that high HexCer (d18:1/22:0) exhibited a
high proportion of three-stenosed vessels (stenosed defined as
>50%) with a univariate estimate of 0.11 ± 0.039, p � 0.0057,
and an adjusted estimate (for the traditional risk factors above)
of 0.082 ± 0.040, p � 0.042 (Supplementary Figure S2B).

Changes in the Plasma Metabolomic
Features Between Different Coronary
Artery Disease Subgroups
We focused on SCAD vs. UA for transition from coronary stability to
instability and UA vs. MI for cardiac events. The logistic regression
analysis of the metabolic and lipidomic profiles against UA (vs.
SCAD) adjusting for traditional risk factors, identified 72
metabolites/lipid species that were significantly (p < 0.05)
associated with UA (Figure 3A). The regression analysis against
MI (vs. UA) conducted by adjusting for traditional risk factors
identified 88 metabolites/lipid species that were significantly (p <
0.05) associated with MI (Figure 3B). The enrichment pathway
analysis of significantly differential metabolites and lipid species for
SCAD vs. UA andUA vs.MI are presented in Supplementary Figure
S3 and Supplementary Table S10. For SCAD vs. UA, themetabolism
pathway significantly changed in glycerophospholipid metabolism
(p � 7.22E-05, FDR � 6.06E-03) and valine, leucine, and isoleucine
biosynthesis (p � 1.25E-03, FDR � 5.26E-02). Furthermore, the
pathway analysis revealed that cysteine and methionine
metabolism (p � 4.88E-03, FDR � 0.263) and glycerophospholipid
metabolism (p � 6.26E-03, FDR � 0.263) were the main perturbed
pathways forUAvs.MI. The glycerophospholipidmetabolismwas the
most significantly altered pathway among all paired comparisons.

Generating Optimal Diagnosis Models for
Subgroup Identification and Prediction
We focused on UA vs. MI for the prediction of cardiac events. In
the first model (the traditional model), 11 conventional CAD risk
factors, including age, sex, hypertension, diabetes mellitus,
smoking, TG, LDLC, HDLC, APOA, Lp(a), and LVEF, were
considered in the stepwise variable selection modeling. Finally
five variables, namely, age, hypertension, TG, HDLC, and LVEF
were retained in the model with minimal AIC and had an AUC
value of 0.758 (Figure 4B; Table 2). In the second model
(metabolic model), 88 metabolites/lipid species that were
significantly (p < 0.05) associated with MI (vs. UA) were
considered as input variables. The model was obtained by the
LASSO logistic analysis (5-fold cross validation, 200 repeats,
Table 3) and consisted of 16 metabolic biomarkers that
performed similarly as the traditional model with continuous
NRI of −0.0763 (95% CI, −0.271–0.118, p � 0.443) and IDI of
−0.0178 (95% CI, −0.0669–0.0313, p � 0.478; Tables 2, 3). The
third model (combined model) incorporated the 11 most
predictive metabolic biomarkers to four conventional risk
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factors from LASSO selection (Table 3). It yielded better
discrimination for the prediction of MI than the traditional
model with an increased AUC from 0.758 to 0.823
(Figure 4B), a continuous NRI of 0.751 (95% CI, 0.571–0.932,
p < 0.0001), and an IDI of 0.105 (95% CI, 0.072–0.137, p < 0.0001;
Table 2).

However, the discriminating performance between SCAD and
UA was not as satisfactory. The characteristics at baseline of the
discovery cohort did not show many differences, and the
traditional model based on AIC selection only included LVEF
as the predictor with a poor AUC of 0.526. Nevertheless, the

utilization of metabolic and lipidomic biomarkers provided
another approach for discrimination. On the basis of the 72
variables (p < 0.05) selected from adjusted logistic regression,
LASSO logistic analyses were further applied to identify the most
predictive biomarkers. The optimized model consisting of 17
features exhibited a considerable performance with an AUC of
0.688 (Tables 2, 4). The ROC curve of SCAD vs. UA is plotted
in Figure 4A. The diagnostic efficiency of the metabolic
model showed a small improvement compared with that of
the traditional model with an AUC from 0.562 to 0.688, a
continuous NRI of 0.474 (95% CI, 0.289–0.659, p < 0.0001),

