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Abstract: As an inhibitor of ethylene receptors, 1-methylcyclopropene (1-MCP) can delay the ripening
of papaya. However, improper 1-MCP treatment will cause a rubbery texture in papaya. Under-
standing of the underlying mechanism is still lacking. In the present work, a comparative sRNA
analysis was conducted after different 1-MCP treatments and identified a total of 213 miRNAs, of
which 44 were known miRNAs and 169 were novel miRNAs in papaya. Comprehensive functional
enrichment analysis indicated that plant hormone signal pathways play an important role in fruit
ripening. Through the comparative analysis of sRNAs and transcriptome sequencing, a total of
11 miRNAs and 12 target genes were associated with the ethylene and auxin signaling pathways. A
total of 1741 target genes of miRNAs were identified by degradome sequencing, and nine miRNAs
and eight miRNAs were differentially expressed under the ethylene and auxin signaling pathways,
respectively. The network regulation diagram of miRNAs and target genes during fruit ripening was
drawn. The expression of 11 miRNAs and 12 target genes was verified by RT-qPCR. The target gene
verification showed that cpa-miR390a and cpa-miR396 target CpARF19-like and CpERF RAP2-12-like,
respectively, affecting the ethylene and auxin signaling pathways and, therefore, papaya ripening.

Keywords: 1-MCP treatments; microRNA; degradome and transcriptome; papaya ripening; ethylene
and auxin

1. Introduction

Papaya (Carica papaya L.) is a popular and widely planted fruit in tropical and sub-
tropical regions due to its unique taste, nutritional benefits, and medicinal benefits [1–3].
As one of the classic climacteric fruits, papaya fruits are highly perishable after harvest as a
result of rapid ripening and softening and susceptibility to biotic or abiotic stresses [4,5],
which usually result in a high percentage of product loss [6,7].

The ethylene antagonist 1-methylcyclopropene (1-MCP) has been widely used to main-
tain the quality and extend the shelf life of harvested products [8]. By binding to ethylene
receptors, 1-MCP can inhibit the release of ethylene, inhibit the respiratory intensity of
fruits and vegetables, and delay the ripening of various fruits and vegetables [9–12]. 1-MCP
treatment on papaya at earlier development stages or for long-term/high-concentration
treatments will lead to a “rubbery texture” phenomenon, where the fruits are unable to
completely soften during later storage, leading to tasteless lack of flavor [13]. RNA-seq
analysis has shown that improper 1-MCP treatment severely inhibits cell wall degradation
and fruit softening by inhibiting ethylene signal transduction and cell wall metabolism
pathways [10]. Integrated analysis of metabolomics and RNA-seq data has shown that var-
ious energy metabolites for the tricarboxylic acid cycle, glycolic acid cycle, flavonoids, and
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phenylpropane pathways were significantly affected by 1-MCP, all of which play important
roles in fruit ripening and the softening disorder caused by improper 1-MCP treatment
(400·L−1·16 h) [14]. However, a deeper understanding of the ripening and softening disor-
der caused by inappropriate 1-MCP treatment is imperative for further commercial use of
1-MCP.

Ethylene and auxin play critical roles in fruit ripening [15–17]. At the transcript
level, various transcription factors act as important regulators in the auxin and ethylene
signaling pathways and regulate fruit ripening. In persimmon fruit, the DkERF8/16/18
genes may participate in fruit ripening by accelerating cell wall modification and ethylene
biosynthesis [18]. In papaya, it was found that CpNAC3 interacted with CpMADS4 and
regulated the role of ethylene signal transcription factors, namely CpERF9 and CpEIL5,
to regulate fruit ripening [19]. CpEBF1 interacts with CpMADS1 and regulates cell wall
degradation-related genes to modulate the fruit ripening process and softening disorder
caused by 1-MCP [13]. Exogenous auxin delays the ripening process of tomato fruits by
inhibiting the production of ethylene, the accumulation of carotenoids, and the degradation
of chlorophyll [20]. Auxin-induced DzARF2A expression was confirmed in response to
exogenous auxin application, indicating the auxin-mediated DzARF2A role in durian fruit
ripening [21]. Through transcriptome sequencing, it was found that most of the differ-
entially expressed genes between suitable and improper 1-MCP treatment groups were
enriched in starch and sucrose metabolism, carbon metabolism, plant hormone signal trans-
duction, and amino acid biosynthesis pathways [10]. Among these differentially expressed
genes, there were 21 genes enriched in ethylene and auxin signaling pathways [10].

MicroRNA (miRNA) is a type of non-coding small RNA that is around
21 nucleotide (nt). They are widely presented across eukaryotes, where most are neg-
ative regulators of gene expression [22,23]. They mainly regulate the expression of plant
genes at the post-transcriptional level by mediating cleavage of mRNA target molecules or
reducing the translation of target molecules, thereby regulating morphogenesis, growth,
development, plant organ hormone secretion, plant organ signal transduction, and the
ability to respond to stressors in the environment [24–26]. Recently, a growing body of
studies have found that small RNAs were involved in regulating auxin and ethylene signal
transduction. Li et al. [27] found that miR160, miR390, and their target genes were related to
auxin signaling and participate in the pathway of adventitious root formation in “M9-T337”
apple rootstock. Auxin response factor (ARF) is a plant-specific transcription factor that
mediates the downstream expression of auxin response genes by binding to auxin response
elements and participating in various processes during plant growth and development [28].
The gene families TaARF1, TaARF4, TaARF7, TaARF34, and TaARF39, located in the wheat
genome, were predicted to be targets of Tae-miRNA160, a stress-responsive miRNA. This
showed that they were under the regulation of early auxin-responsive gene expression in
the auxin signaling pathway [29]. An analysis of the differential expression of miRNAs
in banana under ethylene treatment found that miR162a, miR167a, miR172a, and miR319a
participated in ethylene-dependent fruit ripening [30]. All these results suggested that
miRNAs play critical roles in plant development and fruit ripening by regulating ethylene
targets, auxin, and other signaling pathways.

This study integrates a differential expression analysis of miRNA, RNA-seq, and
degradation sequencing in papaya fruit under different 1-MCP treatments in an effort to
identify the key miRNAs and their targets that regulate papaya fruit ripening and the
ripening disorder. This work further explores the transcriptional regulation network in
papaya fruit and provides new ideas for future physiological and molecular research.

