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Abstract: Inflammatory bowel diseases (IBDs) are a group of disorders which include ulcerative
colitis and Crohn’s disease. Obesity is becoming increasingly more common among patients
with inflammatory bowel disease and plays a role in the development and course of the disease.
This is especially true in the case of Crohn’s disease. The recent results indicate a special role of
visceral adipose tissue and particularly mesenteric adipose tissue, also known as “creeping fat”,
in pathomechanism, leading to intestinal inflammation. The involvement of altered adipocyte
function and the deregulated production of adipokines, such as leptin and adiponectin, has been
suggested in pathogenesis of IBD. In this review, we discuss the epidemiology and pathophysiology
of obesity in IBD, the influence of a Western diet on the course of Crohn’s disease and colitis in IBD
patients and animal’s models, and the potential role of adipokines in these disorders. Since altered
body composition, decrease of skeletal muscle mass, and development of pathologically changed
mesenteric white adipose tissue are well-known features of IBD and especially of Crohn’s disease, we
discuss the possible crosstalk between adipokines and myokines released from skeletal muscle during
exercise with moderate or forced intensity. The emerging role of microbiota and the antioxidative and
anti-inflammatory enzymes such as intestinal alkaline phosphatase is also discussed, in order to open
new avenues for the therapy against intestinal perturbations associated with IBD.

Keywords: inflammatory bowel disease; Crohn’s disease; ulcerative colitis obesity; adipose tissue;
adipokines; inflammation

1. Introduction

The term inflammatory bowel disease (IBD) refers to a group of chronic, relapsing, and remitting
disorders, which are characterized by chronic inflammation of the gastrointestinal tract, and include
Crohn’s disease (CD) and ulcerative colitis (UC) [1,2]. Despite the similarities, there are clear differences
between these two diseases. The inflammatory process in CD is typically discontinuous, transmural,
involving all layers of the gut wall, and although initially described as a disease involving only the
terminal ileum, in fact, it could affect the entire digestive tract, from the mouth to the anus. On the
other hand, the inflammatory process in UC is continuous but limited to the mucosa and superficial
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submucosa and may involve only the colon [1,2]. Other features more common in CD than UC are
anorexia, altered body composition, and hypertrophy of mesenteric white adipose tissue (mWAT) [1,2].
Mesenteric fat is considered to be a hallmark of CD and was claimed by Dr. Burrill B. Crohn himself
to be a consistent symptom of the disease [3]. IBD patients have significantly increased risk of
colorectal cancer (CRC), which is probably associated with the consequences of chronic intestinal
inflammation [4].

Despite the progress made in recent years in the understanding of IBD pathogenesis, their
aetiology is still unclear. One of the theories suggests that a dysregulated mucosal immune response to
bacterial components, such as lipopolysaccharide (LPS), could lead to the development of either CD or
UC [5,6]. The incidence rates and prevalence of IBD over the past 50 years have increased remarkably
in countries that have adapted a “Westernized” lifestyle [7,8], manifested by serious modifications in
dietary habits and decreased physical activity. The composition of the gut microbiota is thought to be a
critical factor in the development of IBD, and recent studies have shown an association between diet
and the composition of the human microbiome [9].

In this review, we provide on update on the epidemiology and pathophysiology of obesity in IBD,
the potential effect of total and regional organ obesity with reference to the disease course, the role of
adipokines and myokines, and an overview on data from animal experiments.

1.1. Epidemiology

The prevalence of overweight and obesity both in developed and developing countries has
dramatically increased and is generally considered to be a global pandemic [10]. It is interesting to note
that the incidence and prevalence of IBD is also growing in parallel to the obesity pandemic [11,12].
The increasing prevalence of IBD has a major impact on health-care resources and could be connected
to changes in peoples’ lifestyles, such as insufficient physical activity and ingestion of a so-called
“Western diet”, rich in animal fat and poor in dietary fibre [13–15]. Considering the growing prevalence
of both IBD and obesity, as well as the interaction between risk factors common for both conditions,
epidemiological interaction between them is often postulated. Obesity could also negatively affect the
course of disease in other autoimmune and inflammatory diseases [16–20].

Traditionally weight loss and low body mass index (BMI) were commonly considered to be
presenting features for IBD [21–23], more frequently common and severe in patients with in CD than
UC [24–26]. As IBD patients were previously considered to be malnourished, their being overweight
was relatively rare, either at presentation or during the disease [27]. Recent studies, however, have
demonstrated a growing prevalence of obesity in both adult and paediatric IBD patients [28–34].
In observational studies carried out in Scotland, Steed et al. [31] observed a significant increase in
incidence of IBD in obese patients. Among these patients, 18% of the CD population was obese, and a
total of 52% was overweight or obese. The authors concluded that this increase confirms the rising
prevalence of obesity and overweight in the general population. On the other hand, they observed that
only small number of patients were underweight (3% of CD, 0.5% of UC patients). They have also
noticed that obesity was significantly more common in CD than UC patients.

A similar phenomenon was observed in paediatric IBD patients (4–16 years old). Long et al. [29]
observed that 23.6% of paediatric IBD patients were overweight or obese. They also observed that
prior IBD-related surgery was associated with overweight or obesity in these paediatric CD patients.

1.2. Obesity as a Risk Factor for the Development of IBD

Despite the increased prevalence of obesity in patients with IBD, the pathomechanism by which
obesity affects the course of IBD remains unexplored [35–40]. In a large prospective female cohort
from the USA (The Nurses’ Health Study), authors found that obesity measured by BMI and body
habits are associated with a higher risk of developing CD than UC [35]. A Danish cohort study of
75,000 women (Danish National Birth Cohort) looking for an aetiological link between obesity and
certain autoimmune diseases has demonstrated an increased risk of CD (but not for UC) in both
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underweight and obese women compared with normal-weight women [37]. In the follow-up of this
study, authors confirmed the aetiological link between obesity and the risk of CD [41].

Using the Swedish Hospital Discharge Register, Hemminge et al. [42] defined a cohort of patients
hospitalized for obesity since year 1964. The patients were followed for hospitalization for selected
autoimmune disease through year 2007. The authors observed that the relative incidence of CD was
highest when obesity was diagnosed before 30 years of age. In a cohort study of individuals from the
Copenhagen School Health Records Register (CSHRR), the authors examined the association between
BMI values in childhood (7–13 years) and the later development of IBD. They found that childhood
obesity could be a risk factor for CD but underweight might be a risk factor for UC [39]. In contradiction
to the above studies, the European Prospective Investigation into Cancer and Nutrition study (EPIC),
including more than half a million participants, found that obesity, as defined by BMI, is not associated
with the development of UC or CD. The possible reason for these conflicting results is fact that the
previously mentioned studies included children or young women as opposed to the EPIC study, which
included both men and women and a large percentage of older people. It was suggested that the effect
of obesity on risk of CD might be age-dependent, with obesity in young age prompting a higher risk of
developing CD in older age [37,41,42].

