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Abstract: The ductus arteriosus (DA) is a shunt vessel between the aorta and the pulmonary artery
during the fetal period that is essential for the normal development of the fetus. Complete closure
usually occurs after birth but the vessel might remain open in certain infants, as patent ductus
arteriosus (PDA), causing morbidity or mortality. The mechanism of DA closure is a complex
process involving an orchestration of cell–matrix interaction between smooth muscle cells (SMC),
endothelial cells, and extracellular matrix (ECM). ECM is defined as the noncellular component
secreted by cells that consists of macromolecules such as elastin, collagens, proteoglycan, hyaluronan,
and noncollagenous glycoproteins. In addition to its role as a physical scaffold, ECM mediates diverse
signaling that is critical in development, maintenance, and repair in the cardiovascular system. In this
review, we aim to outline the current understandings of ECM and its role in the pathophysiology of
PDA, with emphasis on DA remodeling and highlight future outlooks. The molecular diversity and
plasticity of ECM present a rich array of potential therapeutic targets for the management of PDA.
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1. Introduction

The ductus arteriosus (DA) is a shunt vessel between the aorta (Ao) and the pulmonary artery
(PA) during the fetal period that is essential for the normal development of the fetus. The DA
sometimes persists after birth and causes common clinical morbidity, especially in low-birthweight
infants [1]. The blood from the high-pressure Ao shunts to the low-pressure PA (left to right shunt) and
causes pulmonary edema and decreases systemic perfusion, notably renal, mesenteric, and cerebral
circulation [2]. The increased hemodynamic burden brought by pulmonary overcirculation eventually
results in congestive cardiac failure, as shown in Figure 1.
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patients [4]. Moreover, despite advances in the understanding of patent ductus arteriosus (PDA) 
molecular pathogenesis, pathways mediated by extracellular matrix (ECM) for the regulation of DA 
closure are not fully understood. Further knowledge of PDA pathogenesis is necessary to dissect the 
complex cell–matrix crosstalk regulating DA closure [5]. 

 
Figure 1. Pathophysiology of hemodynamic burden in patent ductus arteriosus (PDA). Blood from 
the high-pressure aorta shunts to the low-pressure pulmonary artery, causing pulmonary hyperemia. 

2. DA: Mechanism of Closure 

Patency of fetal DA is maintained by the vasodilatory effect of low fetal oxygen tension, and 
placental cyclooxygenase-mediated products [6,7]. Successful closure of the DA requires the reversal 
of these patency drivers during the transition from fetal to the neonatal period. Indeed, the closure 
mechanism is then effected in two phases: smooth muscle constriction (functional closure) within 18–
24 h after birth, and remodeling of the intima (anatomical closure) over the next few days or weeks. 
In this review, we focus on the intimal remodeling that highlights the critical role that ECM plays to 
allow successful DA closure. 

2.1. Functional Closure 

Within 24–48 h of birth, the decrease of PGE2 is mediated by the now-functioning lung 
metabolizing PGE and the elimination of the placental source. The withdrawal of the PGE-induced 
vasodilation results in the contraction of the medial layer in the DA that results in lumen obliteration 
and ductal shortening. Consequently, the loss of luminal blood flow causes a zone of hypoxia in the 
muscle media that is responsible for the ultimate anatomical closure [8]. Moreover, the postdelivery 
induced abrupt increase in oxygen tension inhibits DA smooth muscle cell (DASMC) voltage-
dependent potassium channels that generate an influx of calcium that mediates DASMC constriction 
[9]. 

Figure 1. Pathophysiology of hemodynamic burden in patent ductus arteriosus (PDA). Blood from the
high-pressure aorta shunts to the low-pressure pulmonary artery, causing pulmonary hyperemia.

Current pharmacologic management mostly relies on the inhibition of prostaglandin (PG)
synthesis, such as with indomethacin or ibuprofen [3]. However, this is not responsive in 25% of
patients [4]. Moreover, despite advances in the understanding of patent ductus arteriosus (PDA)
molecular pathogenesis, pathways mediated by extracellular matrix (ECM) for the regulation of DA
closure are not fully understood. Further knowledge of PDA pathogenesis is necessary to dissect the
complex cell–matrix crosstalk regulating DA closure [5].

2. DA: Mechanism of Closure

Patency of fetal DA is maintained by the vasodilatory effect of low fetal oxygen tension,
and placental cyclooxygenase-mediated products [6,7]. Successful closure of the DA requires the reversal
of these patency drivers during the transition from fetal to the neonatal period. Indeed, the closure
mechanism is then effected in two phases: smooth muscle constriction (functional closure) within
18–24 h after birth, and remodeling of the intima (anatomical closure) over the next few days or weeks.
In this review, we focus on the intimal remodeling that highlights the critical role that ECM plays to
allow successful DA closure.