2. Materials and Methods
2.1. Plant Material and Treatment

Papaya (Carica papaya L. cv. ‘suiyou-2’) fruits were harvested from a local commercial
farm in the Panyu district of Guangzhou, Guangdong, China. The fruit were harvested at
the color-breaking stage of maturity (5% yellow < peel color < 15% yellow) as long as they
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were disease-free, packaged into polystyrene boxes, and then transported immediately
to the laboratory. The harvested fruit were dipped in 0.2% (w/v) hypochlorite solution
for 10 min and then soaked in a 500 mg·mL−1 solution of mixed prochloraz (Huifeng,
Jiangsu, China) and iprodione (Kuaida, Jiangsu, China) for 1 min to minimize the effect of
microbes/microbe contamination. Treatments were then carried out with the same protocol
as in our previous work in Zhu et al. [31]. A total of 600 papaya fruits were selected and
divided into three sub-groups, and each group contained 200 papaya fruits. Two groups
of the fruit were treated with 400 nL·L−1 1-MCP in a closed foam box for 2 and 16 h,
respectively; air treatment for 16 h was used as a control. All fruits were then treated with
1000 µL·L−1 ethephon for 1 min. After air-drying for a few minutes, the papaya fruit was
packed in an unsealed polyethylene bag (10 cm × 20 cm, 0.02 mm thick) and stored at
22 ◦C. All the treatments were conducted with three biological replicates.

Three sampling points at days 0, 1, and 6 were selected for measurement with three
biological replicates. For each sampling point, three fruits representing the three bio-
logical replicates were collected. Samples were taken from the middle of the papaya
fruit flesh, frozen immediately using liquid nitrogen, and then stored at −80 ◦C for fur-
ther testing. Subsequent usage included RNA extraction, small RNA sequencing, and
degradome sequencing.

2.2. RNA Extraction and cDNA Library Preparation

For RNA-seq, all RNA extraction and library preparation procedures were conducted
as described in Zhu et al. [31].

The NEB Next Ultra-small RNA Library Preparation Kit for Illumina (NEB, #E7530,
Ipswich, MA, USA) was used according to the manufacturer’s protocol in order to generate
a small RNA-seq library. Library quality was evaluated using an Agilent Bioanalyzer 2100
system. Samples from the control group, short-term 1-MCP treatment group, and long-
term 1-MCP treatment group were selected for miRNA analysis after storage for 0, 1, and
6 days. Each sample time contained three biological replicates, and a total of 21 libraries
were constructed. After removing the adapter sequences and low-quality sequence reads
(including reads containing more than 10% N, reads without 3′ linker sequences, and
sequences shorter than 18 nucleotides or longer than 30 nucleotides), the clean reads were
then mapped to the papaya reference genome (http://www.plantgdb.org/CpGDB/). Us-
ing a BLASTN search against miRbase (V21), known miRNAs were identified from mapped
small RNA tags. For the new miRNA candidates, we used miRDeep2 for their identification.
The total number of identified miRNAs in each constructed library was then normalized to
TPM (number of transcripts per million of the clean tags). The DEGseq R package was used
for differential expression analysis between the different groups. The q-value was used
to adjust the p-value. Small RNAs with |log2(foldchange)| > 1 and p -value < 0.01 were
assigned as differentially expressed. Target Finder software was used to predict the target
genes of differentially expressed miRNAs (http://targetfinder.org/). The target gene iden-
tification was also based on the integration of small RNAs and transcriptome sequencing
analysis. Normally, miRNA and mRNA pairs have a negative regulatory network relation-
ship regarding their expression. GO software (http://www.geneontology.org/) was used
to enrich and analyze the differential target genes between sample groups, and the KEGG
(Kyoto Encyclopedia of Genes and Genomes) database was used to analyze the pathway an-
notation of differentially expressed miRNA target genes (http://www.genome.jp/kegg/).

The papaya samples, including fruits treated with 400 nL· L−1 1-MCP for 2 or 16 h and
from the control group, were mixed and used to establish a degradation group library. After
the samples were extracted, total RNA was extracted using the reagent Trizol (Invitrogen,
CA, USA). The quantity and purity of the total RNA were analyzed using a Bioanalyzer
2100 and RNA 6000 Nano Lab Chip Kit (Agilent, CA, USA) with an RIN number > 7.0.
Approximately 20 µg of total RNA was used for degradome library construction. Single-end
sequencing (36 bp) was performed on an Illumina Hiseq2500 at LC-BIO (Hangzhou, China)
according to the protocol recommended by the sequencing facility. Raw sequencing reads
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containing no adaptors nor low-quality reads were obtained using Illumina’s software.
The filtered sequencing reads were then used to identify potentially cleaved targets using
the CleaveL pipeline. Degradome data and reads were mapped to the mRNA downloaded
from JGI (http://www.plantgdb.org/CpGDB/). Only perfectly matched alignments to the
given read were preserved for further degradation analysis.

2.3. RT-qPCR Verification

In order to verify the expression profiles of the identified miRNA and its target mRNA,
7 known miRNAs, 4 novel miRNAs, and 12 corresponding target genes were selected for
real-time quantitative PCR (RT-qPCR) validation.

Total RNA and small RNAs were extracted using TRIzol reagent and Fruit-mate for
RNA purification (Takara, Japan). Total RNA was reverse-transcribed using stem-loop
qRT-PCR [32]. Stem-loop primers for reverse transcription and primers for RT-qPCR are
listed in Tables S1 and S2. The relative gene expression value was normalized against the
relative value of the CpTBP1 gene for mRNA expression [33] and 5 s RNA for miRNA
expression [34]. SuperScript III reverse transcriptase (Invitrogen, Carlsbad, California,
USA) was used to reverse transcribe the total RNA using the pulse reverse transcription
program. The RT-qPCRs were performed using a total volume of 20 µL containing 10 µL
SYBR Mixture (Promega, Madison, Wisconsin, USA), 3 µL cDNA template, 0.5 mM primers,
and 6 µL ddH2O. PCR was performed on a Bio-Rad CFX96 real-time PCR system using
the qPCR Master Mix Kit (Promega, Madison, WI, USA). Three biological replicates were
used to determine the expression of each gene, and expression was calculated using the
2−∆∆CT method [33].

2.4. Plant Expression Vector Construction and Transformation

Validated miRNAs were cloned into a pBI121 binary vector driven by a cauliflower
mosaic virus 35S promoter (CaMV35S). The miRNAs’ corresponding target genes were
cloned into a pMS4 vector containing green fluorescent protein (GFP). Vector constructions
were conducted in reference to Wang’s method [35]. Confirmation of the target gene site
was identified using the website http://plantgrn.noble.org/psRNATarget/). The primers
are listed in Table S3. The constructed vectors were then transformed into tobacco mediated
by Agrobacterium tumefaciens (GV3101). Young tobacco leaves were cultivated for five weeks
and used for injection of Agrobacterium tumefaciens. Transformed leaves were photographed
with ultraviolet light after 36 h of infection.

2.5. Statistical Analysis

Each treatment was conducted in three independent biological replicates, and the
variance of the collected data was analyzed. Statistical differences between groups were
assessed based on Duncan’s Multiple Range Test (DMRT) in SPSS 19.0 (IBM, Armonk, NY,
USA). The graphics were drawn using Prism 8 software (GraphPad Inc., La Jolla, CA, USA)
and Adobe Illustrator software (CC 2017; Adobe Inc., San Jose, CA, USA).