In their recent meta-analysis, Rahmani et al. [43] demonstrated that obesity is a significant risk
factor related to the incidence of CD but not UC. As patients with CD have higher visceral fat volumes
(VAT) compared to healthy individuals [44] and visceral adipose compartment is metabolically active
and is a possible source of proinflammatory substances [45,46], VAT volume could be more predictive
for disease development than overall obesity determined by BMI. In a prospective cohort study,
Khalili et al. [35] detected in patients with a high waist–hip ratio (WHR), a trend toward increased risk
of CD, but not UC.

1.3. Effect of Obesity on the Course of IBD

The impact of obesity on IBD phenotype and outcomes, when assessed by BMI, has not been
consistently associated with clinical outcome or disease severity in patients with IBD (Table 1). Blain
et al. [27] have shown that adult CD patients with BMI > 30 kg/m2 had more frequent perineal
complications and more frequent hospitalizations. The retrospective case-control study conducted by
Hass et al. [47] reported that obese CD patients (BMI > 25 kg/m2) had earlier surgery than nonobese
patients. Similarly, paediatric IBD patients with a high BMI had an increased need for surgery [29].
In their retrospective cohort study, Malik et al. [48] found that obese CD patients were approximately
2.5 times more likely to present a poor surgical outcome than those who were nonobese. In a more
recent, retrospective study of 209 adult patients with CD, Singla et al. [49] observed that patients with
a higher BMI were more likely to present with extraintestinal manifestations. Pavelock et al. [50],
in their retrospective observational study on IBD patients (63% CD and 37% UC), found that obesity
negatively influences the clinical course of IBD and may increase the burden of disease and treatment.
They critically evaluated an increasing trend in needed health care and escalations of various therapies
against obesity.

In contrast, Seminerio et al. [51] showed that IBD patients with a high BMI had lower scores
on quality-of-life (QoL) metrics, but they did not require additional health-care expenses or more
frequent IBD-related surgeries. Flores et al. [52] observed that obese (with a high BMI) IBD patients
have less frequent IBD-related surgeries and hospitalization as compared to normal/underweight
patients. Pringle et al. [53] observed that obese CD patients have no higher risk of structuring disease,
perianal disease, or more frequent surgery compared to nonobese patients, but they presented lower
prevalence of penetrating disease complications. Similarly, in UC patients, the higher BMI has not been
associated with disease severity. In a cohort of 202 patients with UC, Stabroth-Akil et al. [54] observed
that a chronic active disease was less prevalent in obese patients than in those with normal weight.

Singh et al. [55] presented the data from a pooled analysis of placebo controlled clinical trials
with infliximab and found that obesity assessed by BMI does not significantly influences short-
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and intermediate-term clinical outcomes in patients with IBD. Recently, Hu et al. [56] performed
a meta-analysis to assess the association between obesity defined by BMI >30 kg/m2 and clinical
outcomes in IBD patients and found that obesity was associated with a less-severe disease course of
IBD. A number of authors have pointed out that reliance on BMI as a sole marker of obesity seems to
be the serious limitation of studies on relationship between IBD and obesity. They indicated a poor
linear relationship between BMI and total body fat and also suggested that body fat distribution would
be more clinically significant than overall obesity [43,50,56,57].

Studies in patients with CD disease using visceral adiposity as a measure of obesity have more
consistently shown the increased risk of CD-related complications than those using BMI as a marker
of overall obesity [58–64]. Erhayiem et al. [58], in a study on 97 patients with CD, found that using
computed tomography (CT) scanning that mesenteric fat index (MFI), defined as the ratio of areas of
visceral-to-subcutaneous fat was a good marker of aggressive CD. These observations were confirmed
in study by Li et al. [59] also using CT scanning method; they found that visceral fat area and MFI
values were associated with postoperative recurrence of Crohn’s disease. Bryant et al. [60], in a
prospective study on 97 patients with CD, used dual energy X-ray absorptiometry (DXA) as a method
to assess VAT. They also reported that VAT/subcutaneous adipose tissue [SAT] ratio, rather than BMI,
was associated with structuring CD behaviour, an increase in disease activity, and reduced QoL.

The visceral/subcutaneous adipose tissue ratio measured by CT scanning constitutes a better
and more reliable predictor of postoperative outcomes in CD patients undergoing ileocolectomy than
BMI [61]. Similarly, Holt et al. [62] reported that visceral adiposity measured by CT is an independent
risk factor for endoscopic recurrence of Crohn’s disease after surgery. In another study on CD patients,
CT scanning was found to be superior to BMI, and VAT volume was considered to be a useful variable
and an indicator of increased risk of surgery and penetrating disease. They concluded that visceral,
rather than total, adiposity may negatively influence the long-term risk of progression of CD [63].

1.4. Skeletal Mass Depletion in IBD

In many patients with IBD and particularly with CD, the body composition, reflected by as
proportions of bone, fat, and lean body mass may be abnormal. Sarcopenia, defined as depletion of
muscle mass and impaired muscle function [65–82], is an important feature in this disease [70–72,81].
Depletion of lean body mass and loss of muscle strength associated with lower QoL and higher
mortality and morbidity commonly occurs as part of the aging process [65,77]. However, these
disorders are also characteristic for malnutrition and chronic intestinal inflammation such as IBD [77].

Recently, a number of reports about the increasing rates of sarcopenia in patients with IBD,
especially in patients with CD were observed [69,78]. Such sarcopenia in IBD patients is associated
with an increased risk of surgery, poor surgical outcomes, lower QoL, osteopenia, and easy
fatigue [66,67,70–74,77,80]. The unchanged or elevated BMI was observed in IBD patients who
suffered with loss of muscle mass, followed by muscle impaired function [68,70–72]. Recent papers
suggested the necessity for the body composition assessment and muscle strength (e.g., by isometric
handgrip strength) examination of all IBD patients, and not only those visibly malnourished [66,70,77].

In their prospective study, Bryant et al. [70] reported on 154 patients, using DXA, that raised rates
of obesity in patients with IBD, and these effects coincided with depletion of skeletal muscle mass over
time. Furthermore, faecal calprotectin as a measure of disease activity and intestinal inflammation
was negatively correlated with skeletal mass index. Isometric handgrip strength in those patients was
positively associated with skeletal mass index and negatively with fat mass index [70].

It was proposed that the important causative factor in skeletal muscle wastage in patients with CD
could be the local and systemic inflammation caused, in part at least, by proinflammatory cytokines
released from hypertrophied visceral adipose tissue [75,83–86].
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2. Obesity in the Pathogenesis of IBD

2.1. Obesity and Inflammation

Obesity is associated with a low-grade chronic inflammatory state, characterized by the activation
of proinflammatory signalling pathways, increased synthesis of acute-phase reactants, such as
C-reactive protein (CRP), and increased proinflammatory cytokines production [87]. Activation of the
proinflammatory transcription factor NF-κB in adipocytes is a common finding in obese subjects [88].
At present, adipose tissue is considered not only as an inert storage organ, but also an endocrine organ
that synthesizes a number of biologically active substances called adipokines, such as adiponectin
(APN), IL-1, IL-6, IL-8, IFNγ, TNF-α, leptin, apelin, chemerin, and resistin [88]. Adipokines can
regulate metabolic homeostasis and affect immune functions [89].