2.1. Functional Closure

Within 24–48 h of birth, the decrease of PGE2 is mediated by the now-functioning lung metabolizing
PGE and the elimination of the placental source. The withdrawal of the PGE-induced vasodilation
results in the contraction of the medial layer in the DA that results in lumen obliteration and ductal
shortening. Consequently, the loss of luminal blood flow causes a zone of hypoxia in the muscle media
that is responsible for the ultimate anatomical closure [8]. Moreover, the postdelivery induced abrupt
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increase in oxygen tension inhibits DA smooth muscle cell (DASMC) voltage-dependent potassium
channels that generate an influx of calcium that mediates DASMC constriction [9].

2.2. Anatomical Closure

Within the next two to three weeks, morphological and molecular remodeling yield the obliteration
of DA lumen. The hypoxic zone induces local SMC death in the media and the production of growth
factors that stimulate neointimal thickening, fibrosis, and permanent closure. Furthermore, vessel wall
hypoxia inhibits endogenous PGE and nitric oxide production and averts subsequent reopening [10].
The gross histological composition of fetal DA resembles that of the contiguous main PA and descending
Ao. Distinctions lie within the media of the arteries. Whereas circumferentially arranged layers of
elastic fibers are present in the large arteries, longitudinally and spirally arranged layers of smooth
muscle fibers are present within loose, concentric layers of elastic tissues in DA. Additionally, the intima
of the DA is thickened and irregular, with abundant mucoid that is referred to as intimal cushions.
The intrinsic difference in ECM composition and the structuring of DA compared to that of Ao
emphasize the critical role of ECM in the pathophysiology of PDA.

3. Role of ECM in the Cardiovascular System

Exploring the role of ECM in systemic vascular intimal thickening allows us to unravel the
complexity of ECM function before diving into its role in PDA and translate recent discoveries to
this disease model. ECM is defined as the noncellular component secreted by cells that consists
of macromolecules such as elastin, collagens, proteoglycan, hyaluronan (HA), and noncollagenous
glycoproteins (GP). Despite its function as a physical scaffold, ECM plays a role in diverse signaling that
is critical in development, maintenance, and repair. Cell–matrix interactions not only encompass cell
receptor binding properties such as adhesion, migration, proliferation, differentiation, and survival [11],
but also accommodation of multiple proteins with growth factors that establishes chemotaxis gradient.
The dynamic architecture bioactively interacts with cells and generates signals that allow adaptive
responses of intracellular and extracellular compartments to control cellular behavior, phenotype,
and milieu homeostasis. Constant remodeling between matrix deposition and matrix degradation by
proteases and their intricate control of activation and inhibition afford a delicate balance that may be
disturbed during vascular pathologies. Excessive accumulation of dysregulated ECM may sabotage its
physiological function as well.

Furthermore, matrix remodeling may remain futile without successful assembly into the
three-dimensional physiological organization. In Table 1, we outline the diverse function of ECM in
systemic vasculature. In Table 2, we summarize the mediators that interact with ECM in systemic
vascular intimal thickening that is not confined to DA. Similarities in intimal thickening may offer
additional insights referenced from vascular pathologies in atherosclerosis and arterial injury.

Table 1. Role of extracellular matrix (ECM) in systemic vascular intimal thickening.

Matrix Element Effect on SMC Mechanism Reference

Glycoprotein

Fibronectin Proliferation Cyclin activation [12]
Vitronectin Migration plasminogen activator inhibitor-1 [13]

Proteoglycan

Heparan sulfate Anti-proliferation Growth factor interaction [14–16]
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Table 2. Role of ECM-related mediators in systemic vascular intimal thickening.

ECM Mediator Effect on SMC Mechanism Reference

Matrix binding receptors

Focal Adhesion Migration Increased migration through ECM adhesion [17]
Vitronectin receptor Migration Increased SMC accumulation [18]

Matrix degrading enzymes

TIMP Anti-migration MMP inhibition [19]
MMP Migration Matrix degradation [20]
PDGF Migration MMP expression [21]
t-PA Migration Matrix degradation [22]
LOX Anti-migration Matrix crosslink [23]

Peroxidasin Anti-migration Matrix crosslink [24]

Carbohydrate Modification

Perlecan Anti-proliferation unknown [25].
Biglycan Pro-inflammation unknown [26]

Gal-1 Anti-proliferation suppresses PDGF induced response [27]

Matrix mediating cytokine

TGFβ1
Matrix production

Proliferation
Fibronectin and collagen production, DNA

synthesis [28]

Thrombin Migration MMP inhibition [29]

4. Role of ECM in DA Remodeling

Remodeling of DA is essential to permanent anatomical closure. The process is complex,
with several mechanisms including intimal cushion formation, SMC migration and proliferation,
endothelial cell proliferation, blood cell interaction [30], and ECM production. In this review, we will
discuss the fundamental role of ECM in the pathogenesis of PDA. In Tables 3 and 4, we summarize the
different roles of matrix elements in DA remodeling.