3. Results
3.1. Construction and Sequencing of Small RNA Libraries

Our previous work showed that 1-MCP treatment (400 nL·L−1, 2 h) can delay the
ripening of papaya fruit, but improper 1-MCP treatment (400 nL·L−1, 16 h) causes an
adverse “rubbery” texture [31]. Therefore, small RNA (sRNA) sequencing was performed.
A total of 354.06 megabytes (MB) of clean reads was obtained from 21 different libraries.
For each sample, low-quality sequences and reads with an unknown base (N) greater than
10% of the sequence were first removed and then 3′ adaptor sequences, reads with low
complexity, and reads homologous to t/rRNA sequence were removed. The data for each
sample consisted of no less than 12.23 MB of clean reads (Table S4). In addition, 98.77 to
99.11% of the total reads ranging from 18 to 30 nt library lengths exactly matched the papaya
genome sequence. The length distribution of the sRNAs was mainly concentrated between
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18 and 24 nt, where the papaya libraries were mainly composed of 20 and 21 nt length
sRNAs (Figure 1A). However, in the papaya injected with papaya ringspot virus (PRSV),
21 and 24 nt length sRNAs accounted for the majority of the total sRNAs present [36]. One
possible reason for the observed difference in mature sRNA lengths across the different
groups may be due to the differential activity across the various sRNA biogenesis pathways.
Nucleotide sequence analysis of the identified miRNAs showed that uridine (U) was the
most common nucleotide in sRNAs of 20–24 nt length, while cytosine (C) had a higher
enrichment in the sRNAs of 19 and 25 nt lengths (Figure 1B). C and U account for the
majority of the total number of bases in papaya sRNA.
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3.2. Identification of Known and Novel miRNAs

Known miRNAs in papaya fruit were identified through sequence matching with
an miRNA database (miRBase v21). Read sequences that were exactly the same as the
known miRNA were considered to be an identified known miRNA. A total of 213 miRNAs
were identified in the present study, 44 of which are already known miRNAs, and 169
are newly predicted miRNAs (Table S5). As shown in Figure 1C, the distribution of
known and new miRNAs in sRNAs is different across different lengths. The number of
new miRNAs discovered was significantly greater than the number of known miRNAs.
Among the newly discovered miRNAs, the number of 21 and 24 nt length miRNAs was
significantly greater than that of those of other size classes. The distribution of known
miRNAs and new miRNAs from each sample is shown in Figure 1D. Fewer miRNAs
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were identified in the 1 day (s) after treatment (DAT) and 6 DAT samples in the control
than in the other samples. Among all the known miRNAs, 14 miRNAs showed high
abundance > 5000 TPM, including cpa-miR159a, cpa-miR159b, cpa-miR160d, cpa-miR162a,
cpa-miR164a, cpa-miR166a, cpa-miR166d, cpa-miR319, cpa-miR390a, cpa-miR396, cpa-miR477,
cpa-miR8137, cpa-miR8141, and cpa-miR8148. Five identified miRNAs from across all
the miRNA libraries showed low abundance < 100 TPM, including cpa-miR160c-3p, cpa-
miR164d, cpa-miR5211, cpa-miR8134, and cpa-miR8150. In addition, 169 novel miRNA
candidates from 21 different libraries were predicted. It seems that 25.4% of the novel
miRNA candidates showed lower abundance < 500 TPM. Among all the identified novel
miRNAs, unconservative_supercontig_106_26263 and unconservative_supercontig_17_8265
were in greatest abundance (Table S6).

3.3. Identification of Differentially Expressed miRNAs

Compared to 0 DAT, 60 differentially expressed miRNAs (DEMs) (|log2(FC)| ≥ 1, p-
value ≤ 0.05) were identified (at 1 DAT vs. 0 DAT and 6 DAT vs. 0 DAT) (Figure 2A). There
were 46 DEMs identified between 1 and 0 DAT in the control group, of which 40 DEMs
showed increased expression and 6 DEMs showed decreased expression (Figure 2A). There
were 20 DEMs identified between 6 and 0 DAT in the control group, among which 5 DEMs
had increased expression and 15 DEMs had decreased expression. Among the DEMs in
both comparison groups, there were six DEMs that were shared across both comparisons
during the papaya ripening stage, of which four DEMs had increased expression and two
DEMs had decreased expression during fruit ripening. The number of DEMs decreased
during fruit ripening (Figure 2A). The enriched GO terms for the predicted target genes are
presented in Figure 2B. “Biological process of metabolic process”, “single-organism process
and cellular process”, “the cellular component of cell part and cell”, and “the molecular
function of catalytic activity and binding” had the most significant differences in gene
expression changes during papaya fruit ripening. In the KEGG enrichment analysis, there
were 36 top enrichments for metabolic/biological pathways (Figure 2C). Among these
enriched genes, “metabolic pathways of plant hormone signal transduction”, “fatty acid
metabolism”, “biosynthesis of amino acids”, and “starch and sucrose metabolism” are
important for fruit ripening.

Figure 3A shows a total of 60 miRNAs that were differentially expressed between
1-MCP treatments (long-term and short-term) compared to the control (Figure 3A). The
amount of DEMs decreased with the storage time and duration of the 1-MCP treatment.
Compared to the control, a total of 45 miRNAs were differentially expressed during short-
term 1-MCP treatment. There were 35 DEMs specifically identified in the comparison of
1-MCP 2 h vs. CK at 1 DAT, 5 DEMs specifically identified in the comparison of 1-MCP
2 h vs. CK at 6 DAT, and 5 common DEMs shared across both DATs. Contrary to this, a
total of 27 DEMs were identified in the comparison of long-term 1-MCP vs. the control.
Of these, 11 and 12 DEMs were specifically identified after 1 and 6 DAT, respectively, and
4 DEMs were shared across both DATs. These results indicate that miRNAs are important
in regulating fruit ripening.

In the abnormal fruit ripening case caused by 1-MCP treatment, the number of DEMs
decreased dramatically compared to short-term 1-MCP treatment, indicating that the miss-
ing DEMs may be involved in the softening disorder. In order to fully understand the
functions of DEM target genes, a GO enrichment analysis was performed (Figure 3B).
The enrichments for “metabolic process and cellular process”, “the cellular component of
cell part and cell”, and “molecular function of catalytic activity and binding” biological
processes showed the most significant differences in gene expression during 1-MCP-treated
papaya fruit ripening. From the KEGG enrichment terms, there were 38 top enrichments
for metabolic/biological pathways (Figure 3C). Among these KEGG enrichment terms,
“metabolic pathways of plant hormone signal transduction”, “phenylpropanoid biosynthe-
sis”, “protein processing in endoplasmic reticulum”, “carbon metabolism”, and “starch
and sucrose metabolism” genes were the most enriched, indicating the important roles of



Foods 2021, 10, 1643 7 of 24

these terms in fruit ripening and 1-MCP-caused ripening disorder. The COG function for
different treatments is shown in Figure S1. All DEMs were clustered into 26 functional
categories based on four kinds of differential enrichment analyses. Among the 26 functional
categories, “general function prediction only”, “transcription”, and “replication, recombi-
nation, and repair” were the most enriched items. The signal transduction mechanism was
also enriched, which is an important functional protein for the ripening process of papaya
(Figure S1).
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the 1-MCP (16 h) 1- and 6-day samples compared to the control, and the 1-MCP (2 h) 1- and 6-day samples compared to the
control at each time point. (C) KEGG classification of the predicted targets of target genes in the 1-MCP (16 h) 1- and 6-day
samples compared to the control, and the 1-MCP (2 h) 1- and 6-day samples compared to the control at each time point.

