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Abstract

Brain networks exhibit very variable and dynamical functional connectivity and flexible con-

figurations of information exchange despite their overall fixed structure. Brain oscillations

are hypothesized to underlie time-dependent functional connectivity by periodically chang-

ing the excitability of neural populations. In this paper, we investigate the role of the connec-

tion delay and the detuning between the natural frequencies of neural populations in the

transmission of signals. Based on numerical simulations and analytical arguments, we show

that the amount of information transfer between two oscillating neural populations could be

determined by their connection delay and the mismatch in their oscillation frequencies. Our

results highlight the role of the collective phase response curve of the oscillating neural pop-

ulations for the efficacy of signal transmission and the quality of the information transfer in

brain networks.

Author summary

Collective dynamics in brain networks are characterized by a coordinated activity of their

constituent neurons that lead to brain oscillations. Many evidences highlight the role that

brain oscillations play in signal transmission, the control of the effective communication

between brain areas, and the integration of information processed by different specialized

regions. Oscillations periodically modulate the excitability of neurons and determine the

response of those areas receiving the signals. Based on the communication through coher-

ence (CTC) theory, the adjustment of the phase difference between local oscillations of

connected areas can specify the timing of exchanged signals and therefore, the efficacy of

the communication channels. In this respect, an important factor is the delay in the trans-

mission of signals from one region to another that affects the phase difference and timing,

and consequently the impact of the signals. Despite this delay plays an essential role in

CTC theory, its role has been mostly overlooked in previous studies. In this manuscript,

we concentrate on the role that the connection delay and the oscillation frequency of the

populations play in the signal transmission, and consequently in the effective connectivity,
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between two brain areas. Through extensive numerical simulations, as well as analytical

results with reduced models, we show that these parameters have two essential impacts on

the effective connectivity of neural networks: First, that the populations advancing in

phase to others do not necessarily play the role of the information source; and second,

that the amount and direction of information transfer dependents on the oscillation fre-

quency of the populations.

Introduction

A typical sensory response process in the nervous system consists of the active selection of rele-

vant inputs, the segregation of the different features of the input, and the integration of the

information leading to the right action. All these stages depend on the flexibility in the infor-

mation routing, as well as in an efficient communication between different regions of the

nervous system. However, the circuit and the dynamical mechanism explaining the fast recon-

figuration of the effective pattern of communication and the information transfer in the neural

systems have so far not been satisfactorily understood.

One interesting and widespread proposal is that in the presence of neural oscillations, com-

munication patterns can be controlled by adjusting the phase relationship between local oscil-

lations of different brain regions [1–8]. In the brain, synaptic interactions lead to correlated

activity of the neurons and the appearance of successive epochs of high and low excitability,

characterized by collective neuronal oscillations in different frequency bands [9–15]. Neural

oscillations establish intermittent windows of high and low excitability, giving rise to a time-

dependent response of the system to the inputs from other brain regions. According to the

communication through coherence (CTC) hypothesis, it is possible to adjust the phase rela-

tionship between two regions to activate and deactivate the communication channel [1, 16–

18] or continuously vary the efficacy of the channel [5]. While in the original proposal, the

widespread variability in neural systems and the inconsistency of the coherence across time

and space were ignored, recent studies showed that the mechanism works if oscillations are

not persistent and even if the locking is not stable [19, 20].

The diversity and the time-dependency of the phase relationships reported in experiments

[5, 21–23] are supposed to underlie the rich variety of communication patterns in the nervous

circuits. Several experimental and computational studies have shown that those regions that

phase advance others act as leaders and can efficiently transmit information to the laggard

regions [20, 24–26]. It has been shown that the presence of mismatch in the natural frequen-

cies, i.e. when uncoupled, of interconnected neural populations, can give rise to a finite phase

difference and a directional information transfer, that is, nodes with higher natural frequency

transmit information to those with lower frequency when the connection delay is neglected

[20, 26]. However, one of the key parameters which determine synchronization and the phase

relationship between coupled oscillators is the interaction delay due to the finite time of trans-

mission of signals between the oscillators. Since the synchronization and the phase relation-

ships determine the effective routes for information transfer, and the synchronization

properties depend on the interaction delays, an important question arises: How do transmis-

sion delays in brain circuits affect the effective communication patterns?