Table 3. Roles of matrix elements in ductus arteriosus (DA) remodeling.

Matrix Element Effect Mechanism Reference

Glycoprotein

Fibronectin Anti-adhesive Cytoskeletal reorganization [31,32]
Laminin Anti-adhesive Inhibit SMC binding to collagen [31]

Elastin Elastin metabolism Reduced IEL fragmentation enforces barrier
integrity against migration [33,34]

Proteoglycan

Chondroitin sulfate Elastin assembly Release elastin binding protein reduces decreases
elastin fiber assembly [35]

Dermatan sulfate Elastin metabolism Release elastin binding protein reduces decreases
elastin fiber assembly [35]

Glycosaminoglycan

Hyaluronan Migration
The influx of water loosens and expands the

subendothelial region, SMC binds to hyaluronan
through hyaluronan binding protein

[32,36]

Diverse signaling pathways orchestrate the subsequent luminal DA remodeling where complete
closure is sequentially mediated in four phases: the deposition of ECM in the subendothelial region,
the disassembly of the internal elastic lamina (IEL), loss of elastic fiber in the medial layer, and followed
by the migration of SMC into the subendothelial space for the formation of intima thickening.
We summarize the key sequential steps of anatomical closure in Figure 2.
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Table 4. Overview of different matrix mediators and how they may influence DA closure.

ECM Mediator Effect Mechanism Reference

Matrix binding receptor

Integrin Adhesion Inhibit
migration Increases SMC adhesion to LN [31]

Matrix degrading enzymes

t-PA Elastin metabolism Increases MMP-2 and MMP-9 expression that promotes
elastic laminae degradation [37]

LOX Elastin formation Catalyze elastin crosslink [23]

Matrix production cytokines

PGE2 Hyaluronan deposition Induces hyaluronan synthase type 2 mRNA [38]

IL-5 Inhibit proliferation,
matrix production Decreased SMC proliferation and hyaluronan production [39]

TGFβ1 Adhesion Increased focal adhesion plaque formation and integrin
receptors expression [40,41]

BMP9,10 Differentiation, matrix
production

Bmp9 knockout in mice led to imperfect closure of the DA.
Promotes intimal cell differentiation, ECM deposition [42]

Others

Tropo-elastin Elastin formation Decreases elastin binding protein expression [35]
Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 6 of 18 
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into the subendothelial space of undifferentiated medial smooth muscle cell (SMC) for the formation 
of intima thickening. Finalizing the closure by luminal obliteration, SMCs undergo apoptosis and 
fibrosis to form ligamentum arteriosus. ADV: adventitia, M: media, SR: subendothelial region, EC: 
endothelial cell, IEL: internal elastic lamina, ECM: extracellular matrix. 
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DA closure begins with ECM deposition in the subendothelial region (SR). SR is defined as the 
layer between the IEL and endothelial cells (EC). Initially, SR is composed of granular and amorphous 
materials without collagen fibrils and elastin. In the PDA, the ECs remain attached to the IEL. The 
composition of ECM is critical in determining the success of endothelial detachment that permits SR 
thickening. De Reeder et al. immunohistochemically studied the topography of the ECM components 
that act in the adherence of the EC to the underlying intimal layers: collagen type I, III, IV, fibronectin 
(FN), and laminin (LN). 

Interestingly, the ECM profile alters significantly before and after the detachment of the ECs. 
Where LN and collagen type I are diffusely present before but absent after separation of the EC. 
Collagen type III, barely detectable prior to detachment, become visible underneath the detached 
cells [43]. Consistent with ECM’s role in mediating ductal closure, these observed alterations of the 
ECM profile were confined to DA regions that developed intimal thickening only. The finding fails 
to explain the underlying mechanism for the determination of EC detachment that has been 
previously reported in a study to be related to an increase in HA [43]. 
  