Ethylene and auxin signaling pathways showed an important role in the ripening
of papaya treated with different durations of 1-MCP treatment [31]. According to the
perfect or near-perfect complementarity of expression between miRNAs and their targets,
DEMs were predicted to correspond to uni-genes as potential targets. Through sRNA
sequencing analysis, Target Finder software was used for predicting targets. According to
sRNA sequencing, miRNAs and their predicted target genes related to ethylene and auxin
were found, and eight miRNAs and their predicted target genes with opposite expression

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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levels were screened out. It indicates that miRNAs may play a critical regulatory role
in ethylene and auxin signal transduction pathways. The identified miRNAs and their
corresponding target genes are shown in Table 1. In the early development stage of papaya
ripening (1 DAT vs. 0 DAT in the control), cpa-miR319 was downregulated, while cpa-
miR396 and cpa-miR8140 were upregulated. At the late development stage of papaya
ripening (6 DAT vs. 0 DAT in the control), the expression of cpa-miR160d decreased. At
the late development stage of delayed papaya ripening, cpa-miR390a (1-MCP 2 h 6 DAT
vs. control 6 DAT) and cpa-miR396 were upregulated; cpa-miR172a, on the other hand, was
downregulated (1-MCP 2 h 6 DAT vs. 1 DAT). At the early development stage of papaya
softening disorder caused by 1-MCP (1-MCP 16 h 1 DAT to control 1 DAT), cpa-miR172a
was upregulated. Meanwhile, during the ripening stage of papaya with ripening disorder
caused by 1-MCP, the expression of cpa-miR160d, unconservative_supercontig_2_1866 (1-MCP
16 h 6 DAT vs. control 6 DAT), cpa-miR167c, and cpa-miR8140 (1-MCP 16 h 6 DAT vs. 1 DAT)
was upregulated. These results indicated that miRNAs may be involved in ethylene and
auxin signaling and participate in the ripening of papaya.

3.4. Combined Expression Analysis of miRNAs and Their Target mRNAs

Through differential expression analysis of the miRNAs and mRNAs in the sRNAs and
transcriptome sequencing data, key miRNAs and genes were identified. The regulation of
miRNAs and their target genes was uncovered. Compared to 0 DAT, 34 DEMs were identi-
fied, of which 20 DEMs were found at both 1 and 6 DAT. Six DEMs were shared across both
DAT groups (Figure 4A). The enriched target gene GO terms are presented in Figure 4B.
The enrichments for “biological process of metabolic process and cellular process” and
“the molecular function of binding” biological processes showed the most significant differ-
ences in gene expression during papaya fruit ripening. From the KEGG enriched terms,
“metabolic pathways of plant hormone signal transduction”, “carbon metabolism”, and
“starch and sucrose metabolism” were important for fruit ripening (Figure 4C).

Combined with transcriptome analysis, a total of 34 miRNAs were expressed in the
different 1-MCP treatments (long-term and short-term). The amount of DEMs increased
with treatment storage time and duration of the 1-MCP treatment. In total, 22 DEMs
were identified in the comparison of short-term 1-MCP vs. the control at 6 and 1 DAT.
Among the 22 DEMs, 17 DEMs were identified at 1 DAT, 10 were at identified 6 DAT,
and 5 were shared across both dates. The enriched GO terms for miRNA target genes
are presented in Figure 5B. The enrichments for “metabolic process and cellular process”
and “molecular function of binding” biological processes showed the most significant
differences in gene expression during 1-MCP-delayed papaya ripening. From the KEGG
enriched terms, “metabolic pathways of plant hormone signal transduction” and “starch
and sucrose metabolism” were important for fruit ripening (Figure 5C).

Combined with transcriptome analysis, the miRNA target genes were screened out
if they had an opposite expression pattern to their respective miRNAs. In total, 12 miR-
NAs were found to be involved in the signal transduction process of ethylene and auxin.
The miRNAs and their corresponding target genes are shown in Table 2. At the early
development stage of papaya ripening (1 DAT vs. 0 DAT in the control group), the
expression of cpa-miR319 was downregulated while cpa-miR396, cpa-miR8140, unconser-
vative_supercontig_120_28048, and unconservative_supercontig_46_16464 were upregulated.
At the late development stage of papaya ripening (6 DAT vs. 0 DAT in the control), the
expression of cpa-miR160d and unconservative_supercontig_2_1866 was downregulated while
that of unconservative_supercontig_46_16464 was upregulated. At the late ripening stage of
papaya fruit under suitable 1-MCP treatment (1-MCP 2 h 6 DAT vs. control 6 DAT), the ex-
pression of cpa-miR390a was upregulated. During the ripening stage of papaya fruit under
suitable 1-MCP treatment, the expression of cpa-miR172a (1-MCP 2 h 6 DAT vs. 1 DAT) was
upregulated, while the expression of cpa-miR396 and unconservative_supercontig_9_5033 was
downregulated (1-MCP 2 h 6 DAT to 1 DAT). At the early development stage in papaya
with the ripening disorder caused by 1-MCP (1-MCP 16 h 1 DAT vs. control 1 DAT), the
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expression of cpa-miR172a and unconservative_supercontig_52_17983 was upregulated, and
that of unconservative_supercontig_120_28048 was downregulated. At the late development
stage in papaya with ripening disorder, cpa-miR160d and unconservative_supercontig_2_1866
were upregulated (1-MCP 16 h 6 DAT to control 6 DAT). During the papaya ripening stage
for individuals with the ripening disorder, the expression of cpa-miR167c and cpa-miR8140
was upregulated (1-MCP 16 h 6 DAT to 1 DAT).
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Table 1. Expression profiles of DEMs and the predicted target genes under different conditions.

miRNA miR_Regulate Predicted Target Gene ID Predicted Target Gene Name

CK 1 d vs. 0 d

cpa-miR319 Down evm.TU.supercontig_7.3 Carica papaya auxin response
factor 3

cpa-miR396 Up evm.TU.supercontig_48.26

Carica papaya
1-aminocyclopropane-1-
carboxylate synthase
1-like

cpa-miR396 Up evm.TU.supercontig_481.1

Carica papaya
ethylene-responsive
transcription factor
RAP2-12-like

cpa-miR8140 Up evm.TU.supercontig_1322.1

Carica papaya
1-aminocyclopropane-1-
carboxylate synthase
1-like

CK 6 d vs. 0 d

cpa-miR160d Down evm.TU.supercontig_49.122 Carica papaya auxin response
factor 17

cpa-miR160d Down evm.TU.supercontig_53.88 Carica papaya auxin response
factor 16-like

cpa-miR160d Down evm.TU.supercontig_65.4 Carica papaya auxin response
factor 10

2 h 6 d vs. CK 6 d cpa-miR390a Up evm.TU.supercontig_261.2 Carica papaya auxin response
factor 19-like