In many theoretical and computational studies in networks of coupled dynamical systems,

delays are disregarded mainly due to the analytical complexity and computational burden.

However, delays might have a crucial impact on the collective properties of distributed dynam-

ical systems [6, 7, 27–31]. In the brain, delays in the transmission of signals between neurons
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and neural populations are quite heterogeneous and cover a wide range of values, from milli-

seconds to tens of milliseconds [32, 33]. So they can be of the same order or larger than some

important neural time scales, for example, the integration time of the membrane, the period of

gamma oscillations, or even of other bands, and temporal window for spike timing dependent

plasticity [13, 34–40]; therefore cannot be ignored. The role that the delay play in the dynamics

and phase-locking in large scale brain networks has been studied in recent years [41]. By using

low-dimensional models, like neural mass or phase oscillator models, the regions of stability

for in-phase, anti-phase, and out-of-phase-locking have been obtained for homogeneous net-

works and in the presence of heterogeneity in the connectivity of the network and in the natu-

ral frequency of the nodes [42]. Of importance, is the phase-locking that occurs in a phase

different from 0 or π, since it results in a preferred direction of effective connectivity. This

directional effective connectivity could be induced by imposing a mismatch between the natu-

ral oscillating frequencies of the nodes [33] and/or through a symmetry breaking mechanism

in homogeneous circuits [24].

In this manuscript, we study the conditions for an effective communication between two

coupled neural populations by systemically varying the interaction delay and mismatch of

their natural oscillation frequencies. Our results show that for small delays, the information

encoded in the population with higher natural frequency is transmitted to the other population

while when the information is encoded in the population oscillating at a lower frequency, the

other population is unable to receive the information, in agreement with previous results [26].

We find, however, that this is not always the case and the degree and the direction of the effec-

tive communication between populations depend, in general, on the interaction delay. More-

over, in the presence of frequency mismatch, symmetric information transmission, and

efficient transmission in the reverse direction (from slow to fast) are also possible for certain

range of delays.

Using a formulation based on coupled phase oscillators and the phase response curve we

were able to provide a general framework to predict how the pattern for effective communica-

tion between two coupled oscillators changes with the delay and frequency mismatch. These

novel findings provide a theoretical basis to understand how the information is transmitted in

brain circuits along different channels and directions and over different frequency bands.

Materials and methods

Neuron model

In our simulation we used the Hodgkin-Huxley (HH) neuron model [43]. The evolution of the

membrane potential and gate variables are given by:

C
dv
dt
¼ Iext þ Isyn � gKn4ðv � EKÞ

� gNam3hðv � ENaÞ � gLðv � ELÞ

dn
dt

¼ anðvÞð1 � nÞ � bnðvÞ

dm
dt

¼ amðvÞð1 � mÞ � bmðvÞm

dh
dt

¼ ahðvÞð1 � hÞ � bhðvÞh

ð1Þ

where Iext and Isyn are the input and synaptic currents, respectively. The αx and βx, x 2 (n, m
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and h) are defined as below

anðvÞ ¼
0:01ðvþ 55Þ

1 � expð� 0:1ðvþ 55ÞÞ

bnðvÞ ¼ 0:125expð� 0:0125ðvþ 65ÞÞ

amðvÞ ¼
0:1ðvþ 40Þ

1 � expð� 0:1ðvþ 40ÞÞ

bmðvÞ ¼ 4expð� 0:0556ðvþ 65ÞÞ

ahðvÞ ¼ 0:07expð� 0:05ðvþ 65ÞÞ

bhðvÞ ¼
1

1þ expð� 0:1ðvþ 35ÞÞ

ð2Þ

The values of the parameters are given in Table 1.

The synaptic current of the i-th neuron (Iisyn) is given by:

IisynðtÞ ¼
X

j

gijSijðtÞðvi � Ej
synÞ

SijðtÞ ¼
1

A
ðexpð� ðt � t�j � tijdÞ=trÞ

� expð� ðt � t�j � tijdÞ=tdÞÞ

A ¼ ð
tr
td
Þ

tr
td � tr � ð

tr
td
Þ

td
td � tr

ð3Þ

vi is the membrane potential of the post-synaptic neuron and Ej
syn is its reversal synaptic poten-

tial. Sij is a double-exponential function, modeling the efficacy of the chemical synapses medi-

ated by AMPA and GABAa receptors. t�j is the time at which the pre-synaptic neuron spikes

Table 1. Simulation parameters.