Figure 2. Sequential steps required for intimal thickening of ductus arteriosus closure. Complete closure
is sequentially mediated in four phases: the deposition of the extracellular matrix in the subendothelial
region, the disruption of the internal elastic lamina (IEL), followed by the migration into the
subendothelial space of undifferentiated medial smooth muscle cell (SMC) for the formation of
intima thickening. Finalizing the closure by luminal obliteration, SMCs undergo apoptosis and fibrosis
to form ligamentum arteriosus. ADV: adventitia, M: media, SR: subendothelial region, EC: endothelial
cell, IEL: internal elastic lamina, ECM: extracellular matrix.
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4.1. ECM Deposition in the Subendothelial Region

DA closure begins with ECM deposition in the subendothelial region (SR). SR is defined as
the layer between the IEL and endothelial cells (EC). Initially, SR is composed of granular and
amorphous materials without collagen fibrils and elastin. In the PDA, the ECs remain attached to the
IEL. The composition of ECM is critical in determining the success of endothelial detachment that
permits SR thickening. De Reeder et al. immunohistochemically studied the topography of the ECM
components that act in the adherence of the EC to the underlying intimal layers: collagen type I, III, IV,
fibronectin (FN), and laminin (LN).

Interestingly, the ECM profile alters significantly before and after the detachment of the ECs.
Where LN and collagen type I are diffusely present before but absent after separation of the EC.
Collagen type III, barely detectable prior to detachment, become visible underneath the detached
cells [43]. Consistent with ECM’s role in mediating ductal closure, these observed alterations of the
ECM profile were confined to DA regions that developed intimal thickening only. The finding fails to
explain the underlying mechanism for the determination of EC detachment that has been previously
reported in a study to be related to an increase in HA [43].

4.1.1. Hyaluronan (HA)

A product of the PGE-EP4 axis, HA deposition, is critical in promoting SMC migration into the
SR. Examining the ECM of the SR, De Reeder et al. found the thoroughly deposited HA in the entire
region of closing DA was absent in PDA [36]. They suggested that the hygroscopic properties of HA
might cause an influx of water that loosens and expands the SR, which promotes SMC migration [36].
It is well established that PGE2 plays a primary role in maintaining the patency of the DA via its
receptor EP4; however, genetic disruption of the PGE pathways, such as genetically modified mice
with receptor EP4 deficiency [44,45], and COX-1 and COX-2 disruption [46] both paradoxically result
in fatal patent DA in mice. Diving into these findings, Yokoyama et al. have confirmed that patency
of DA observed in EP4-disrupted neonatal mice results from the absence of intimal thickening [38].
Histologically, HA production was found to be markedly reduced in EP4-disrupted DA compared
to that of the wild-type DA. They proposed that the PGE-EP4 induced HA secretion is mediated
through the PGE2-EP4-cyclic AMP (cAMP)-protein kinase A (PKA) signaling axis that upregulates
HA synthase type 2 mRNA [7,47]. Dissecting into the adenylyl cyclases (AC) responsible for HA
secretion, Yokoyama et al. also found that AC2 and AC6 are more highly expressed in rat DA than
in the aorta during the perinatal period [48]. Using AC subtype-targeted siRNAs and AC6-deficient
mice suggest that AC6 is responsible for the HA-mediated intimal thickening of the DA, whereas
AC2 inhibits AC6-induced HA production [48]. Interestingly, the PGE-EP4 axis was expanded as
Iwasaki et al. [39] showed that interleukin-15 (IL-15) inhibits SMC proliferation and HA production in rat
DA through attenuation of PGE1-induced HA production in a dose-dependent manner. Taken together,
PGE/EP4/cAMP pathway and IL-15 both have essential roles in the regulation of HA production.

4.1.2. Fibronectin (FN)

FN promotes DASMC migration, and its translational regulation depends on a novel target light
chain 3 (LC-3). Collecting SMCs from lamb DA at 100 days of gestation, Boudreau et al. found that
DASMC migration could be inhibited by administrating peptides that block cell–FN interactions [32].
Diving into FN-dependent SMC migration, other investigators used in vitro cell culture studies to
demonstrate that LC-3 overexpression in SMC results in enhanced FN synthesis [49]. These findings
suggest that LC-3, a microtubule-associated protein, can act as a RNA-binding protein that enhances
FN mRNA translation in DASMCs.