16 h 1 d vs. CK 1 d

cpa-miR172a Up C.papaya_newGene_850 Carica papaya auxin transport
protein BIG

cpa-miR172a Up evm.TU.supercontig_1.271

Carica papaya
ethylene-responsive
transcription factor
RAP2-7-like

cpa-miR172a Up evm.TU.supercontig_114.55

Carica papaya
ethylene-responsive
transcription factor
RAP2-7-like

16 h 6 d vs. CK 6 d

cpa-miR160d Up evm.TU.supercontig_49.122 Carica papaya auxin response
factor 17

cpa-miR160d Up evm.TU.supercontig_53.88 Carica papaya auxin response
factor 16-like

cpa-miR160d Up evm.TU.supercontig_65.4 Carica papaya auxin response
factor 10

unconservative_supercontig_2_1866 Up evm.TU.supercontig_7.3 Carica papaya auxin response
factor 3

2h 6 d vs. 1 d

cpa-miR172a Up C.papaya_newGene_850 Carica papaya auxin transport
protein BIG

cpa-miR172a Up evm.TU.supercontig_1.271

Carica papaya
ethylene-responsive
transcription factor
RAP2-7-like

cpa-miR172a Up evm.TU.supercontig_114.55

Carica papaya
ethylene-responsive
transcription factor
RAP2-7-like

cpa-miR396 Down evm.TU.supercontig_48.26

Carica papaya
1-aminocyclopropane-1-
carboxylate synthase
1-like

cpa-miR396 Down evm.TU.supercontig_481.1

Carica papaya
ethylene-responsive
transcription factor
RAP2-12-like

16 h 6 d vs. 1 d

cpa-miR167c Up evm.TU.supercontig_17.52 Carica papaya auxin response
factor 6

cpa-miR8140 Up evm.TU.supercontig_1322.1

Carica papaya
1-aminocyclopropane-1-
carboxylate synthase
1-like
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Figure 5. The effect of 1-MCP treatments on both miRNA sequence and transcriptomic analysis. (A) The number of DEMs
(differentially expressed miRNAs) derived from comparison between the 1-MCP (2 h) treatment and the control on 1- and
6-day samples, and the number of DEMs derived from comparison between the 1-MCP (16 h) treatment and the control on
1- and 6-day samples. (B) GO classification of target genes between the 1-MCP (16 h) 1- and 6-day samples and the 1-MCP
(2 h) samples at each time point. (C) KEGG classification of target genes between the 1-MCP (16 h) 1- and 6-day samples
and the 1-MCP (2 h) samples at each time point.
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Table 2. Expression profiles of DEMs and their target genes under small RNAs and transcriptome sequencing.

miRNA miR_Regulate Target Gene ID Target Gene Name Target Gene
Regulation

CK 1 d vs. 0 d

cpa-miR396 Up evm.TU.supercontig_48.26

Carica papaya 1-
aminocyclopropane-
1-carboxylate
synthase 1-like

Down

cpa-miR396 Up evm.TU.supercontig_481.1

Carica papaya
ethylene-responsive
transcription factor
RAP2-12-like

Down

cpa-miR8140 Up evm.TU.supercontig_1322.1

Carica papaya 1-
aminocyclopropane-
1-carboxylate
synthase 1-like

Down

unconservative_supercontig_120_28048 Up evm.TU.contig_32826

Carica papaya
indole-3-acetic
acid-amido
synthetase GH3.6

Down

unconservative_supercontig_46_16464 Up evm.TU.supercontig_2.209

Carica papaya 1-
aminocyclopropane-
1-carboxylate oxidase
homolog 4-like

Down

cpa-miR319 Down evm.TU.supercontig_7.3 Carica papaya auxin
response factor 3 Up

CK 6 d vs. 0 d

unconservative_supercontig_46_16464 Up evm.TU.supercontig_2.209

Carica papaya 1-
aminocyclopropane-
1-carboxylate oxidase
homolog 4-like

Down

cpa-miR160d Down evm.TU.supercontig_49.122 Carica papaya auxin
response factor 17 Up

cpa-miR160d Down evm.TU.supercontig_53.88
Carica papaya auxin
response factor
16-like

Up

cpa-miR160d Down evm.TU.supercontig_65.4 Carica papaya auxin
response factor 10 Up

unconservative_supercontig_2_1866 Down evm.TU.supercontig_7.3 Carica papaya auxin
response factor 3 Up

2h 6 d vs. CK 6
d cpa-miR390a Up evm.TU.supercontig_261.2

Carica papaya auxin
response factor
19-like

Down

16 h 1 d vs. CK
1 d

cpa-miR172a Up C.papaya_newGene_850 Carica papaya auxin
transport protein BIG Down

cpa-miR172a Up evm.TU.supercontig_1.271

Carica papaya
ethylene-responsive
transcription factor
RAP2-7-like

Down

cpa-miR172a Up evm.TU.supercontig_114.55

Carica papaya
ethylene-responsive
transcription factor
RAP2-7-like

Down

cpa-miR172a Up evm.TU.supercontig_139.43

Carica papaya
ethylene-responsive
transcription factor
RAP2-7

Down

unconservative_supercontig_120_28048 Down evm.TU.contig_32826

Carica papaya
indole-3-acetic
acid-amido
synthetase GH3.6

Up

unconservative_supercontig_52_17983 Up evm.TU.supercontig_83.80
Carica papaya
ethylene-responsive
transcription factor 4

Down



Foods 2021, 10, 1643 14 of 24

Table 2. Cont.

16 h 6 d vs. CK
6 d

cpa-miR160d Up evm.TU.supercontig_49.122 Carica papaya auxin
response factor 17 Down

cpa-miR160d Up evm.TU.supercontig_53.88
Carica papaya auxin
response factor
16-like

Down

cpa-miR160d Up evm.TU.supercontig_65.4 Carica papaya auxin
response factor 10 Down

unconservative_supercontig_2_1866 Up evm.TU.supercontig_7.3 Carica papaya auxin
response factor 3 Down

2 h 6 d vs. 1 d

cpa-miR172a Up C.papaya_newGene_850 Carica papaya auxin
transport protein BIG Down

cpa-miR172a Up evm.TU.supercontig_1.271

Carica papaya
ethylene-responsive
transcription factor
RAP2-7-like

Down

cpa-miR172a Up evm.TU.supercontig_114.55

Carica papaya
ethylene-responsive
transcription factor
RAP2-7-like

Down

cpa-miR172a Up evm.TU.supercontig_139.43

Carica papaya
ethylene-responsive
transcription factor
RAP2-7

Down

cpa-miR396 Down evm.TU.supercontig_48.26

Carica papaya 1-
aminocyclopropane-
1-carboxylate
synthase 1-like

Up

cpa-miR396 Down evm.TU.supercontig_481.1

Carica papaya
ethylene-responsive
transcription factor
RAP2-12-like

Up

unconservative_supercontig_9_5033 Down evm.TU.supercontig_9.126
Carica papaya
auxin-binding
protein T85