Table 1. Effect of obesity on IBD course.

Reference Year Study Design Sample Marker of
Obesity/Overweight Conclusion

Blain et al. [27] 2002 Retrospective 2065 CD patients

BMI ≥ 25.0 kg/m2 at
disease onset and
BMI > 30.0 kg/m2

anytime during the
course of the disease

Obesity was associated with more
frequent anoperineal. complications

and more marked year-by-year disease
activity, but does not alter significantly

the long-term course of the disease.

Hass et al. [47] 2006 Cross-sectional 148 CD patients BMI ≥ 25.0 kg/m2
Patients with a BMI > 25 kg/m2 had a
shorter time to first surgery than those

with a BMI of less than 18.5 kg/m2.

Long et al. [29] 2011 Cross-sectional 1598 children with
IBD BMI Obese IBD patients have an increased

need for surgery.

Erhayiem et al.
[58] 2011 Retrospective 50 CD patients

CT scans, MFI
defined as the ratio
of areas of VAT to

SAT

MFI was significantly higher in
patients with complicated (strictures

and fistulas) disease.

Malik et al. [48] 2013 Retrospective 90 CD patients BMI ≥ 30.0 kg/m2
Obese CD patients had a poor surgical
outcome when compared to not obese

CD patients.

Connelly et al.
[61] 2014 Retrospective

143 CD patients
after elective
ileocolectomy

CT scans BMI

The VAT/SAT ratio was a predictor of
increased risk for postoperative

complications in patients after elective
ileocolectomy.

Seminerio et al.
[51] 2015 Retrospective 1494 IBD patients BMI ≥ 30 kg/m2

Obesity was not associated with
increased health-care utilization and

IBD-related surgeries.

Flores et al. [52] 2015 Retrospective
581 IBD patients
(297 CD and 284

UC).
BMI ≥ 30 kg/m2

Obese IBD patients were less likely to
have need for anti-TNF therapy,

surgery or hospitalization than normal
or underweight patients.

Pringle et al.
[53] 2015 Cross-sectional 846 patients with

CD BMI ≥ 30 kg/m2

There were no associations between
obesity and risk of perianal disease,

structuring disease, or surgery.
Compared with normal-weight

individuals, obesity was associated
with lower risk of penetrating disease.

Stabroth-Akil et
al. [54] 2015 Retrospective 202 UC patients

High BMI had a favourable effect on
the prognosis; low BMI pointed to a
more severe course of the disease.

Li et al. [59] 2015 Retrospective
117 CD patients

after ileocolic
resection

CT scans

High visceral fat area value was
associated with higher postoperative

recurrence, defined as the
reappearance of the clinical

manifestations of Crohn’s disease.

Van Der Sloot
et al. [63] 2016 Prospective 482 patients CT scans

VAT volume was associated with an
increased risk of surgery and

penetrating disease but not structuring
or perianal disease among CD patients.

Singla et al.
[49] 2017 Retrospective 209 CD patients BMI

Patients with higher BMI were more
likely to have extraintestinal

manifestations.
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Table 1. Cont.

Reference Year Study Design Sample Marker of
Obesity/Overweight Conclusion

Holt et al. [62] 2017 Prospective
44 post-operative
Crohn’s disease

patients

CT or MRI scans.
Waist circumference

BMI

Excessive visceral adiposity was an
independent risk factor for endoscopic

recurrence of Crohn’s disease after
surgery. Lower skeletal muscle area

correlated with increased fecal
inflammatory markers.

Singh et al. [90] 2018 Post hoc analysis

575 IBD
placebo-treated
patients (pooled

analysis of placebo
arms, using data

from clinical trials
of infliximab in

IBD)

BMI ≥ 30 kg/m2
Obesity does not significantly impact
short- and intermediate-term clinical

outcomes in patients with IBD.

Pavelock et al.
[50] 2019 Retrospective 55 IBD patients (27

CD, 18 UC)

overweight BMI ≥
25.0 kg/m2 obese
BMI > 30.0 kg/m2

An increasing trend in mean number
of clinic visits, hospitalizations/flares,
and mean escalations in therapy with

an increase in BMI.

Bryant et al.
[60] 2019 Prospective 97 CD patients DXA, BMI, WHR

VAT was associated with structuring
CD behavior and prospective disease

activity and QoL in a
disease-distribution-dependent

manner.

Crohn’s disease (CD), ulcerative colitis (UC) Body mass index (BMI), computed tomography (CT), mesenteric
fat index (MFI), subcutaneous adipose tissue, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT),
waist/hip ratio (WHR), dual-energy X-ray absorptiometry (DXA).

Adipose tissue is far from being uniform, and there are two major types: white adipose tissue
(WAT) and brown adipose tissue (BAT) [91]. In recent years, the third type was postulated—beige (or
bright) adipose tissue [92]. WAT is divided into two distinct depots: visceral (VAT) and subcutaneous
adipose tissue (SAT), which display different metabolic and immunological profiles [46,93,94]. Visceral
obesity, which has been particularly related to a proinflammatory state, has been implicated in several
gastrointestinal diseases, including fatty liver, cancers, acute pancreatitis, and CD [95]. The adipose
tissue depots can be pathologically changed due to inflammatory diseases such as CD. The infiltration
of adipose tissue by macrophages is characteristic for obesity and leads to increased production of
additional inflammatory mediators [93,94,96–98] (Figure 1).

The intestinal barrier defects and increased jejunal permeability were reported by Genser et al. [99]
in severely obese subjects. Moreover, these obese patients have decreased tight junction proteins
occludin and tricellulin, but LPS, LPS-binding protein (LPSB), and zonulin were increased as compared
to the control. In the same study, the ex vivo experiments on epithelial cells from obese patients
demonstrated that their exposure to dietary lipids to a greater extent compromised the intestinal
barrier [99].
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Figure 1. Mechanisms linking obesity with IBD. Mesenteric fat deposition in obese individuals leads 
to hypertrophic adipocytes releasing various proinflammatory cytokines, chemokines complement 
factors, and the disturbance of immune homeostasis in the intestine. This can directly and indirectly 
participate in low-grade inflammation, imbalance between leptin–adiponectin ratio, the disruption 
of intestinal mucosa and the induction of intestinal permeability, which in turn enhance fat-derived 
inflammatory adipokines, bacterial translocation, and the stimulated T-cell infiltration, considered as 
“leaky gut”—thus predisposing to IBD. Tumor necrosis factor α (TNF-α), nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin 6 (Il-6) 

2.2. Mesenteric White Adipose Tissue in CD 

CD is characterized by the marked alteration in mesenteric adipose tissue properties [100]. In 
patients with CD, the ratio of intraabdominal fat to total abdominal fat is far greater than in controls, 
when assessed by magnetic resonance imaging (MRI) [64]. Creeping fat in CD patients refers to 
pathologically altered mesenteric fat tissue located around the inflamed parts of the intestine [101]. 
Furthermore, mWAT actively contributes to the disease severity and may influence the onset of 
complications [98,100–104]. In patients with CD, the localization of mucosal ulcerations is most 
pronounced along the mesenteric attachments, which suggests a causal link between mesenteric 
adipose tissue and mucosal changes. In these patients, a selective enlargement of fat depots around 
the diseased lymph nodes and intestine can be observed, with more than 50% of the intestinal surface 
covered by fat tissue [105]. Creeping fat can be distinguished from normal mesenteric fat-tissue by its 
distinctively larger size, and by its greater immune cell infiltration [46,98,106] (Figure 2). 