Mason et al. encoded an mRNA decoy to investigate whether binding and sequestering LC-3
may inhibit WT FN mRNA translation [50]. They found that the decoy RNA sequestered LC-3 away
from endogenous FN mRNA and inhibited its translation. As LC-3 is sequestered, recruitment of
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FN mRNA to the polyribosomal translational machinery is inhibited, and FN translation is stalled.
Using gene-targeting technology in utero with decoy RNA that transfected DA vessels at the onset of
intimal cushion formation, they successfully inhibited intimal cushion formation and retained luminal
patency of the DA at the full-term neonatal lambs. The DA transfected with RNA decoy presented
with decreased medial ductal thickness, reduced distance to the elastic lamella, and reduced FN in
the ECM. This experiment highlights the potentials of gene therapy in targeting matrix components
in ductal-dependent congenital heart defects. Furthermore, not only is FN translation implicated in
intimal thickening, aberrant posttranslational modifications of FN have been reported to be implicated
in the settings of vasculature remodeling of aneurysms and arterial injury [12,51].

4.2. Internal Elastic Lamina Disruption

The ultrastructure of the IEL undergoes significant developmental changes towards late gestation
with substantial disruptions and impaired elastogenesis [52]. Tada et al. found that a single continuous
IEL was still well-defined at 16 weeks’ gestational age; however, at 22–28 weeks, 80% of the DA samples
had a duplication and interruption of the IEL in 10–50% of the whole circular structure. And by
29–31 weeks, 60% of the DA was disrupted, followed by 100% of disruption at 32–40 weeks with an
interruption of IEL in >50% of the whole circular structure [53]. Hinek et al. have demonstrated that
truncated 52 kDa tropoelastin and the reduction of elastin binding protein negatively regulates elastic
fiber formation in the DA [35,54]. The inbred of Brown–Norway rats, presenting with hereditary PDA,
were associated with an increased vascular fragility mediated by an aortic elastin deficit resulting
from decreased elastin synthesis. Bokenkamp et al. reported that PDA is related to the integrity of
subendothelial IEL and defective intimal thickening formation [33]. Together with reports on the
persistence of the DA with elastic fiber abnormalities in the human PDA [34], these findings suggest
that the IEL can limit the passage of SMC from the media to the intima and its disruptions play a role
in determining the fate of ductus closure [55]. Moreover, the major morphological difference between
the standard mature DA and the persistent DA is the spatially close relationship between EC and the
subendothelial IEL, highlighting an altered elastin metabolism in the PDA [34].

4.2.1. LOX

The sparse and truncated properties of DA elastic fibers speculated to contribute to vascular
collapse and subsequent closure of the DA after birth [36]. Yokoyama et al. found that EP4 significantly
inhibited elastogenesis by decreasing lysyl oxidase (LOX) protein expression, which catalyzes elastin
crosslinks in DASMCs but not in Ao SMCs. In EP4-knockout mice, electron microscopic examination
showed that the DA relates to an elastic phenotype that was similar to the neighboring Ao. Attempting to
establish the hypothesis in the clinical sample, they collected human DA and Ao tissues from seven
patients. They found a negative correlation between elastic fiber formation and EP4 expression,
as well as between EP4 and LOX expression. Dissecting the molecular pathways behind EP4-mediated
elastogenesis inhibition, Yokoyama et al. confirmed that the EP4-cSrc-PLCγ-signaling trail promoted
lysosomal degradation of LOX and that together with in vitro experiments, these data suggest that
PGE2-EP4 signaling inhibits elastogenesis in the DA by degrading LOX protein [7].

4.2.2. t-PA

Tissue-type plasminogen activator (t-PA) expressed in DA EC modulates intimal thickening
via activation of matrix metalloproteinase-2 (MMP-2) and subsequent disruption of IEL. Saito et al.
reported that an abundantly expressed molecule in EC of the rat DA, t-PA possesses an intrinsic
gelatinase activity in converting plasminogen into plasmin that activates MMP-2 [56] and MMP-9 [57],
molecules that are recognized in degrading the IEL. Investigating gelatinase activity on a gestational
day 21, Saito et al. found an association between the disruption of IEL and marked gelatinase activity,
which was inhibited by the MMP inhibitor EDTA. Moreover, gelatin zymography studies demonstrated
that pro-MMP-2 was higher in rat DA EC than in Ao EC, with greater MMP-2 activation detected
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in those of DA. The association of plasminogen was confirmed as supplementation of plasminogen
promoted the disruption of IEL and gelatinase activity of MMP. Moreover, t-PA-targeted siRNAs
significantly attenuated plasminogen-induced disruption of IEL and gelatinase activity in the 3D
vascular models. These data support the concept that the conversion of plasminogen to plasmin
promoted IEL disruption via MMP activation. Saito et al. then confirmed their in-vitro findings in
human DA from five patients examining t-PA expression using quantitative RT-PCR. In their study,
the authors suggest that that t-PA is secreted from DA ECs and that it promotes the plasmin-induced
activation of MMP-2 and the subsequent disruption of the IEL, which may contribute to intimal
thickening formation in the DA [37].