Up

16 h 6 d vs. 1 d

cpa-miR167c Up evm.TU.supercontig_17.52 Carica papaya auxin
response factor 6 Down

cpa-miR8140 Up evm.TU.supercontig_1322.1

Carica papaya 1-
aminocyclopropane-
1-carboxylate
synthase 1-like

Down

3.5. Target Gene Identification of Papaya miRNAs by Degradome Analysis

Through degradome sequencing, the splice sites of miRNAs in the mRNA were
found. The 1741 target genes corresponding to their miRNAs are summarized in Table S7.
According to KEGG classification, the target genes of these key DEMs related to plant hor-
mone signal transduction are summarized and shown in Figure 6A,B. The plant hormone
signal pathways include ethylene, jasmonic acid, auxin, gibberella, MAPK, and abscisic
acid. Among all these pathways, the miRNAs related specifically to the ethylene and
auxin signaling pathways were the most enriched. The corresponding key target genes
were CpCTR1, CpARFs, CpTIR1, and CpSAUR67. The expression of some miRNAs in-
creased with fruit ripening, such as unconservative_supercontig_106_26263, cpa-miR156a, and
cpa-miR160d and cpa-miR160a. Some miRNAs were closely related to papaya softening dis-
order, such as unconservative_supercontig_20_9672, unconservative_supercontig_13_6816, cpa-
miR8148, unconservative_supercontig_152_30952, and unconservative_supercontig_119_27967.
Four miRNA targets to CpCTR1 were identified: unconservative_supercontig_75_21810,
unconservative_supercontig_2_1866, unconservative_supercontig_19_9148, and unconserva-
tive_supercontig_3_2646. CpSAUR67 and CpTIR1 were involved in auxin biosynthesis
and signal transduction and were putative targets for unconservative_supercontig_20_9672
and cpa-miR393, respectively. CpARFs were putative targets for cpa-miR160d, cpa-miR319,
unconservative_supercontig_184_32956, cpa-miR156a, and cpa-miR160a. The expression of
these target genes was neither increased with fruit ripening and repressed by 1-MCP
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treatment nor decreased with fruit ripening, but it was induced by 1-MCP treatments
(Figure 6B), indicating that these target genes may play an important role in the fruit
ripening process.
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analysis.
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3.6. Target Gene Identification of Papaya miRNAs by Degradome Analysis

According to the analysis of small RNAs, degradome, and transcriptome sequenc-
ing, the miRNAs related to ethylene and auxin signaling were selected and visualized.
The cpa-miR160a and cpa-miR160d miRNAs co-targeted CpARF10, CpARF16-like, and
CpARF17, thereby affecting auxin signaling and fruit ripening. The cpa-miR172a miRNA
targeted CpERF RAP2-7 and Carica papaya auxin transport protein BIG, and unconserva-
tive_supercontig_2_1866 targeted CpARF3 and CpCTR1, thereby affecting the signaling
pathways of ethylene and auxin simultaneously (Figure 7).

Foods 2021, 10, x FOR PEER REVIEW 17 of 25 
 

 

3.6. Target Gene Identification of Papaya miRNAs by Degradome Analysis 
According to the analysis of small RNAs, degradome, and transcriptome sequencing, 

the miRNAs related to ethylene and auxin signaling were selected and visualized. The 
cpa-miR160a and cpa-miR160d miRNAs co-targeted CpARF10, CpARF16-like, and 
CpARF17, thereby affecting auxin signaling and fruit ripening. The cpa-miR172a miRNA 
targeted CpERF RAP2-7 and Carica papaya auxin transport protein BIG, and unconserva-
tive_supercontig_2_1866 targeted CpARF3 and CpCTR1, thereby affecting the signaling 
pathways of ethylene and auxin simultaneously (Figure 7). 

 
Figure 7. Regulation network diagram of miRNAs and their candidate target genes. Blue triangles represent the miRNAs, 
pink polygons represent the corresponding target genes, the dotted line shows negative regulation, and the straight line 
shows positive regulation. 

3.7. Target Gene Identification of Papaya miRNAs by Degradome Analysis 
Through the analysis of sRNAs and mRNA sequencing, the miRNAs and their target 

genes that are related to ethylene and auxin were selected and verified by RT-qPCR. There 
were four miRNAs related to ethylene signaling, namely cpa-miR172a, cpa-miR396, cpa-
miR8140, and unconservative_supercontig_46_16464. Among these miRNAs, the expression 
of miR172a in the control group increased sharply at 1 DAT and then decreased. 1-MCP 
treatments severely repressed the expression of miR172a (Figure 8A). CpERF RAP2-7-like 
was predicted to be the target gene of miR172a. The expression of CpERF RAP2-7-like de-
creased at 1 DAT and then increased at 6 DAT, with an opposite expression trend com-
pared to miR172a (Figure 8B). The expression of cpa-miR396, cpa-miR8140, and unconserva-
tive_supercontig_46_16464 decreased with fruit ripening, while the expression of their cor-
responding target genes, namely CpERF RAP2-12-like, CpACS1-like, and CpACO4-like, in-
creased first and then decreased, respectively (Figure 8C–H). Among the four ethylene-
related genes, the expression level of CpACS1 significantly increased at 1 DAT in the con-
trol sample, signaling that these genes may play an important role in the early develop-
ment stage of fruit ripening. The expression levels of CpACO4, CpERF4, and CpERF RAP2-

Figure 7. Regulation network diagram of miRNAs and their candidate target genes. Blue triangles represent the miRNAs,
pink polygons represent the corresponding target genes, the dotted line shows negative regulation, and the straight line
shows positive regulation.