Parameter Value Description

C 1 μF/cm2 Capacitance

gK 36 mS/cm2 K conductance

gNa 120 mS/cm2 Na conductance

gL 0.3 mS/cm2 Leak conductance

EK −77 mV K reversal potential

ENa 50 mV Na reversal potential

EL −54.4 mV Leakage reversal potential

EE
syn 0 mV Excitatory reversal potential

EI
syn −80 mV Inhibitory reversal potential

tinnerd 0 − 14 ms Inner population delay of excitatory unit

tintrad 0.5 ms Intra population axonal delay

τd 3 ms Synaptic decay time

τr 0.5 ms Synaptic rise time

Iext 10 − 12 μA/cm2 Injected current

�m, σ 0, 0.5 μA/cm2 Mean and variance of Gaussian white noise

gEE 3.75μS/cm2 Synaptic weight, E! E

gEI 15μS/cm2 Synaptic weight, I! E

gIE 7.5μS/cm2 Synaptic weight E! I

gII 15μS/cm2 Synaptic weight I! I

https://doi.org/10.1371/journal.pcbi.1008129.t001
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and td is the axonal delay between pre- and post-synaptic neurons. The synapses’ parameters

and synaptic weights (gij) are given in Table 1. We numerically solved the equations using the

Milshtein algorithm [44] with an integration step dt = 0.01 ms.

Population architecture

Each of our populations was composed of 100 neurons with 80% excitatory and 20% inhibitory

neurons. The connectivity within the population was chosen random and with probability of

10%. The connectivity between populations was random (but just among excitatory neurons)

with probability 5%. The intra population delay was taken 0.5 ms while that of between popula-

tions was varied from 0 to 14 ms.

Input signals

We injected a constant current (varied from 10 to 12 μA/cm2) and an uncorrelated Gaussian

white noise (�m ¼ 0 mA=cm2, σ = 0.5 μA/cm2) to each neuron (Iext in Eq (1)). Depending on the

value of the input current, neurons fired within a frequency range of 70-73 Hz.

To test the quality of the signal transmission we first injected slow (5 Hz) non-periodic sig-

nals (see Theoretical background subsection) into the excitatory neurons of the host (or

sender) population. By running simulations in the absence of an external signal, we recorded

the peaks of the network activity and the mean interval between the successive peaks was taken

as the period of oscillation (note that by calculating the oscillation frequency in this way, its

value might be different from the average frequency of firing of the constituent neurons [45]).

In the fast-signal case, we applied to all the excitatory neurons a single pulse at a certain phase

of the period. The phase of the impact of the pulse changed in each numerical realization by

dividing the oscillation cycle into 50 segments. In each realization, we applied a rectangular

pulse of amplitude Ipulse = 0.25μA/cm2 and width of 2 (ms).

Analysis

In our analysis, we calculated the firing rate (multi-unit activity (MUA)) of the populations by

using a Gaussian time window with standard deviation σ = 2 ms and σ = 100 ms for the fast

and the slow modulation, respectively. By sliding the Gaussian time window, we calculated the

weighted sum of the number of spikes in the window and taken the value of it in the related

time as the instantaneous firing rate at the center of the time window.

Cross-covariance. The cross-covariance quantifies the similarity between two vectors. We

used the un-biased and un-normalized value of the cross-covariance at zero lag (ZLC), to

quantify the similarity between the firing rates of the receiver population with the input signal

that we injected on the excitatory neurons of the sender (host) population. We assumed that if

the signal was transmitted to the second population, its firing rate should follow the signal. In

the figures, we plotted the un-biased and un-normalized value of the cross-covariance at zero

lag (ZLC).

Coherency. We took the normalized average of the amplitude of the network activity as

the coherency factor. The network activity of the populations was calculated using a Gaussian

time window with standard deviation σ = 2(ms). 20 successive peaks of the populations firing

rate were averaged and normalized by the maximum value of the amplitude (when all the neu-

rons fired at the same time) to calculate a normalized coherency index C.