4.2.3. Carbohydrate and Its Modifications

ECM contains a diverse array of glycan-based structures whose carbohydrate modifications dictate
numerous interactions and confer a high degree of selectivity regulating receptor activation [58,59],
cell–cell interaction, and cell–matrix interaction [60]. Altered glycosylation of matrix acquires different
adhesion and potential of migration properties as the altered conformation of the matrix component
may cause a change in available glycan ligands for SMC to bind or activate receptors. Hence reduced
cell–matrix interaction may result in reduced migration, growth factor activation and consequent
inhibition of intimal thickening. As delineated below, the diverse role of carbohydrate modifications in
sequestering growth factors, promoting endothelial–mesenchymal transition, and dampening growth
signals brings to light its potential translation to PDA research.

Chondroitin Sulfate

Sulfated glycosaminoglycan (GAG) and chondroitin sulfate (CS), were found to modify elastin
metabolism in DASMCs. Hinek et al. demonstrated that both N-acetylgalactosamine GAGs, CS and
dermatan sulfate (DS) cause the release of 67 kD elastin binding protein (EBP) from the SMC and thus,
impairs the assembly of elastin fiber. The authors observed that there is an intrinsic reduction of EBP in
the fetal lamb. When neonatal rat Ao SMC was incubated with CS and DS, EBP was reduced through a
mechanism of shedding from SMC membranes into the conditioned medium. This process was associated
with impaired elastin fiber assembly. With these findings, Hinek et al., propose that an increase of CS or DS
impairs assembly of newly synthesized elastin in DA and allows intimal thickening development [35].

Biglycan

Biglycan, a small leucine-rich proteoglycan bearing CS/DS/GAG chains and N-linked
carbohydrates [61], is normally sequestered in ECM but is proteolytically released during stress
or injury. These proteoglycans have been reported to act as a ligand of innate immunity receptors [62],
modulate MMP behavior [63], regulate collagen fibril and matrix [64] and interact with various
growth factors such as TGF- β, PDGF, and TNF-α [63]. A similar proteoglycan, decorin enhances the
PDFG- and IFN-γ- induced proliferative effects in vascular smooth muscle cell (VSMC) [65], and its
decoy DS-SILY20 dampens the response through sequestration of the cytokines via matrix [65] and
successfully reduced intimal thickening. Early stage of atherosclerosis has been associated with an
accumulation of biglycan [26]. The proteoglycan biglycan is regarded as a modifier of remodeling in
intimal thickening of vascular injury [66]. Activation of the AT1 receptor, AngII upregulated TGF-β
-induced biglycan secretion. Secreted biglycan has been found to interact with numerous matrix
components, such as collagen and elastin, and thus become sequestered in the ECM, but liberated
during stress through proteolysis. Biglycan has been regarded as the inducer of vascular remodeling
in atherosclerosis [66].

Perlecan

Several reports have indicated that the basement membrane specific heparan sulfate proteoglycan,
perlecan, that has been implicated in modulating VSMC intimal thickening [25,67]. Perlecan was found
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to induce different cellular phenotypes in various cell types inhibiting proliferation of EC and SMC,
an implied to mediate fibrosis and intimal thickening [25]. Sulfate proteoglycan, such as endocan, also has
been found for the first time to participate in the process of endothelial–mesenchymal transition [68].

Gal-1

N/O-linked glycosylation of Gal-1 protein that binds specifically to b-galactoside sugar suppresses
PDGF induced proliferation and migration in a glycan-dependent manner. The migrative phenotype of
Gal-1-KO-VSMCs is associated with reduced adherence of VSMC on FN and decreased activation of FAK
phosphorylation mediated by increased dephosphorylation and FA disassembly, in a glycan-dependent
manner [27]. It is proposed that extracellular Gal-1 protein strengthens VSMC FN interactions and FA
stability, and thus limits intimal hyperplasia postvascular injury [27].

4.3. ECM-Induced Migration of Medial SMC into the SR

Despite evidence accumulating that prior HA deposition promotes SMC migration into the
subendothelial layer to form intimal thickening [38], a growing literature has begun unraveling
additional mechanisms that ECM components may underlie SMC migration in intimal thickening.
This is a process that may not be simply HA-mediated, but mediated by a cascade of signaling repertoire
that is tailored to the spatial and functional coordination of its constituency. It has been proposed that
in the ductus, increased production of endothelial HA and SMC CS and FN, and the impaired elastin
fiber assembly are features critical to SMC migration into the SR and intimal cushion formation.