3.7. Target Gene Identification of Papaya miRNAs by Degradome Analysis

Through the analysis of sRNAs and mRNA sequencing, the miRNAs and their target
genes that are related to ethylene and auxin were selected and verified by RT-qPCR. There
were four miRNAs related to ethylene signaling, namely cpa-miR172a, cpa-miR396, cpa-
miR8140, and unconservative_supercontig_46_16464. Among these miRNAs, the expression
of miR172a in the control group increased sharply at 1 DAT and then decreased. 1-MCP
treatments severely repressed the expression of miR172a (Figure 8A). CpERF RAP2-7-like
was predicted to be the target gene of miR172a. The expression of CpERF RAP2-7-like
decreased at 1 DAT and then increased at 6 DAT, with an opposite expression trend
compared to miR172a (Figure 8B). The expression of cpa-miR396, cpa-miR8140, and uncon-
servative_supercontig_46_16464 decreased with fruit ripening, while the expression of their
corresponding target genes, namely CpERF RAP2-12-like, CpACS1-like, and CpACO4-like,
increased first and then decreased, respectively (Figure 8C–H). Among the four ethylene-
related genes, the expression level of CpACS1 significantly increased at 1 DAT in the control
sample, signaling that these genes may play an important role in the early development
stage of fruit ripening. The expression levels of CpACO4, CpERF4, and CpERF RAP2-7-like
slightly decreased and were negatively correlated with fruit ripening. The expression of
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CpERF RAP2-12-like increased with fruit ripening and was positively correlated with fruit
ripening (Figure 8). The RT-qPCR results were consistent with the RNA-seq data, and
miRNA and the corresponding target genes showed opposite expression patterns.
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to the ethylene signaling pathway under different 1-MCP treatments. The histograms were plotted using data obtained
from RT-qPCR, and the corresponding line chart was plotted using TPM/FPKM values from the RNA-seq analysis. (A–H)
are miRNA and the their target gene pairs. (A,C,E,G) are the miRNA, and (B,D,F,G) are the corresponding target gene,
respectively. Different colors indicate different samples. The expression of samples at 0 DAT was set to 1. ACT and TBP1
were used as references, which were validated by Zhu et al. (2012).

3.8. Target Gene Identification of Papaya miRNAs by Degradome Analysis

There were six miRNAs and seven target genes identified related to auxin signaling.
Among the miRNAs and target genes, miR160a and miR160d worked together to regu-
late the expression of ARF10/16-like/17. Similar expression profiles in miR160d, miR167c,
miR319, miR390a, and unconservative_supercontig_2_1866 were observed, which first in-
creased and then decreased (Figure 9A,E,G,K). On the contrary, expression of the target
gene ARF first decreased and then increased (Figure 9B–D,F,H,L). The expression of un-
conservative_supercontig_9_5033 first decreased and then increased; the expression of its
target gene, auxin-binding protein T85, increased first and then decreased (Figure 9I,J). The
expression of all six of these miRNAs was positively correlated with fruit ripening, but
their targets showed a negative correlation with fruit ripening. 1-MCP treatment repressed
the expression of these miRNAs but induced the expression of their target genes (Figure 9).



Foods 2021, 10, 1643 18 of 24

Foods 2021, 10, x FOR PEER REVIEW 19 of 25 
 

 

expression of all six of these miRNAs was positively correlated with fruit ripening, but 
their targets showed a negative correlation with fruit ripening. 1-MCP treatment re-
pressed the expression of these miRNAs but induced the expression of their target genes 
(Figure 9). 

 
Figure 9. Expression pattern validation of selected DEMs (differentially expressed miRNAs) and their target genes related
to the auxin signaling pathway under different 1-MCP treatments. The histograms were plotted using data obtained from
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genes of (K,M). Different colors indicate different samples. The expression of samples at 0 DAT was set to 1. ACT and TBP1
were used as references, which were validated by Zhu et al. (2012).
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3.9. Target Gene Identification of Papaya miRNAs by Degradome Analysis

According to the previous analysis, CpARF19-like and CpERF RAP2-12-like were po-
tential targets of cpa-miR390a and cpa-miR396, respectively. To further test the relationship
between these miRNAs and their target genes, transient co-expression assays in Nico-
tiana benthamiana leaves were conducted. As shown in Figure 10, the green fluorescent
protein (GFP) fluorescence from tobacco leaf areas injected with 35s::Pre-cpa-miR390a +
35s::CpARF19-like-GFP and 35s::Pre-cpa-miR396 + 35s::CpERF RAP12-2-like-GFP was
starkly lower than that of the negative controls (Figure 10). These results provide evi-
dence that the CpARF19-like and CpERF RAP2-12-like genes may be directly regulated by
cpa-miR390 and cpa-miR396 miRNA, respectively.
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Figure 10. Confirmation of miRNAs and their targets in tobacco. (A–G) Diagrams of the plasmids used in these experiments.
(A) Empty vector; (B) 35s::pre-miR390a vector that overexpresses Cpa-miR390a; (C) 35s::CpARF 19-like-GFP vector that
overexpresses CpARF19-like; (D) 35s::MCpARF 19-like-GFP vector that overexpresses GFP carrying a modified target; (E)
35s::pre-miR396 vector that overexpresses Cpa-miR396; (F) 35s::CpERF RAP2-12-like-GFP vector that overexpresses CpERF
RAP2-12-like; (G) 35s::MCpARF RAP2-12-like-GFP vector that overexpresses GFP carrying a modified target; (H) GFP
picture of tobacco.

4. Discussion
4.1. Papaya miRNAs with Conserved and New Gene Targets

As an inhibitor of ethylene receptors, 1-MCP can effectively delay fruit ripening. This
has wide applicability to post-harvest fruit preservation. Improper 1-MCP treatment can
negatively affect the softening ability of fruit during ripening, resulting in papaya ripening
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disorder [37–39]. 1-MCP function can reduce the production of endogenous ethylene.
In banana, 12 novel and 128 known miRNAs were identified. Among these miRNAs,
22 were differentially expressed after ethylene regulation treatment and were involved
in the ethylene response [30]. In Wang’s (2020) study between wild-type and LeERF1
transgenic tomato fruits, 9 miRNAs and 12 nat-siRNAs were found to be differentially
expressed [40]. Degradome sequencing analysis further validated the nine miRNA targets,
and six new targets were also identified. In our present study, 46 known miRNA families
and 169 papaya-specific miRNAs were identified in 1-MCP-treated papaya samples using
deep sequencing and computational analyses (Figure 1, Table S5). This difference in these
two studies may be due to the type of fruit and the difference in post-harvest treatments.
In papaya, a total of 1741 target genes of 178 known miRNAs were identified through
degradome analysis (Table S7). Across the identified miRNAs, there were 40 known
miRNAs, 138 novel miRNAs, and 29 miRNAs related to plant hormone signaling.