Delayed mutual information. To characterize the signal transmission and to define the

effective connectivity between the coupled populations, we calculated the time delayed mutual

information (dMI) [46]. The dMI quantifies the causal relationship between the activities of

the coupled populations. The time delayed mutual information is computed based on the
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Shannon’s entropy for two vectors as:

dMIijðdÞ ¼ dMIðXiðtÞ;Xjðt þ dÞÞÞ

¼ HðXiðtÞÞ þHððXjðt þ dÞÞÞ

� HðXiðtÞ;Xjðt þ dÞÞ

ð4Þ

where HðXiÞ ¼ �
P

k2Xi
PklogðPkÞ is the marginal entropy of Xi and log is base 2 logarithm, and

Pk is the probability of occurrence of event k. The Joint entropy in Eq (4) is calculated as

HðXiðtÞ;Xjðt þ dÞÞ ¼ �
X

n2XiðtÞ

X

m2XjðtþdÞ

Pn;mlogðPn;mÞ: ð5Þ

In our case, the vectors Xi and Xj represented the network activity (firing rate) of the two popu-

lations. By integrating the dMI for positive lags, we quantified the amount of information that

was transmitted from i to j; integrating over negative lags, we computed the transferred infor-

mation in the opposite direction. Subtracting these two values, we obtained the net informa-

tion transferred between the two populations.

Phase response curve (PRC) of a population. To find the response of a population to an

injected pulse, we proceeded in a similar way as it is done for calculating the PRC of a single

neuron. We partitioned the time between two successive peaks of network activity into 30 seg-

ments. Keeping all other parameters unchanged, we applied a rectangular pulse at a specific

phase (segment) on all the excitatory neurons of the population. We defined the PRC as the

difference between the instantaneous oscillation period of the population without and with the

injected pulse, multiplied by a factor 2π/T (see Fig 1). The width and amplitude of the rectan-

gular pulse that we used were 2 ms and 1 μA/cm2, respectively.

Results

We start by numerically investigating the role of the combination of transmission delay and

frequency mismatch on the effective communication between two bidirectionally connected

neural populations (see the Materials and methods section for details). Each population con-

sists of N neurons (80% excitatory and 20% inhibitory) modeled by the Hodgkin-Huxley

(HH) equations. The intra-population connectivity probability is 10% for all types of connec-

tions. Long-range excitatory projection connect the excitatory neurons of the two populations

with a probability of 5%. The synaptic currents were assumed to be mediated by AMPA and

GABAA receptors, were modeled by a double-exponential function with the synaptic rise and

decay time equal to 0.5 ms and 3 ms, respectively, for both type of synapses. The delay between

any pair of connected neurons inside the populations is assumed to be 0.5 ms. All neurons

received an injected constant current and a Gaussian white noise with mean μ and variance σ.

In Fig 1A and 1B, the coherency and the oscillation frequency of an isolated population are

shown, when changing the mean and the variance of the external noise. Raster plots of the

spiking activity of the neurons, and the population activity of the network are shown in Fig

1C, for the two values of parameters depicted by dots in Fig 1A and 1B. In the rest of the manu-

script, we fixed the parameters to the values used in Fig 1C, bottom panel, which lead to a

coherency value C’ 0.8 and frequency f’ 70 Hz.

Phase-locking between populations

We now concentrate on the case of two populations connected with a given delay time (Fig 2).

The mean input current into population 2 is fixed at 11μA/cm2, while the mean input current

into population 1 is (11 ± Δ) μA/cm2, where Δ introduces a frequency mismatch (detuning)
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Fig 2. Phase-locking of the populations. (A) The ratio of the oscillation frequencies of the two connected populations is shown for different values of

the input current mismatch (ΔI) and delay (δ). The locking zone can be distinguished by the white color whose borders are shown by dashed lines. In

(B) the phase difference of the two populations is shown. Note that phase difference is only well-defined within the locking zones.

https://doi.org/10.1371/journal.pcbi.1008129.g002

Fig 1. Properties of a single population. The coherency (panel A) and the oscillation frequency (panel B) of the population activity is plotted in the

mean input current (I0) versus noise amplitude (σ) plane. In panel C the raster plots and the activity of a single population for the two points, depicted

by green and blue dots, in panels A and B. In the rest of the simulations we used the set of parameters considered in lower plot of panel C with the

coherency value C = 0.80. In panel D we have schematically shown how the PRC of a population (pPRC) is calculated. The interval between two

successive peaks of the network activity before (T0) and after the injection of the pulse (T) is recorded. The difference between these two intervals is

defined as the pPRC after multiplication by 2π/T, as is explained in the text.