FIGURE 3 | Relationship between metabolic features against UA (vs. SCAD) and MI (vs. UA). Forest plot of odds ratios and 95% confidence intervals for logistic
regression of individual metabolites/lipid species against (A) SCAD vs. UA (p < 0.05) (B) UA vs. MI (p < 0.05), adjusting for age, sex, hypertension, diabetes mellitus,
smoking, LDLC, HDLC and TG. Cer, ceramide; CI, confidence interval; DG, diacylglycerol; HexCer, hexosylceramide; LPA, lysophosphatidic acid; LPC,
lysophosphatidylcholine; LPC(O), lysoalkylphosphatidylethanolamine; LPE, lysophosphatidylethanolamine; MG, monoglyceride; OR, odds ratio; PA, phosphatidic
acid; PC, phosphatidylcholine; PC(O), alkylphosphatidylcholine; PE, phosphatidylethanolamine; PE(P), phosphatidylethanolamine; PS, phosphatidylserine; other
abbreviations as in Figures 1, 2.
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FIGURE 4 | Diagnostic performances in discovery cohort are shown via ROC curves between (A) SCAD vs. UA (B) UA vs. MI. The combined diagnosis score in
validation cohort were compared between (C) SCAD and UA patients (D) UA and MI patients. AUC, area under curve; CI, confidence interval; ROC, receiver operating
characteristic; other abbreviations as in Figure 1.

TABLE 2 | Model performance measures (95% CIs) for discrimination of CAD subtypes in the discovery cohort.

Prediction of UA (vs. SCAD)

Feature AUC IDI p Value Continuous NRI p Value

Traditional modela 0.526 (0.471–0.580)
Metabolic modelb 0.688 (0.627–0.723) 0.105 (0.0749–0.135) <0.0001 0.474 (0.289–0.659) <0.0001

Prediction of MI (vs. UA)

Feature AUC IDI p Value Continuous NRI p Value

Traditional modelc 0.758 (0.712–0.810)
Metabolic modeld 0.744 (0.697–0.792) −0.0178 (−0.0669–0.0313) 0.443 −0.0763 (−0.271–0.118) 0.478
Combined modele 0.823 (0.783–0.863) 0.105 (0.072–0.137) <0.0001 0.751 (0.571–0.932) <0.0001
aTraditional model for UA (vs. SCAD) based on LVEF.
bMetabolic model for UA vs. SCAD based on: D-Norvaline, LPC(20:5/0:0), HexCer(d18:1/18:1), Cer(m18:1/22:1), 3,3′,5-Triiodo-L-thyronine, LPC(20:0/0:0), D-Sucrose, TG (18:2/18:3/
20:2), 3-Hydroxy-3-methyl butyric acid, L-Isoleucine, Deoxycholic acid, 1-Methylxanthine, LPC (16:0/0:0), PC(18:3/20:4), PE (40:3), PC(O-42:5), and TG (14:0/20:3/20:3).
cTraditional model for MI (vs. UA) based on: age, hypertension, TG, HDLC and LVEF.
dMetabolic model for MI (vs. UA) based on: TG (14:0/20:3/22:2), 3-Hydroxy-3-methyl butyric acid, HexCer(d18:1/22:0), HexCer(d18:1/22:1), PA (36:1), PC(O-38:2), D-Methionine,
Deoxycholic acid, PC(18:2/18:2), HexCer(d18:1/26:1), PC(O-34:2), PC(18:2/20:2), L-Cystine, TG (14:1/16:1/22:3), 3-Methylcrotonyl glycine, and MG (18:1).
eCombinedmodel for MI (vs. UA) based on: age, LVEF, HexCer(d18:1/22:1), 3-Hydroxy-3-methyl butyric acid, CerP (d18:1/20:3), Cer(d18:1/22:1), PC(18:2/18:2), PC(16:0/20:3), HDLC,
Hypertension, PC(18:2/20:4), PC(O-38:2), Deoxycholic acid, L-Cystine, and D-Methionine.
AUC, area under the curve; CAD, coronary artery disease; CI, confidence interval; IDI, integrated discrimination improvement; NRI, net reclassification improvement; other abbreviations as
in Tables 1, 4.
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and a IDI of 0.105 (95% CI, 0.0749–0.135, p < 0.0001;
Table 2).

We subsequently assessed the optimal model for ability
to differentiate among CAD subgroups in the validation
cohort (Supplementary Table S11). The validation cohort was
also divided into the following groups: SCAD (N � 152); UA (N �
184); and MI (N � 157). We used the established optimal LASSO
models to further demonstrate the potential ability of subgroup
discrimination. Consistently, the combined diagnostic score

could help differentiate UA vs. MI patients (p < 0.001,
Figure 4D). Similarly, the performance on SCAD and UA
patients was not satisfactory (p � 0.084, Figure 4C).