Figure 1. Mechanisms linking obesity with IBD. Mesenteric fat deposition in obese individuals leads to
hypertrophic adipocytes releasing various proinflammatory cytokines, chemokines complement factors,
and the disturbance of immune homeostasis in the intestine. This can directly and indirectly participate
in low-grade inflammation, imbalance between leptin–adiponectin ratio, the disruption of intestinal
mucosa and the induction of intestinal permeability, which in turn enhance fat-derived inflammatory
adipokines, bacterial translocation, and the stimulated T-cell infiltration, considered as “leaky gut”—thus
predisposing to IBD. Tumor necrosis factor α (TNF-α), nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB), interleukin 6 (Il-6)

2.2. Mesenteric White Adipose Tissue in CD

CD is characterized by the marked alteration in mesenteric adipose tissue properties [100]. In
patients with CD, the ratio of intraabdominal fat to total abdominal fat is far greater than in controls,
when assessed by magnetic resonance imaging (MRI) [64]. Creeping fat in CD patients refers to
pathologically altered mesenteric fat tissue located around the inflamed parts of the intestine [101].
Furthermore, mWAT actively contributes to the disease severity and may influence the onset of
complications [98,100–104]. In patients with CD, the localization of mucosal ulcerations is most
pronounced along the mesenteric attachments, which suggests a causal link between mesenteric
adipose tissue and mucosal changes. In these patients, a selective enlargement of fat depots around
the diseased lymph nodes and intestine can be observed, with more than 50% of the intestinal surface
covered by fat tissue [105]. Creeping fat can be distinguished from normal mesenteric fat-tissue by its
distinctively larger size, and by its greater immune cell infiltration [46,98,106] (Figure 2).
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[114]. The creeping fat is a major source of the increased TNF-α, IL-6 and other circulating 
proinflammatory cytokines seen in IBD patients. These fat-releasing cytokines may contribute to the 
debilitating systemic symptoms observed in these patients [100,103]. In pathologically altered 
mWAT adjacent to the intestinal wall of patients with CD, the higher expression of the 
hypoxia-inducible factor 1α (HIF-1α) and a decreased number of vessels per adipocyte is observed, 
which may suggest the role of HIF-Iα in this process [115]. Sideri et al. observe that the 
preadipocytes isolated from mWAT in IBD patients released IL-17 in response to SP [111]. The 
mWAT is an important source of CRP in CD patients, and its production by mesenteric adipocytes 
may be triggered by local inflammation and bacterial translocation to mWAT [102,116]. 

It is suggested that, in CD disease, the transmural inflammation facilitates increased bacterial 
translocation into the creeping fat (Figure 2). Translocalizing antigens can directly activate 
(pre)adipocytes via innate receptors [110,117,118]. Adipocyte-derived mediators modulate the 
phenotype and function of innate and adaptive immune cells. Adipocytes and preadipocytes 
express receptors of the TLR family and, for instance, the rise in TLR-4 expression in adipocytes and 
preadipocytes by LPS activating NF-κB pathways leads to the increased production of classic 
cytokines and chemokines, including IL-6, MCP-1, and TNF-α [110]. Preadipocytes can additionally 
differentiate into macrophages [119,120]. 

Another interesting aspect is the presence of neuronal hyperplasia in patients with CD. The 
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Figure 2. The accumulation of visceral “creeping fat” in IBD of obese individuals causes local intestinal
inflammation. The responsible mechanisms are the excessive immune response, as reflected by a
greater number of macrophages, and the release of proinflammatory cytokines, leading to increased
bacterial translocation (thick arrowhead), as compared with lean individuals.

Pathologically altered, the mWAT plays an important function as a source of inflammatory
factors, such as cytokines and chemokines [45,98,100,102,103,107–113]. Creeping fat is thought to be
immunologically more active than other VAT, and the extent of creeping fat correlates closely with the
extent of the histological inflammation and degree of lymphocyte or macrophage infiltration [114].
The creeping fat is a major source of the increased TNF-α, IL-6 and other circulating proinflammatory
cytokines seen in IBD patients. These fat-releasing cytokines may contribute to the debilitating systemic
symptoms observed in these patients [100,103]. In pathologically altered mWAT adjacent to the
intestinal wall of patients with CD, the higher expression of the hypoxia-inducible factor 1α (HIF-1α)
and a decreased number of vessels per adipocyte is observed, which may suggest the role of HIF-Iα in
this process [115]. Sideri et al. observe that the preadipocytes isolated from mWAT in IBD patients
released IL-17 in response to SP [111]. The mWAT is an important source of CRP in CD patients,
and its production by mesenteric adipocytes may be triggered by local inflammation and bacterial
translocation to mWAT [102,116].

It is suggested that, in CD disease, the transmural inflammation facilitates increased bacterial
translocation into the creeping fat (Figure 2). Translocalizing antigens can directly activate
(pre)adipocytes via innate receptors [110,117,118]. Adipocyte-derived mediators modulate the
phenotype and function of innate and adaptive immune cells. Adipocytes and preadipocytes
express receptors of the TLR family and, for instance, the rise in TLR-4 expression in adipocytes and
preadipocytes by LPS activating NF-κB pathways leads to the increased production of classic cytokines
and chemokines, including IL-6, MCP-1, and TNF-α [110]. Preadipocytes can additionally differentiate
into macrophages [119,120].
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Another interesting aspect is the presence of neuronal hyperplasia in patients with CD. The nerve
fibres in these patients seem to contain an increased amount of vasoactive intestinal polypeptide
(VIP) and substance P (SP) [121]. The potential involvement of neuropeptides, and particularly SP, in
IBD pathophysiology has been also proposed [100,111,122–125]. Human mesenteric preadipocytes
contain functional SP receptors which could be linked to proinflammatory pathways, and mWAT may
participate in intestinal inflammatory responses via SP–NK-1R-related pathways.

Anorexia is another feature present in CD which could be explained by cytokine overproduction
by mWAT [126]. It is generally accepted that reduced food intake may occur in CD and can lead to
abdominal pain, fear of diarrhoea and incontinence, surgery, nausea, and depression. Satiety control
in these patients could be modulated by inflammatory cytokines, which generally may suppress
appetite [126].