https://doi.org/10.1371/journal.pcbi.1008129.g001
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between the two populations. We hypothesized that the theory of coupled oscillators can quali-

tatively predict the properties of a system of two populations connected via long-range projec-

tions [6, 27, 31, 43, 47–49]. Then the synchronization between oscillations of the two

populations would be determined by the coupling strength and transmission delay of the con-

nections as well as the mismatch between the natural oscillation frequencies of the populations

[20, 30]. In this study, we fixed the strength of the long-range connections and varied the fre-

quency mismatch and the time delay. We observed that the locking window, determined by

the frequency mismatch for which the system remains in the phase-locked regime, depended

on the delay, as expected (Fig 2A). Within the locking zone, the two coupled populations oscil-

lated at the same frequency, while the phase difference between their oscillations changed with

the delay and the frequency mismatch (Fig 2B). Such a varying phase difference affects the sig-

nal and information transmission between the two populations as is shown below.

Transmission of slow (rate) signals

To evaluate the ability of the system to transmit information, we applied a time-dependent sig-

nal on one of the populations (the sender) and check how this signal was transmitted to the

other population (the receiver). We considered the two widespread neuronal coding schemes,

rate and spike-time coding [50, 51]. We did this by applying two different types of signals. In

the first case, we modulated the oscillation frequency of the sender population by using a time-

dependent input current (only on the excitatory neurons) whose frequency was much lower

than the oscillation frequency of the populations (Fig 3B–3D).

To assess the quality of the signal transmission, we first extracted the instantaneous oscilla-

tion frequency of the two populations, and then calculated the cross-covariance between the

Fig 3. Signal transmission and information transfer between two bidirectionally coupled populations. (A)

Schematic diagram of the network connectivity. Only excitatory neurons between the two populations are connected.

Zero-lag cross-covariance (ZLC) between the firing rate of the second population with the input signal (B), and the

delayed mutual information between firing rates of two populations (C) are shown by color code. In (D) the firing

rates of the two populations and the input signal are plotted, for the parameters values marked with black dots in (B).

The value of ZLC is shown in each panel. The offset and the amplitude of the external signal were varied for a better

comparison.

https://doi.org/10.1371/journal.pcbi.1008129.g003
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rate of the receiver population and the signal (see Materials and methods). The result is shown

in Fig 3B. The red color indicates a good transmission quality while the green color denotes

that the transmission is degraded. Some aspects are to highlight in Fig 3D. A dominant red

color is observed for positive detuning, indicating that the signal is better transmitted when

the sender has a higher natural frequency than the receiver. This occurs for most values of the

transmission delays. Likewise, areas of weak transmission can be seen for positive detuning

over some specific range of delays. For negative detuning, signal transmission can also occur

from the population with lower oscillation frequency to that of high oscillation frequency for

certain delays with a relatively good, although not maximal, quality. There are also some delay

values that permit transmission in both directions with a relatively good transmission quality.

In any way, it is evident that the zero detuning case is not an optimal choice to transmit the sig-

nal. It is shown in Fig 3C that similar results are obtained when computing the delay mutual

information (discussed in the Information transfer section).

Time traces of the evolution of the populations’ rate superimposed on the signal, are shown

in Fig 3D for different delays and frequency mismatches (black dots in Fig 3B). It is seen that

for small delays the signal transmits better from the population that oscillates at a higher fre-

quency to the one that oscillates at a lower frequency, as reported in previous studies (Fig 3B

and the left column of Fig 3D) [19, 26, 52]. However, this no longer holds for larger delays. We

observe that, for some values of the delays, the quality of the transmitted signal can be almost

the same for both positive or negative values of the detuning (Fig 3B and middle column of Fig

3D) or can be even better for negative values of the detuning, i.e., when the sender population

oscillates at a lower frequency (Fig 3B and the right column of Fig 3D).

Transmission of pulse packets

In this case, we applied a single pulse packet on all excitatory neurons of the sender population

at a certain phase (between 0 and 2π over one cycle of the oscillation) and measured the change

in the response in both the sender and receiver populations. The phase at which the pulse was

applied was varied to cover the whole 2π range. The effect of these pulses in the sender popula-

tion was characterized by the local population phase response curve (pPRC) while that in the

receiver population was quantified by the non-local phase response curve (nPRC), where the

latter is a measure of the signal transmission quality.