DISCUSSION

In this study, we demonstrated that the plasma metabolomic
and lipidomic signatures changed dynamically with CAD

TABLE 3 | Feature inclusion frequency using LASSO based feature selection for MI (vs. UA).

Metabolites-only model Metabolites and risk factor model

Variable Frequency Coefficient Variable Frequency Coefficient

1 TG (14:0/20:3/22:2) 200 0.16 Age 200 −0.02
2 3-Hydroxy-3-methyl butyric acid 200 0.13 LVEF 200 −0.05
3 HexCer(d18:1/22:0) 200 0.08 HexCer(d18:1/22:1) 200 −0.13
4 HexCer(d18:1/22:1) 200 −0.16 3-Hydroxy-3-methyl butyric acid 200 0.19
5 PA (36:1) 200 −0.17 CerP (d18:1/20:3) 199 −0.08
6 PC(O-38:2) 200 −0.22 Cer(d18:1/22:1) 185 −0.05
7 D-Methionine 199 0.12 PC (18:2/18:2) 174 −0.02
8 Deoxycholic acid 199 −0.06 PC (16:0/20:3) 166 0.15
9 PC (18:2/18:2) 199 −0.12 HDLC 149 −0.04
10 HexCer (d18:1/26:1) 182 0.06 Hypertension 126 −0.04
11 PC (O-34:2) 182 −0.03 PC (18:2/20:4) 126 −0.04
12 PC (18:2/20:2) 182 −0.07 PC(O-38:2) 126 −0.02
13 L-Cystine 137 0.02 Deoxycholic acid 126 −0.01
14 TG (14:1/16:1/22:3) 137 −0.02 L-Cystine 101 0.01
15 3-Methylcrotonyl glycine 104 0.02 D-Methionine 101 0.02
16 MG (18:1) 104 −0.05
LASSO based feature selection was performed within a 5-fold cross-validation framework (200 iterations). Variables selected with frequency >100 times and their average coefficient
(Coefficient) were indicated. MI, myocardial infarction; PA, phosphatidic acid; MG, monoglyceride, other abbreviations as in Table 4.

TABLE 4 | Feature inclusion frequency using LASSO based feature selection for UA (vs. SCAD).

Metabolites-only model Metabolites and risk factor model

Variable Frequency Coefficient Variable Frequency Coefficient

1 D-Norvaline 195 −0.26 PE (40:3) 70 −0.03
2 LPC (20:5/0:0) 194 −0.08 Cer(m18:1/22:1) 70 0.06
3 HexCer(d18:1/18:1) 194 0.09 Cer(t18:0/24:1) 70 0.01
4 Cer(m18:1/22:1) 191 0.26 HexCer(d18:1/18:1) 70 0.02
5 3,3′,5-Triiodo-L-thyronine 191 −0.13 D-Norvaline 70 −0.05
6 LPC (20:0/0:0) 184 −0.08 LPC (20:5/0:0) 68 −0.01
7 D-Sucrose 184 0.05 CerP (d18:1/20:3) 58 0.01
8 TG (18:2/18:3/20:2) 177 −0.04 PC (16:0/16:1) 47 0.01
9 3-Hydroxy-3-methyl butyric acid 177 0.08 PC (18:3/20:4) 47 0.00
10 L-isoleucine 177 −0.07 LPA (18:1/0:0) 37 0.00
11 Deoxycholic acid 167 0.02 Deoxycholic acid 37 0.00
12 1-Methylxanthine 167 −0.03 1-Methylxanthine 37 0.00
13 LPC (16:0/0:0) 167 −0.05 LPC (16:0/0:0) 37 −0.01
14 PC (18:3/20:4) 153 0.00 D-Sucrose 24 0.00
15 PE (40:3) 153 −0.01 LVEF 8 0.00
16 PC(O-42:5) 153 0.05 L-isoleucine 3 0.00
17 TG (14:0/20:3/20:3) 153 −0.05 HDLC 2 0.00
18 LDLC 2 0.00
19 PE (38:7) 2 0.00
20 PC(O-42:5) 2 0.00