4.2. miRNAs Participate in Hormone Pathways during Papaya Fruit Ripening

Using miRNA sequencing analysis, 34 miRNAs related to papaya ripening and 60
miRNAs related to 1-MCP treatment were found (Figures 2 and 3). After target prediction
(Table 1) and combined analysis of miRNAs and miRNA sequences, 12 miRNAs were
found to directly act on ethylene- and auxin-related pathways. Of these 12 miRNAs, eight
were known miRNAs and one was a novel miRNA. miRNAs are negative regulators of
expression of their target genes. The miRNA mdm-miR160 targets the auxin response
factors MdARF16 and MdARF17 and participates in the formation of adventitious root in
apple rootstocks [27]. During papaya’s ripening stage (6 DAT vs. 0 DAT in the control), the
expression of cpa-miR160d decreased, while in papaya fruit with abnormal ripening (1-MCP
16 h 6 DAT vs. control 6 DAT), the expression of cpa-miR160d increased. These results
indicate that cpa-miR160d is involved in the ripening process of papaya. The miRNA miR396
regulates plant growth and development by inhibiting the expression of growth-regulating
factor (GRF) [41], participates in the development of wheat plants [42], and responds to
environmental stressors such as cold injury, high temperature, and drought [43–45]. In
our study, during normal fruit ripening (1 DAT vs. 0 DAT in the control), the expression
of cpa-miR396 was found to be upregulated, while at the early development stage of 1-
MCP-delayed ripening (1-MCP 2 h 1 DAT vs. control 1 DAT) in papaya, the expression
of cpa-miR396 was downregulated. In Luan’s (2018) study, by overexpressing miR172a/b
in tomato plants, the expression of AP2/ERF transcription factor was inhibited, and the
chlorophyll content and photosynthetic rate increased, as well as the development of
higher resistance to phytophthora infection [46]. In the present work, the expression of
cpa-miR172a showed no significant changes during normal ripening (1 DAT vs. 0 DAT
in the control), while during the delayed papaya ripening process (1-MCP 2 h 6 DAT vs.
1 DAT) and the early development stage with abnormal ripening (1-MCP 16 h 1 DAT to
control 1 DAT), the expression of cpa-miR172a was found to be upregulated. These results
indicate that the identified miRNAs may play key roles in papaya fruit ripening.

4.3. Degradation Analysis Showed That miRNAs Are Involved in Regulation of Ethylene and
Auxin Signaling Pathways

Through miRNA-targeted degradome analysis, miRNAs related to ethylene and auxin
signaling were identified, as shown in Figure 6A,B. Their corresponding key target genes are
included in Figure 6B: CpCTR1, CpARFs, CpTIR1, and CpSAUR67. The miRNAs and their
corresponding target genes identified by degradome analysis are shown in Table S8. These
miRNAs were found to regulate hormone signal transduction pathways and hormone home-
ostasis related to developmental processes. CTR1 is located downstream of the ethylene re-
ceptor and mediates the signal from the ethylene receptor by negatively regulating the ethy-
lene response. Both miR1917 and miR171b target CTR1 and are important regulators for ethy-
lene signal transduction in the ripening of tomato fruit [47,48]. In the present study, CTR1
was targeted by unconservative_supercontig_75_21810, unconservative_supercontig_2_1866,
unconservative_supercontig_19_9148, and unconservative_supercontig_3_2646. The expres-
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sion patterns of unconservative_supercontig_75_21810, unconservative_supercontig_19_9148,
and unconservative_supercontig_3_2646 decreased during fruit ripening. The expression of
unconservative_supercontig_2_1866 decreased in 1-MCP-delayed fruit ripening.

At the early stages of auxin signal transduction, it was found that several gene families,
including Aux/IAA (auxin/indole-3-acetic acid), SAUR (small auxin up RNA), and GH3
(Gretchen Hagen3), could respond to auxin treatments. The Aux/IAA protein acts as an
important component of the auxin signaling pathway by participating in the regulation
of expression for a large number of genes downstream of the auxin signaling pathway
by releasing auxin response factor (ARF). Most of the Aux/IAA proteins contain four
conserved domains, namely the I, II, III, and IV domains. Domain II is a key component
that leads to instability of the Aux/IAA protein, which is later degraded by the ubiquitin-
proteasome protein (TIR1) pathway [49,50]. Therefore, TIR1, SAUR, and ARF are key
factors in the auxin signaling pathway. In Arabidopsis thaliana, miR393 participates in
auxin signal transduction and plant development by regulating TIR1 [50]. The miR165/166
miRNA determines the fate of A. thaliana root cells, is involved in plant hormone cross-talk,
and regulates root growth via negative regulation of its target genes, such as the auxin
response factors ARF10, ARF16, and ARF17 [51]. In the present study, ARFs were targeted
by miR156a, miR160a, miR160d, miR319, and unconservative_supercontig_182_32956. The
expression of these five miRNAs decreased during fruit ripening. TIR1 and SAUR67 were
targeted by miR393 and unconservative_supercontig_65_20146, respectively. The expression
of miR393 decreased while that of unconservative_supercontig_65_20146 increased during
papaya fruit ripening.

4.4. Network Regulation Diagram of miRNAs and Target Gene Verification

According to the regulatory network diagram, RT-qPCR verification of key miRNAs
and target genes was performed, showing that the expression of cpa-miR172a, cpa-miR319,
cpa-miR390a, and cpa-miR396 greatly changed. Previous studies found that miR172a-
mediated upregulation of ERF RAP2-7 during water submergence stress in maize roots
restricted plant growth during flood-stress conditions [52]. In the present study, cpa-
miR172a had an effect on ethylene and auxin signaling pathways. Here, cpa-miR396 acted
on the ethylene signaling pathway, and cpa-miR319 and cpa-miR390a acted on the auxin
signaling pathway. Similar results also showed that miR390 targeted ARFs and repressed
their expression [53]. It has previously been reported that miR390 and ARFs form an
auxin-responsive regulatory network to control lateral root growth in A. thaliana. The
expression of miR390 is confined to the mesenchymal cells of the xylem prior to lateral root
initiation. It was found that miR390 stimulates the production of tasiARFs, which repress
the expression of their targets ARF3 and ARF4. There was also positive and negative
feedback between ARF2/ARF3/ARF4 and miR390 to regulate lateral root growth [54].
Two highly expressed miRNAs were selected from the ethylene and auxin pathways, and
their target genes were verified. We found that the expression signal of GFP protein with
target gene binding in tobacco was weakened. These results indicate that CpARF19-like
and CpERF RAP2-12-like are potential targets of cpa-miR390a and cpa-miR396, respectively,
and they all may be important in the process of papaya fruit ripening.

5. Conclusions

Suitable 1-MCP treatment effectively delays the ripening of papaya fruit, and long-
term 1-MCP treatment causes papaya ripening disorder. In this study, after different 1-MCP
treatments on papaya fruits at different development stages, miRNA, transcriptome, and
degradome analyses were performed. A total of 213 miRNAs and 1741 target genes of these
miRNAs were identified. Among these, 11 different miRNAs related to ethylene and auxin
and 12 corresponding target genes were found. The analysis and verification of cpa-miR390a
and cpa-miR396, targeting CpARF19-like and CpERF RAP2-12-like, respectively, highlighted
that these miRNAs and their target genes are likely partners in the ethylene and auxin
signaling pathways. Our results indicate that these miRNAs may play an important role in
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regulating fruit ripening by targeting ethylene and auxin signaling pathways. Unsuitable
1-MCP treatment may disruptively repress miRNA function and cause fruit ripening
disorder.
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miRNAs; Table S2: RT-qPCR primers of target genes; Table S3: Primers for plant expression vectors;
Table S4: Sequencing data statistics table; Table S5: miRNA statistical results of each sample; Table S6:
miRNA expression level statistics table; Table S7: miRNAs and their targets in degradome analysis;
Table S8: miRNAs and their corresponding target genes of the degradome analysis.
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