Some researchers hypothesize that the mesenteric adipose tissue might serve as a barrier
to bacteria, which may have breached the intestinal mucosa and/or play an anti-inflammatory
role [46]. The observation that there is an increase of M2 macrophages in the mesentery of CD
patients [106] supports the hypothesis of the protective role of the mesentery in this disease. However,
recent findings [111,114,127,128] seem to indicate that mWAT in patients with CD exerts rather a
proinflammatory actions.

2.3. Adipokines

When linking obesity and inflammatory processes in IBD, adipokines are of particular interest.
In several pathological states, the strong correlation between adipokine levels and inflammation
severity is demonstrated [57,90,129–131] (Figure 3). However, the results of the discussed studies are
contradictory, as there is still no consensus on the exact role they play in the pathogenesis and course
of IBD.

2.3.1. Leptin

Leptin is mainly secreted by white adipose tissue in response to the amount of body fat in a
pulsatile fashion and with a diurnal variation. The most important function of leptin is the regulation
of the energy homeostasis and metabolism. Leptin exerts a strong proinflammatory effect on the
immune system and can be released in response to inflammatory stimuli, such as interleukin-1 (IL-1),
IL-6, LPS, or bacterial infection [99]. Due to leptin acting as a proinflammatory adipokine, especially in
obese subjects, this peptide is implicated in the pathogenesis of IBD, and therefore leptin antagonists
are postulated as a potential therapeutic option for IBD [132,133]. However, the results of the clinical
studies examining the serum leptin levels in IBD are ambiguous. In a recent systematic review on
adipokines in IBD, no linear association between leptin levels and IBD severity was demonstrated [129].

Biesiada et al. found that leptin levels in patients with an exacerbation of UC are higher than in
those in remission, and these values of leptin correlate positively with serum levels of proinflammatory
cytokines IL-1β and TNF-α—but not with the severity of the inflammatory intestinal lesions [134].
A similar observation was made by Tuzun et al., who found elevated levels of leptin in patients in the
acute stage of UC [135]. In another study, Kahraman and colleagues [136] showed that leptin levels
were much lower in patients with UC and CD than in healthy controls. In contrast, Karmiris et al. [137]
observed that serum levels of leptin were reduced in patients with IBD. There are no differences
between the patients with CD or UC, or between patients with active or inactive disease. A similar
observation was made in pediatric IBD patients who presented reduced leptin levels [138], and there
was also no difference between patients in remission and active disease. On the other hand, UC
patients in remission have significantly higher leptin than those patients with active disease. Other
studies, however, do not find any changes in the level of leptin levels in IBD patients comparing to
the control [139–141]. The inconclusive observations and differences between these studies could be
explained by the small numbers of patients used and the different controls and treatments which
are employed.
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When the expression of leptin in mesenteric fat in IBD patients is studied, the results are more
conclusive. Barbier et al. [142] and Paul et al. [143] reported the overexpression of leptin mRNA
in mesenteric adipose tissue in IBD (both CD an UC) patients in comparison to healthy intestinal
specimens [143].

2.3.2. Adiponectin

Adiponectin (APN) is a more abundant adipocyte-specific adipokine which exhibits an
anti-inflammatory action and plays a key role in the regulation of insulin sensitivity. The APN
concentrations in obese subjects are lower than in normal weight controls (Figure 3). Similar to
leptin, the data concerning APN serum levels in patients with IBD is controversial. For instance,
Kahraman et al. [136] find that, unlike in other studies, serum APN concentrations are decreased in
both UC and CD patients. Similarly, Valentini et al. [140] demonstrated that APN serum levels are
decreased in active and inactive disease in both CD and UC individuals. In contrast, Karmiris et al. [137]
reported that serum levels of adiponectin are increased, whereas serum levels of leptin are decreased,
in patients with IBD. Weigert et al. [144] observed that patients with CD had lower APN serum levels in
comparison to UC, that APN is lower in female CD patients in comparison to female healthy controls,
and that APN reaches higher serum levels in UC patients in comparison to healthy controls. However,
in other studies, there were no significant changes in the APN level in IBD patients in comparison to
the controls [138,145].
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Figure 3. Involvement of adipokines released from creeping fat in IBD. The mesenteric adipose tissue
of patients with IBD presents an inflammatory profile with an increased expression of cytokines
(e.g., TNF-α, IL-1β, and IL-6) and adipokines (e.g., leptin, resistin, chemerin, and visfatin) involved
in intestinal inflammation. In contrast, beneficial adipokine adiponectin, which has been shown to
inhibit the expression of adhesion molecules, metalloproteinases, and proinflammatory mediators, is
downregulated in IBD. This downregulation contributes to the pathogenesis of these intestinal disorders.

The study by Yamamoto et al. [146] revealed an upregulation of adiponectin expression in creeping
fat of CD patients in comparison to normal mesenteric adipose tissue of CD patients, as well as
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mesenteric fat from UC patients or controls. A similar observation in creeping fat of patients with CD
was reported by Paul et al. [143]. In contrast, Rodrigues et al. [139] observed that APN expression in
mesenteric fat is lower in patients with active ileocecal CD in comparison to the controls.

2.3.3. Other Adipokines

Han et al. [147] observed increased colonic apelin production in both UC and CD patients.
Ge et al. [148] demonstrated that apelin is highly expressed in the mesenteric fat of patients with CD
and suggested that apelin, which is essential for the development and the stabilization of lymphatic
vessels, could play a supportive role with regard to intestinal lymphatic drainage in CD.

Chemerin is an adipokine acting as a chemo-attractant for cells of the innate immune system
and has been linked with several inflammatory conditions. Higher levels of serum chemerin in IBD
patients are observed in some [144,149], but not all [145], studies.

Resistin, originally described as an adipocyte-specific hormone, is expressed and secreted from
macrophages in humans, and it exerts a strong proinflammatory action. Resistin is implicated in the
pathogenesis of obesity and insulin resistance [150]. Resistin serum levels are commonly elevated in
inflammatory conditions, such as IBD [137,151,152], and are significantly decreased after infliximab
therapy in IBD patients [152].

Another adipokine, visfatin, can play a significant role in the intracellular and extracellular
metabolic effects associated with obesity [150]. The levels of visfatin are strongly correlated with the
amount of visceral fat and mesenteric adipose tissue [150]. Serum visfatin levels are increased in
IBD patients [145,149,153,154], and a higher expression of visfatin is found in colonic biopsies of IBD
patients [154,155]. The correlation between visfatin levels in the colonic biopsies with disease activity
is also observed in paediatric IBD patients [154].

Vaspin belongs to family of newly discovered adipokines besides others such as retinol-binding
protein 4 (RBP4), dipeptidyl peptidase 4 (DPP-4), bone morphogenetic protein (BMP)-4, BMP-7,
and progranulin, recently implicated in various aspects of obesity [156]. For instance vaspin
is a newly discovered adipokine with insulin-sensitizing and anti-inflammatory effects [157,158].
Terzoudis et al. [149] find no difference in the serum concentrations of vaspin between IBD patients
and healthy controls. In contrary to this observation, Morisaki et al. [157] report that serum vaspin
levels are higher in patients with IBD than in controls. The authors additionally observe that vaspin is
expressed in the adipocytes of the mesenteric WAT in IBD patients.