In the different panels of Fig 4A the pPRC and the nPRC are shown for different values of

delay and frequency detuning. Green curves in Fig 4A show the prediction of the analytical

results based on the multiplication of the pPRC (red curve) and the absolute value of its deriva-

tive, at the time at which the spikes of the sender populations arrive to the receiver population

(Eq (10)). It can be seen that for certain delay values, the nPRC has a finite amplitude which

indicates that the signal is transmitted while for other delays the nPRC is flat indicating that

the signal is not detected by the receiver population.

The results of the simulation of spiking neurons is also shown in Fig 4A (blue dots). A qual-

itative agreement is observed between the theoretical and numerical results for most values of

the frequency mismatch and delay. For the comparison, we have shown the maximum values

of the two curves in Fig 4B and 4C. Although a good agreement is seen for most values of the

delay and mismatch, the results do not perfectly match. We hypothesize that the main reason

for the difference in some cases is that, the spiking activity of the coupled populations are not

perfectly synchronous while the PRC approximation works well for pulsatile interaction

between the two populations. The temporal width of the population activity depends on the

coherency of the populations, and could also be affected by the external signal. A finite
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temporal width of the spiking activity of the sender population could make a deviation from

the analytical prediction in this case.

It can also be seen that the results qualitatively agree with those obtained for slowly varying

signals (rate modulation; see Fig 3), i.e., for small delays, the signals are more efficiently trans-

mitted from the fast to the slow oscillating population. For larger delay values instead, symmet-

ric transmission or even a better transmission in the reverse direction are found. It should be

noted that, as occurs in the case of slow modulation, better signal transmission is found in gen-

eral for positive values of the detuning (higher oscillation frequency of the sender population)

as compared to the case of negative values of the detuning (lower oscillation frequency of the

sender population) when changing the connection delay.

Fig 4. Response of the network to fast signals. (A) The PRC of the sender population (pPRC; red) and the non-local

PRC (nPRC) resulted from simulation (sky-blue) and theory (green) is shown for different values of the delay and

detuning. The horizontal axis shows the phase β at which the pulse impacts the sender population. The green curve

shows the analytical prediction for the response calculated as the value of the derivative of PRC, multiplied by the value

of PRC (Eq(10)). In panels (B) and (C) we plot the maximum values of nPRC in the delay and detuning phase plane as

predicted by theory (green curve in (A)) with those obtained through simulation (blue dots in (A)), respectively. The

results are only shown for phase-locked regions (within the dashed lines) since the analytical results are not valid

beyond these regions.

https://doi.org/10.1371/journal.pcbi.1008129.g004
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The PRC qualitatively predicts information transmission flow

Our previous results highlight the importance of the PRC analysis. Indeed, the response of the

receiver population to a perturbation applied to the sender population depends on the excit-

ability state of the both populations at the time they receive the perturbation. The value of the

PRC at the phase at which the external pulse impacts the sender populations determines the

local response and the effect of the pulse on the sender population. This effect is quantified by

the change of timing of the next spiking activity of the sender population, therefore, if the

receiver population receives the perturbation (after a transmission time δ) in a phase at which

the time-derivative of the PRC is non-negligible (see blue solid curve in Fig 5A), then the

receiver population detects the perturbation. Otherwise, the receiver population does not

detect the change in the timing of the incoming spiking activity and the perturbation is filtered

out. In Fig 5A we have schematically shown the situation to demonstrate how the transmission

of the pulse packets can be quantified by analyzing the PRC of the populations. The magnitude

of the time derivative of the PRC of the receiver population at the time the impact of spiking

activity of the sender population quantifies the transmission.

In Fig 5B we have plotted the absolute value of derivative of the PRC of the receiver popula-

tion at the time it receives the spikes from the sender population (without any external pertur-

bation) when changing the detuning and the delay (see also the section Theoretical

background). It can be seen that the results agree well with those obtained by analyzing the

pulse transmission in Fig 4B, highlighting the validity of PRC analysis. Once the phase

response curves of the populations are known, in the delay and natural frequency mismatch

phase plane, the phase difference in the locked state can be derived and the non-local PRC can

be calculated. The latter determines the quality of the signal transmission and therefore of the

information in the network. In Fig 5C we also show the obtained delayed mutual information