LASSO based feature selection was performed within a 5-fold cross-validation framework (200 iterations). Variables selected with frequency >100 times and their average coefficient
(Coefficient) were indicated. Cer, ceramide; HDLC, high-density lipoprotein cholesterol; HexCer, hexosylceramide; LASSO, least absolute shrinkage and selection operator; LDLC, low-
density lipoprotein cholesterol; LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine; LVEF, left ventricular ejection fraction; PC, phosphatidylcholine; PC(O),
alkylphosphatidylcholine; PE, phosphatidylethanolamine; SCAD, stable coronary artery disease; TG, triacylglycerol; UA, unstable angina.
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progression, implying that CAD may involve a universal
metabolomic and lipidomic disturbance. A total of 72 and 88
metabolites/lipid species have been identified to be significantly
associated with UA (vs. SCAD) and MI (vs. UA), respectively.
Moreover, the pathway analysis of these potential biomarkers
indicated that glycerophospholipid metabolism exhibited the
most significantly altered metabolic pathway in all paired
comparisons. Lastly, the newly developed combined
diagnostic models improved stratification performance of
CAD subtypes compared with the traditional risk model,
offering further evidence of dysbiotic metabolome and
lipidome and highlighting its potential to distinguish various
stages of CAD.

Specifically, the co-clustering modules within lipid classes
including phosphatidylcholine (PC), lysophosphatidylcholine
(LPC), lysophosphatidylethanolamine (LPE),
phosphatidylethanolamine (PE(P)), and
alkylphosphatidylcholine (PC(O)) tended to decrease with
plaque instability and were inversely correlated with CAD
severity and myocardial markers. Moreover, modules containing
five PCs were positively correlated with HDLC (as seen in
darkolivegreen module, Rho � 0.314, FDR � 5.77E-21) and
primarily decreased in the MI group. Different PC species
showed diverse effects on CAD progression. We observed that
PCs with longer and more unsaturated acyl chain had an inverse
association with UA (vs. SCAD). PCs are the most abundant
membrane lipids in mammals (van Meer et al., 2008) and are
the key structural molecules in the surface monolayer of HDL
particles (Kontush et al., 2013). Shorter and highly saturated acyl
chains of PC molecules confer less fluidity of the lipid monolayer,
thereby directly affecting HDL’s ability to accept cholesterol from
peripheral tissues and phospholipid hydroperoxides from low-
density lipoproteins (Kontush et al., 2013; Toledo et al., 2017).

PC in lipoproteins or from cell membrane can be further
hydrolyzed on the sn-2 position fatty acid to generate LPC and
free fatty acid by the phospholipase A2 enzyme (Norris et al.,
2014). Although the catalysis of phospholipase A2 was
expected to generate LPC to promote inflammation and
atherosclerosis development (Huang et al., 2020; Schmitz
and Ruebsaamen, 2010), most LPC species exhibited a
negative association with UA (vs. SCAD) and MI (vs. UA).
As shown in Figure 3, LPC(16:0/0:0), LPC(20:0/0:0), and
LPC(20:5/0:0) were decreased in UA patients compared
with SCAD patients. LPC(22:0/0:0) and LPC(18:2/0:0) were
decreased in MI patients (vs. UA), which is consistent with
previously reported results (Fan et al., 2016; Lu et al., 2017).
LPC is reportedly an inducer of endothelial dysfunction and a
regulator of vascular tone (Zhang et al., 2009; Paapstel et al.,
2018). Lower levels of LPC in the circulation may result from
the increase in the catabolism of these species or to their more
efficient removal from blood circulation into the tissues, either
in the form of modified lipoprotein or directly from albumin
(Meikle et al., 2011).

One of the prominent features observed was that a number of
PE(P) species with polyunsaturated fatty acids displayed a
significant inverse association with MI compared with UA
patients (Figure 3B). Alkylphospholipids [alkylphosphatidylcholine,

PC(O) and alkylphosphatidylethanolamine, PE(O)] and
alkenylphospholipids [primarily presented as phosphatidylcholine,
PC(P), and phosphatidylethanolamine, PE(P) species, equivalently
known as plasmalogens] have been proposed to protect against
atherosclerosis due to their antioxidant characteristics and a
high proportion of polyunsaturated fatty acids and alkyl/alkenyl
linked fatty acids. They are more susceptible to oxidation under
heightened oxidative stress (Lessig and Fuchs, 2009; Ford,
2010). In addition, plasmalogens are essential for intracellular
cholesterol transport (Munn et al., 2003) and HDLC-mediated
cholesterol efflux (Maeba et al., 2018). Recently, the inclusion of
plasmalogens into reconstituted HDL improved the lipoprotein
anti-apoptotic activity on endothelial cells (Sutter et al., 2015).
Therefore, low plasmalogens levels in plasma may reflect the
high oxidative stress and the action of reactive oxygen species on
these lipids.