Recently, omentin-1, also known as intelectin-1, was not only identified in the visceral (omental)
fat, but also in the small intestine, colon, ovary, and plasma [158]. In addition to its anti-inflammatory
action, omentin-1 plays an important role in the homeostasis of the body metabolism and in insulin
sensitivity [158]. Yin et al. [159] observed significantly decreased serum omentin1 levels in patients with
IBD, in comparison to healthy controls. Similarly, Lu et al. [160] reported that serum omentin-1 levels
and colonic omentin-1 expressions are reduced in active CD patients, in addition to their correlation
with disease activity.

Meteorin-like (Metrnl) is a new adipo-myokine, highly expressed in WAT. This adipo-myokine
is induced in skeletal muscle upon cold exposure, and this peptide has been shown to exert an
anti-inflammatory activity due to an increase in beige fat thermogenesis [161,162]. Metrnl expression
is higher in mWAT of CD patients in comparison to the controls [163].

In conclusion, present findings on the role of various adipokines in IBD are inconsistent, and
human studies with a larger number of patients and more uniform methodology are needed (Table 2).
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Table 2. The studies examining the potential role of adipokines in IBD.

Reference Year Sample Conclusion

Barbier et al. [142] 2003 19 IBD patients Leptin mRNA levels are significantly higher in mWAT of
CD and UC patients than in controls.

Tuzun et al. [135] 2004 29 patients with active
UC

Serum leptin levels are significantly higher in patients with
acute UC in comparison to controls.

Nishi et al. [141] 2005 28 CD patients There are no differences in the plasma leptin levels between
CD patients and healthy controls.

Yamamoto et al. [146] 2005 30 IBD patients

Tissue concentrations and release of APN are significantly
increased in pathologically altered mWAT in CD patients in

comparison to paired normal mWAT from the same
subjects. APN mRNA levels are significantly higher in
pathologically altered mWAT of CD patients than with

normal mWAT of the same CD patients.

Paul et al. [143] 2006 10 CD patients The secretion of APN and leptin is significantly
upregulated in mWAT specimen.

Karmiris et al. [137] 2006 100 IBD patients
Serum levels of adiponectin, resistin, and active ghrelin are
higher and serum levels of leptin are lower in patients with

IBD than in healthy controls.

Han et al. [147] 2007 IBD patients In IBD patients, apelin immunostaining demonstrates
elevated intestinal apelin content.

Moschen et al. [154] 2007 74 IBD patients
In IBD patients, the plasma visfatin levels are significantly

higher and visfatin mRNA expression is significantly
elevated in colonic tissue in comparison to healthy controls.

Valentini et al. [140] 2009 128 IBD patients

There are no differences in serum leptin levels between IBD
patients and healthy controls. Serum resistin and visfatin
concentrations are elevated in patients with active disease,
but not in in those in remission. APN serum concentrations
are lower in IBD patients and retinol-binding protein-4 is

higher in comparison to healthy controls.

Weigert et al. [144] 2010 310 IBD patients

Chemerin serum levels are elevated in IBD patients in
comparison to healthy controls, whereas APN serum levels
are higher in UC patients in comparison to healthy controls.

CD patients have lower APN serum levels than UC
patients, and APN serum level are lower in female CD

patients in comparison to female healthy controls.

Biesiada et al. [134] 2012 50 patients with active
UC

Serum concentrations of leptin are significantly higher in
UC patients with exacerbation of the disease than in

patients in remission.
The expression of leptin mRNA in colonic mucosa of

patients with exacerbation of UC is higher in comparison to
those in patients with UC in remission.

Rodrigues et al. [139]. 2012 16 patients with ileocecal
CD

Serum APN is lower in the active CD patients in
comparison to the control, but no differences are seen when

comparing the active CD patients to those in remission.
APM expression in mWAT is lower in the active CD group
in comparison to the control. Serum leptin is similar in all

groups.

Chouliaras et al. [138] 2013 50 pediatric IBD patients

In pediatric CD, there is no difference between those in
remission and active disease. UC patients in remission have

significantly elevated leptin in comparison to those with
active disease.

Waluga et al. [145] 2014 40 IBD patients

Serum leptin levels are significantly lower in IBD patients in
comparison to healthy controls, and are significantly

increased in CD but not UC patients after three months of
therapy with corticosteroids and/or azathioprine. Serum

resistin and visfatin levels are significantly elevated in IBD
patients in comparison to healthy controls. Treatment

induces a decrease in the serum resistin concentration only
in UC patients and in the serum visfatin concentrations

only in CD patients. There are no significant changes in the
serum concentrations of adiponectin, chemerin and tissue
growth factor-β1 between IBD patients in comparison to
healthy controls, and these serum concentrations are not

altered by therapy.

Morisaki et al. [157] 2014 63 IBD patients
Serum vaspin concentrations are significantly higher in
patients with UC than in patients with CD and healthy

controls.
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Table 2. Cont.

Reference Year Sample Conclusion

Lu et al. [160] 2014 240 CD patients Serum omentin-1 levels and colonic omentin-1 expressions
are decreased in active CD patients.

Yin et al. [159] 2015 192 IBD patients Serum omentin-1 levels are significantly lower in both CD
and UC patients than in healthy controls.

Terzoudis et al. [149] 2016 120 IBD patients
The chemerin serum is significantly elevated in IBD

patients than in healthy controls. Serum visfatin levels in
CD patients are significantly higher than in UC patients.

Dogan et al. [153] 2016 31 UC patients
The visfatin serum level is increased in the active UC

patients in comparison to post-treatment remission patients
and the healthy controls.

Starr et al. [155] 2017 99 pediatric IBD patients

In colonic biopsies from IBD patients, the higher expression
of visfatin was observed comparing to controls and there

was a correlation between visfatin levels in the colonic
biopsies and disease activity.

Kahraman et al. [136] 2017 105 IBD patients Serum adiponectin levels are significantly lower and leptin
is significantly higher in patients with CD and UC.

Ge et al. [148] 2018 24 CD patients mWAT from CD patients express a higher level of apelin in
comparison to controls.

Zuo et al. [163] 2019 24 CD patients mWAT from CD patients expressed a higher level of Metrnl
in comparison to controls.

Crohn’s disease (CD), ulcerative colitis (UC), Adiponectin (APN), mesenteric white adipose tissue (mWAT),
meteorin-like (Metrnl).

2.4. Dietary Links with IBD

Epidemiological studies suggest that both the development of obesity and IBD could generate a
proinflammatory state through the expression and release of inflammatory cytokines and chemokines
in response to the so-called Western diet [164,165]. A Japanese study investigated a possible link
between the transition from a traditional diet to a high-fat Western diet, and increased incidence of
CD [166]. In this study [165], the CD incidence is strongly correlated with an increased dietary intake
of total fats, animal fat, n-6 polyunsaturated fatty acids (PUFA), and animal and milk protein. The
systematic review by Hou et al. also demonstrated an association between an increased CD or UC risk
and a high intake of PUFAs, omega-6 fatty acids, saturated fats, and meat [167].