4.3.1. Hyaluronan Binding Protein

The self-regulation of HA binding protein (HABP) is essential in the successful migration of SMC into
the SR. Observing the distinct ECM secretory repertoire of SMCs and ECs of DA compared to that of adjacent
Ao and PA, Boudreau et al. aimed to investigate whether these matrix components may induce DASMC or
Ao SMC migration seeded on collagen gel. The addition of peptides or antibodies against FN significantly
decreased migration in the DA cells but did not affect migration in the Ao. Moreover, the inclusion of HA in
the gel further enhanced DASMC migration, while the same enhancement was not observed in Ao SMC
migration. The ability of HA in inducing SMC migration was attenuated when treated with antibodies
that bind to surface of HABP, a protein synthesized in greater amounts in DASMC compared to that of Ao.
These results, together with their previous finding of HA accumulation, suggest that both increased FN and
HABP play the roles in enhanced migration of DASMCs and propose mechanisms for increased DASMC
migration into the subendothelial matrix [32].

4.3.2. Integrin

ECM receptors on DASMCs must possess the ability to promote cell migration through both
interstitial and basement membrane matrices to allow intimal thickening. Integrin receptors expressed
on SMCs modulate the migratory properties of the cell, and they enable SMC to adhere to and migrate
on ECM components like FN, LN, and collagens I and IV. Clyman et al. found that while SMC adhesion
and migration on these substrata are entirely dependent on the presence of functioning f31 integrins,
cell migration depends on both f31 and f33 integrins [69]. Furthermore, ligand affinity chromatography
and immunoprecipitation techniques identified a distinct pattern of integrins binding to each matrix
component: FN (alpha 5 beta 1, alpha 3 beta 1, alpha V beta 1), LN (alpha 1 beta 1, alpha 7 beta 1),
vitronectin (VN) (alpha V beta 1), I (alpha 1 beta 1, alpha 2 beta 1), and IV (alpha 1 beta 1). In contrast,
the beta 3 integrin, alpha V beta 3, bound to all the substrates tested: FN, LN, VN, I, and IV. The results
indicate that beta 1 and beta 3 integrins may play different roles in attachment and migration as SMC
moves through the vascular ECM to produce obliteration of the DA lumen [69].
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4.3.3. TGF- β

Exposure of DASMC to TGF-β increased the formation of focal adhesion (FA) plaques that are the
integrin-containing, multiprotein structures that act as tight linkers between the cell’s intracellular
actin bundles and matrix substrate. Tannenbaum et al. found that TGF-β appears to increase the ability
of integrin receptors to associate ECM tighter with the cytoskeleton, increasing the cell’s adherence to
the ECM and thus, limiting their mobility [40]. Levet et al. dissected into two members of the TGF-β
family: bone morphogenetic proteins BMP9 and BMP10, and found that engineered Bmp9 knockout
mice increased the event of an imperfect DA closure [42]. Administrating neutralizing anti-BMP9
antibodies to postnatal Bmp9 knockout mice exacerbated the closure defects and promoted DA
reopening. Transmission electron microscopy images revealed that these defects were associated with
dedifferentiation of endothelial to mesenchymal cells and gross reduction of matrix deposition at the
lumen. They further confirmed that human genomic data could define a critical region in chromosome
2 encoding genes including BMP10 that correlated with the presence of PDA [42]. Together, these data
establish roles for BMP9 and BMP10 in DA closure. Additionally, literature has reported that TGF-β
enhances matrix production and remodeling when added to cultured SMCs [40,70].

4.3.4. Peroxidasin

ROS has long been established to induce vascular remodeling and VSMC migration. Considering the
abrupt exposure to the rise of oxygen during the fetal–neonatal transition, activation of oxidation
pathways plays a significant role in intimal thickening. Peroxidasin has been identified to be elevated in
vascular walls that undergo remodeling, and knockdown of peroxidasin reduces Ang II-induced VSMC
proliferation. As AngII belongs to the PGE2-EP4 axis that has been previously established in PDA, Shi et al.
found that VSMC deficient in EP4 increased AngII-elicited vasoconstriction and pathological vascular
remodeling [24]. Yang et al. further elaborated the role of peroxidasin in cardiac hypertrophy and found
that peroxidasin mediated AngII-induced cardiac hypertrophy via the Nox2/VPO1/HOCl/ERK1/2 redox
signaling pathway where Ang II increased the hypertrophy-related gene (BNP/ANF) expression [71].
Although the peroxidasin concept has not been established in PDA, inhibition of its downstream AngII
with BNP has prevented proliferation and migration of DASMCs through reducing mitochondrial ROS
production [72]. The overlapping pathways of peroxidasin in the DASMC phenotype suggest that
peroxidasin can be a promising therapeutic target for clinical management of DA patency.