However, the module containing ceramides was elevated
with disease shifting and was positively associated with CAD
severity, myocardial markers, and inflammatory state. Notably,
hexosylceramide species played an important role in the
development of CAD. Specific hexosylceramide species [e.g.,
HexCer(22:0/0:0)] were related to the enhanced coronary
atherosclerosis burden. Both mono- and dihexosylceramide
have a direct association with the risk of future
cardiovascular events in patients with type 2 diabetes, which
is a potential atherogenesis-contributing factor (Alshehry et al.,
2016).

Some plasma ceramide levels were observed to be up-
regulated with the disease shifting direction as SCAD, UA,
and MI and positively correlated with atherosclerosis burden
quantified by the SYNTAX score and SYNTAX score Ⅱ and the
evidence of subclinical myonecrosis quantified by cTnI. This
result corroborates the finding that elevated plasma ceramide
levels are independent biomarkers of MACE (Laaksonen et al.,
2016). Cer (d18:1/20:1) was significantly elevated in UA (vs.
SCAD) and we previously reported that Cer (d18:1/20:1) was
negatively related with LVEF and could serve as an
independent predictor of MACE and all-cause mortality
(Qin et al., 2020). As the metabolites of sphingolipid,
ceramides are considered lipotoxic inducers of disturbed
glucose homeostasis and insulin resistance and causative agents
in the pathophysiology of atherosclerosis (Chaurasia and Summers,
2015; Laaksonen et al., 2016). Studies in rodentmodels revealed that
the inhibition of ceramide synthesis prevents ischemic
cardiomyopathy-related heart failure post hypoxia or MI while
simultaneously diminishing ventricular remodeling and lowering
cell death rates and changing the abundance of proinflammatory
detrimental neutrophils (Park and Goldberg, 2012; Hadas et al.,
2020). The underlying functions of ceramides involve the
promotion of lipoprotein transport into the arterial wall, platelet
activation, and endothelial dysfunction via uncoupling of NO
signaling pathways (Chaurasia and Summers, 2015; Meikle and
Summers, 2017).

In addition to the use of certain lipid species of sphingolipids
and glycerophospholipids as predictors of CAD progression, the
downregulation of deoxycholic acid in MI, which plays key roles
in bile acid and cholesterol metabolism, indicated that the
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metabolism of cholesterol and phospholipids might be inhibited
(Sayin et al., 2013). Moreover, low triiodothyronine was inversely
associated with UA occurrence, which indicated a close link
between thyroid function and atherosclerosis process. Since
triiodothyronine is the most biologically active thyroid
hormone, it plays a vital role in regulating heart rate,
contractile force, and peripheral arterial resistance (Jabbar
et al., 2017). A meta-analysis of 56 studies showed that a
reduced serum triiodothyronine level was further associated
with the increased risk of all-cause and cardiogenic death, and
was an independent predictor of MACE (Wang B. et al., 2017).
Lastly, a number of amino acids and their derivatives were altered
with CAD shifting. Elevated levels of plasma cystine (the
disulphide form of cysteine) were positively associated with
MI (vs. UA) and werepositively correlated with SYNTAX
score Ⅱ and hs-CRP, which is indicated to link with a higher
oxidative stress and endothelial dysfunction (Oliveira and
Laurindo, 2018). A high level of methionine served as a strong
predictor for MI (vs. UA) selected by LASSO. A previous study
has shown that methionine promotes atherosclerotic plaques
independent of homocysteine levels in the rodent model
(Selhub and Troen, 2016).

Our study had some limitations that needed be considered.
First, due to the upgrading of analytical platform and technical
issues with the mass spectrometry, the metabolites and lipid
species detected were not in accordance, thereby resulting in
the lack of four independent predictors for UA (vs. SCAD) model
and one for MI (vs. UA) model which affected the model
estimation in the verification cohort. Second, site-to-site and
observer-to-observer variations in the evaluation of coronary
stenosis may exist, leading to diagnostic bias. Third, the
improvement in AUC for a model is often very minor, yet the
category-free NRI may overstate the incremental value of a
biomarker. Last, our study population tended to consist of
middle-aged to elderly Chinese patients. Thus, other
ethnicities within Asia and other races, such as Caucasians
and Africans, should be included in future studies.

CONCLUSION

Multiple plasma metabolites and lipid species differed between
CAD subgroups, and the alterations were correlated with CAD
severity. The metabolites involved in glycerophospholipid
metabolism appeared to be a predominant alteration in CAD
progression. A small number of these biomarkers significantly
improved the diagnostic value for differentiating patients between
CAD types. These findings may help to predict disease progression
and clinical outcome and indicate the potential for novel
intervention strategies to attenuate disease progression.
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