Accumulating evidence indicates that the composition of the gut microbiota plays a critical role in
the development of obesity, obesity-associated inflammation, and IBD, representing another common
link in the pathogenesis of these conditions [168–172]. Patients with IBD have demonstrated intestinal
dysbiosis, which is defined as a decrease in gut microbial diversity [173]. Such a fall in bacterial
diversity and dysbiosis is characterized by the reduction of Firmicutes and the rise of Bacteroidetes and
Proteobacteria [2,168].

Dysbiosis caused by the Western diet rich in sugar and fat may lead to a dysfunction of the
intestinal mucosal barrier, increased permeability, and bacterial translocation, which are common
features of obesity and IBD pathogenesis [110,174,175]. Translocalizing antigens can directly activate
adipocytes and preadipocytes, with subsequent increased release of proinflammatory cytokines;
possibly leading to a positive feedback loop that enhances inflammation [110,117,118]. A marked
correlation between a high-fat diet and elevated markers of bacterial translocation, such as LPS, LBP,
and TLR-4, throughout “leaky gut” has been demonstrated [176–178].

3. Experimental Studies on Role of Adipose Tissue in IBD

Since the data concerning links with IBD and obesity in humans are inconclusive, various models
of experimental colitis have been used to study this relationship. Animal studies could provide a
better insight into the potential mechanisms through which adipose tissue could exert its effects on the
course of the disease. Numerous studies confirm that a high-fat diet (HFD) or high-fat and high-sugar
diets (HF/HSD) can exacerbate experimentally induced colitis. In murine colitis models, the diet
modifications are attributed to the alterations in the plasma levels of proinflammatory biomarkers
and the expression of proinflammatory factors in VAT [102,108,128,179–187]. It was demonstrated that
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the application of an HFD or HF/HSD diets and/or the development of obesity in mice increase(s) the
intestinal permeability and bacterial translocation from the intestinal lumen to mesenteric fat, as well
as profound changes in the microbiota [102,108,127,181,184–195]. HFD or HF/HSD is also associated
with significantly elevated LPS levels, the reduced expression of epithelial tight junction proteins,
an increased macrophage infiltration, and the increased expression of proinflammatory biomarkers
in the adipose tissue [102,127,181,184–193,196–198]. Both, the Paneth cell area and the release of
antimicrobial factors by Paneth cells are reduced in HFD-fed mice [197]. The increase in endoplasmic
reticulum (ER) and oxidative stress, impaired mucosal barrier integrity, and rise in biomarkers increase
serum LPS levels in HFD-fed mice [195]. Similarly, in the same study, non-esterified long-chain
saturated fatty acids increase oxidative and ER stress in cultured intestinal cells. Collectively, these
data demonstrate that a diet which mimics Western eating habits can promote inflammation and
ER stress and increases intestinal permeability. Moreover, the HFD resulting in the mesenteric fat
in these animals induces alterations in gut microbiota reminiscent of the pathological phenomena in
CD patients. However, it is still under debate whether the observed effects are associated with fat
accumulation and pathologically altered adipose tissue leading to obesity or caused by the diet alone
affecting microbiota [199–202]. Gruber et al. [202] reported the effect of HFD on the development of
chronic ileal inflammation in a TNF∆ARE/WT mice genetic mouse model of Crohn’s disease-like ileitis,
and they found that HFD, independent of obesity, exacerbated small intestinal inflammation. In an
interesting paper by Bibi et al. [203], it was demonstrated that maternal HFD predisposes offspring to
a higher susceptibility to developing experimental DSS-induced colitis.

Experimental animal studies have also allowed for better insight into the role of adipokines
in the course of colitis. Siegmund et al. [204] et al. induced experimental colitis, using dextran
sulphate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS) in leptin-deficient ob/ob mice. Leptin
deficient mice have significantly reduced colitis severity and release of proinflammatory cytokines
from the colon, in comparison to wild-type (WT) mice. The administration of leptin to ob/ob mice
leads to a similar disease severity and proinflammatory cytokine production, as observed in WT
mice. However, the administration of leptin to control WT mice does not significantly influence
the severity of the disease [204]. IL-10-deficient (IL-10−/−) mice show spontaneous development of
chronic intestinal inflammation [205]. In a study by the same group [206], the leptin-deficient IL-10−/−

mice model was introduced to evaluate the role of leptin in a model of spontaneously developing
inflammation. The study observed that, in both IL-10−/− ob/ob and in IL-10−/− mice, a similar degree of
intestinal inflammation develops [206]. It is concluded that leptin does not play a significant role in the
spontaneous colitis of IL-10−/− mice. On the other hand, Singh et al. [133] observed that pegylated
leptin antagonist ameliorated chronic colitis in IL-10−/− mice.

In another study [185], authors observed that the impaired healing of TNBS-induced rats fed
HFD is accompanied by an increase in plasma levels of leptin and a reduction in adiponectin levels.
Furthermore, leptin expression is elevated and adiponectin decreased in adipose tissue in rats with
colitis fed with a normal diet, and this effect is markedly enhanced in rats fed with an HFD diet.
This observation is further supported in studies in mice because the increased leptin and decreased
adiponectin plasma levels and elevated expression of leptin and decreased adiponectin expression are
recorded in adipose tissue, along with a disease exacerbation in mice fed with an HFD diet [4,182]
(Table 3) Interestingly, adiponectin-knockout (APN-KO) mice present as more severe in comparison
to WT mice [207–209]. Adenovirus-mediated supplementation of APN significantly attenuates the
severity of colitis in both APN-KO and WT mice [207,210]. The APN-KO mice with DSS induced
colitis have a marked increase in AdipoR1 protein, whereas AdipoR2 is reduced in comparison to
controls. In in vitro studies, APN reduces apoptotic, anti-proliferative and stress signals in HCT116
colonic epithelial cells. The abrogation of AdipoR1 promotes apoptosis in in vitro models [210]. The
hypothesis on the protective role of adiponectin in colitis, acting through AdipoR1, is supported by
the evidence from Sideri et al. [127], who showed that intracolonic AdipoR1 knock down worsened
TNBS-induced colitis in mice. In contrast, some studies [211,212] report that APN absence protects
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against DSS induced colitis. In another study, APN deficiency did not significantly modulate the
inflammation in the IL-10 KO model of spontaneous chronic colitis [213].

Table 3. Animal studies examining the potential role of adipokines in experimental colitis.

Reference Year Study Type Conclusion

Siegmund et al. [204] 2002

Acute and chronic colitis
induced in

leptin-deficient ob/ob or
WT mice, using DSS or

TNBS

In the DSS acute model, ob/ob mice exhibit a 72% reduction of
colitis severity and spontaneous release of proinflammatory

cytokines from the colon in comparison to WT mice.
Replacement of leptin in ob/ob mice converts the disease

resistance to susceptibility, indicating that leptin deficiency,
not obesity, accounts for the resistance to acute DSS-induced

colitis.