Moreover, peroxidasin has been previously discovered in lower organisms to stabilize or seal ECM
by collagen IV crosslinking [73–75], and such a genetic defect is also implied in the human setting [76,77],
suggesting an exciting target to study in the role of matrix defects in the pathogenesis of PDA [78,79].

4.3.5. Focal Adhesion

FA not only bridges cell–matrix communication in vascular development but also plays a role
in cellular repair. ECM proteins associated with focal adhesions and their integrin receptors have
been documented at the levels of homing, tissue organization, and differentiation. Targeted gene
deletion studies have demonstrated the critical roles that FN and a5b1 integrin serve in stabilization
and branching morphogenesis during vascular development in the murine embryo [80]. FA mediates
bidirectional crosstalk between ECM and the cytoskeleton, where biochemical and mechanical cues are
exchanged. This ECM signaling directs rearrangements in cytoskeletal organization and nuclear gene
expression in response to changing conditions in the circulation [81].

4.4. Obliteration of the Lumen

The changes in the ECM that induce neointimal formation are also observed in pathological
conditions in pulmonary and coronary arteries. The plasticity of the pulmonary circulation in the
perinatal period also involves matrix regulation. Processes that prevent the regular decrease in
pulmonary vascular resistance have been proposed to impair matrix regulation and cause aberrant
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developmental and structural changes in the PA. These changes in development include abnormal
SMC differentiation, hypertrophy, and proliferation, which exacerbate high pulmonary artery pressure.
Degeneration of SMC is usually observed ≥5 days post-delivery [82] following DA functional closure.
Accumulation of SMC undergoing cystic necrosis in the closing DA is proposed to be caused by ischemia
of the constricted vessel wall. Literature has also shown that apoptotic cells, rather than necrotic cells,
are frequently seen in areas of cystic necrosis. Goldberg et al. demonstrated that the combination of
hypoxia and hypoglycemia increased apoptosis in lamb DA tissues [83]. Furthermore, isolated instances
of apoptosis were also reported in the area of intimal thickening after birth [84].

During the process of obliteration of the lumen, the intima and media gradually become richer
in elastic and collagen fibers [52,81]. Collagen fibrils that are frequently absent in the media of the
midgestational DA are abundantly expressed in postnatal DA tissues with intimal thickening from a
one-day-old infant. The DA lumen is progressively occluded by luminal fibrosis for months following
anatomical closure. After the complete occlusion of the DA lumen, the structure becomes known as
ligamentum arteriosus, where central zones are collagenized and focally calcified [85]. In summary,
we illustrate a conceptual review in Figure 3 for what we have discussed in this review.
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Figure 3. A conceptual overview of the role of ECM in DA. Integrin acts as an adhesive to the ECM
matrix and promotes the migration of SMC into ECM through adhesion. Hyaluronan promotes H2O
influx into the subendothelial region (SR) of which causes the region to loosen and expand and promote
SMC migration. Degradation of tropoelastin crosslink IEL reduces the barrier integrity and allows
SMC to migrate through and into the SR. MMP: matrix metalloproteinase, TIMP: tissue inhibitors of
metalloproteinase, t-PA: tissue-type plasminogen activator, EBP: Elastin binding protein.
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5. Conclusion and Future Prospects

Despite accumulating associations of ECM with PDA pathophysiology, only a few studies have
directly investigated ECM interactions or production. Thus, it is necessary to design more studies
that directly intervene with ECM to distinguish comprehensively whether matrix differences arise
merely as a result of the disease or act as the driver component underlying the disease to confirm
whether ECM abnormalities are directly responsible for DA patency. Moreover, prematurity has long
been regarded as a high-risk factor for PDA incidences. Nevertheless, no association has been made
between prematurity and possible subsequent ECM consequences. How the physiological factors may
be related to prematurity intertwine with abnormalities of DA ECM remains to be elucidated.

ECM proteins are especially intriguing in that they play a multifaceted role not only in their
signaling repertoire but also the spatiotemporal design, turnover, and constituency of the scaffold
configuration that are tailored for the specialization of the tissue. Moreover, spatial and functional
coordination in response to inputs from the bloodstream and surrounding parenchyma are all conditions
that may be overlooked in most of the studies that are performed in vitro. Nevertheless, the molecular
diversity and plasticity of ECM present a rich array of potential therapeutic targets for the management
of vascular dysfunction and disease.
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