Siegmund et al. [206] 2004

Spontaneously
developing colitis in

leptin-deficient IL-10−/−

mice (IL-10−/− ob/ob)

Both IL-10−/− ob/ob and in IL-10−/− mice have a similar degree
of intestinal inflammation.

Nishihara et al. [207] 2006 DSS- and TNBS-induced
colitis in APN-KO mice

APN-KO mice develop a larger degree of severe colitis in
comparison to WT mice. Adenovirus-mediated

administration of APN significantly ameliorates the severity
of colitis. APN receptors are expressed in intestinal epithelial

cells, and APN inhibits LPS-induced IL-8 production in
intestinal epithelial cells.

Fayad et al. [211] 2007 DSS- and TNBS-induced
colitis in APN-KO mice

APN KO mice are protected from chemically induced colitis;
the administration of exogenous APN completely restores the

intestinal inflammatory response to DSS.

Han et al. [147] 2007
DSS-induced colitis in

C57/BL6 mice and
Sprague–Dawley rats

In both mice and rats with experimental colitis, colonic apelin
mRNA levels are elevated during DSS-induced colitis.

Teixeira et al. [182] 2011 DSS-induced colitis in
C57/BL6 mice

Leptin serum levels are increased in HFD-fed mice in
comparison to control and colitis groups. Leptin expression in
adipose tissue is elevated in both HFD groups in comparison

to the colitis (normal-diet) group.

Arsenescu et al. [210] 2011 DSS-induced colitis in
C57/BL6 mice

Adenovirus-mediated administration of APN ameliorates the
severity of DSS-induced colitis. The APP homolog osmotin

similarly reduces colitis severity.

Saxena et al. [208] 2012 DSS-induced colitis in
APN-KO mice

APN deficiency exacerbates the severity of DSS-induced colitis
and increases the production of proinflammatory cytokines.

In WT mice in DSS-induced colitis. There is a decrease in the
serum adiponectin level in comparison to the control.

Singh et al. [133] 2013
Spontaneously

developing chronic
colitis in IL-10−/− mice

Pegylated leptin antagonist ameliorates the development of
chronic experimental colitis.

Sideri et al. [128] 2015 TNBS-induced colitis in
C57/BL6 mice

Silencing adiponectin receptor 1 exacerbates TNBS-induced
colitis in mice.

Kaur et al. [212] 2015 DSS-induced colitis in
C57/BL6 mice

APN KO mice are less susceptible to DSS-induced colitis than
WT mice and have a reduced release of proinflammatory

cytokines.

Bilski et al. [185] 2015 TNBS-induced colitis
Sprague–Dawley rats

The impaired healing of colitis observed in rats fed the HFD is
accompanied by an increase in in leptin but also the reduction

in adiponectin plasma levels.

Mazur-Bialy et al. [184] 2017 TNBS-induced colitis in
C57/BL6 mice

There is increased leptin and decreased adiponectin plasma
levels and elevated leptin and decreased adiponectin

expression in adipose tissue, which correspond to disease
exacerbation in HFD animals.

Obeid et al. [209] 2017 DSS-induced colitis in
APN-KO mice

APN-KO mice which have shown an aggravation of
DSS-induced colitis have a greater inflammatory cell
infiltration and higher presence of activated B cells in
comparison to controls, accompanied by an elevated

proinflammatory cytokine profile production.

Ge et al. [148] 2018
Spontaneously

developing chronic
colitis in IL-10−/− mice

Apelin significantly ameliorates chronic colitis in Il-10−/− mice,
demonstrated by the decreased disease activity index,

inflammatory scores, and decreased levels of proinflammatory
cytokines.

Zuo et al. [163] 2019
Spontaneously

developing chronic
colitis in IL-10−/− mice

In IL-10−/− mice with spontaneous colitis, administration of
metrnl decreases pathological alterations in mWAT, increases

adipocyte size, and ameliorates inflammation.

Adiponectin (APN), adiponectin-knockout (APN-KO), dextran sulphate sodium (DSS), wild-type (WT),
lipopolysaccharide (LPS), trinitrobenzene sulfonic acid (TNBS).



Biomolecules 2019, 9, 780 16 of 28

Han et al. [147] reported increased colonic apelin production in rats and mice with DSS-induced
colitis. Ge et al. [148] demonstrated that apelin significantly ameliorates chronic colitis in IL-10−/−

mice, as demonstrated by the decreased disease activity index and inflammatory scores. In IL-10−/−

mice with spontaneous colitis, the administration of a new adipokine, metrnl, decreased pathological
alterations in mWAT, increased adipocyte size and ameliorated inflammation [164].

Recently, in an interesting study, Hoffman et al. [214] demonstrated that mesenteric adipose-derived
stromal cells from CD patients could exert beneficial protective effects on the disease activity and
severity of mice with experimental colitis. Because of the potential pathogenic role of adipose tissue
and adipokines in development of IBD, some experimental studies attempt to reduce colitis severity by
reducing the total or particular organ obesity.

Li et al. [215] investigated the effect of the role of telmisartan on pathologically altered mWAT in
IL-10−/− mice with spontaneous colitis, with a major aim to analyze the inflammatory response and
adipokine production. Telmisartan acts as the antagonist of receptor angiotensin II type 1 and also as a
partial agonist of peroxisome proliferator-activated receptor γ (PPAR-γ) [216]. This latter aim is selected
because the PPAR-γ activation reduces the severity of experimental colitis [217–219]. Telmisartan is
shown to reduce the visceral adiposity due to attenuation of leptin and increasing APN expression in
adipose tissue in addition to increasing APN serum levels [220,221]. In their study [215], the treatment
with telmisartan has ameliorated spontaneous colitis and reduces the pathological changes in mWAT.
This effect was associated with lower production of proinflammatory cytokines. Additionally, mice
receiving telmisartan have reduced leptin and increased adiponectin mRNA expression in mWAT [215].
Interestingly, both bariatric surgery and, particularly, the duodenojejunal bypass have ameliorated the
severity of colitis in chemically induced IBD [222].

Skeletal muscle wastage has been widely observed in patients with CD [69,78] and the role of
skeletal muscle—adipose tissue crosstalk in this disease—has been postulated [84,86]. The hypothesis
is moved forward that exercise may exert the protective effect, particularly in experimental colitis
exacerbated by HFD. This beneficial effect of exercise is to some extent mediated via muscle-derived
peptides, so-called “myokines” with endocrine effects, exerting a direct anti-inflammatory action, and/or
specific effects on visceral fat [84,192,223–225]. Liu et al. [187] proposed an alternative explanation for
the protective action of voluntary exercise in HFD-fed mice. The sedentary mice that were fed an HFD
diet showed an increased expression of inflammatory mediators and activation of NF-κB in the colon.
These changes are associated with the decreased expression and activity of PPAR-γ, and the reversal of
these changes are observed by voluntary physical exercise. However, the administration of a selective
PPAR-γ antagonist blocks all these beneficial effects [187], indicating that the PPAR-γ system exhibits a
protective action in IBD and could be considered to be an important regulator of intestinal integrity in
inflamed bowel diseases.
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