(see next section), which quantifies the magnitude of information transfer from the sender to

Fig 5. (A) Schematic plot of the PRC (dotted lines) and its time derivative (solid lines) represented between two consecutive oscillation peaks of the

populations for δ = 4 and the detuning value Δ = 0.4. The PRC0
2 1

, is the absolute value of PRC0 of the population 2 (solid blue line) when it receives the

spikes of population 1. This measure predicts the quality of the transmission. (B) The absolute value of derivative of the PRC of the receiver population

at the time it receives the spikes from the sender population, is plotted in the delay-detuning phase plane. (C) The δMI between the firing rates of the

populations computed in the absence of an external signal.

https://doi.org/10.1371/journal.pcbi.1008129.g005
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the receiver population. The results show that the preferred direction of the signal and infor-

mation transmission can be qualitatively predicted by the theoretical analysis of coupled phase

oscillators once the PRC of the nodes is known.

Information transfer

In the previous section, we used cross-covariance and phase response curves as measures of

the quality of the transmission of external signals in the system. Since these measures are linear

it is not readily clear if they can predict (and be inferred from) the causal relationship between

the populations and the direction of the information flow between them in the presence and in

the absence of the external signal. To clarify this point, we compute the delayed mutual infor-

mation (see Materials and methods, Eq(4)) between the two populations. This measure quanti-

fies the information flow regardless of how the information is encoded and decoded [46].

Previous studies have shown that, in the absence of transmission delay, a frequency mis-

match between the oscillations of the two populations breaks the symmetry of the information

flow favoring the fast-to-slow direction [19, 26, 52]. As it can be seen in Figs 3D and 5C (in the

presence and in the absence of the external signal, respectively) the direction of the informa-

tion flow changes with the delay and frequency mismatch in a qualitatively similar manner as

for the signal transmission, indicating that the quality of the signal transmission can accurately

predict the direction of information flow and vice versa.

It is worth mentioning that similar results can be obtained when the networks oscillate in

another frequency, being the only difference that the range of delays scales with the carrier fre-

quency. This is a remarkable result due to its functional importance: When taking into account

the transmission delays, the quality of signal transmission depends on the (carrier) frequency.

Effect of asymmetric connectivity

The connections between brain regions are mostly asymmetric [53, 54]. It was previously

shown that in heterogeneous networks when the connections are chosen from a long-tale dis-

tribution, the nodes with stronger connections lag behind the weaker connected nodes [33]. It

means that the phase differences can also be affected by the asymmetry in synaptic strengths,

besides the natural frequency mismatch and communication delay which was explored above.

Therefore, here we inspect how the change in the phase differences due to the asymmetric con-

nections affects the signal and information transfer between neuronal populations.

We first explored the results for a feedforward network (no feedback connection) from the

receiver to the sender. The computed mutual information transfer reveals that the transmis-

sion is independent of the delay, as expected, and is determined by the mismatch between the

oscillation frequencies of the two populations (Fig 6A). For all delay values, the positive mis-

match (higher frequency of the sender population) yields a better information transfer.

We then fix the detuning at a positive value and the connection from sender and receiver to

gfor, and vary the strength of the connection from the receiver to the sender from zero to 2gfor.
The effect of the delay becomes more evident for an increasing feedback strength (Fig 6B). For

gback< 0.5gfor the information transmission remains from the sender to the receiver almost

independently of the delay. For gback> 0.5gfor we found windows of delays where the informa-

tion transfer from the sender to the receiver is considerably degraded, while in other ranges

the transmission is facilitated. Interestingly, the presence of the feedback connections facilitate

the transmission for some ranges of delay and degrades the transmission for some other

ranges.

PLOS COMPUTATIONAL BIOLOGY Transmission delays and frequency detuning regulate information flow in brain circuits

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008129 April 15, 2021 12 / 24

https://doi.org/10.1371/journal.pcbi.1008129


Theoretical background

To gain insight into the mechanisms that regulate the information flow between to delay-cou-

pled oscillating neuronal populations, we analyzed a minimal model of two coupled phase

oscillators. These oscillators are characterized by their natural frequency ωi and their phase

response function Qi. The evolution of the system was described by:

_y1 ¼ o1 þ K12Q1ðy2 � y1 � dÞ;

_y2 ¼ o2 þ K21Q2ðy1 � y2 � dÞ;
ð6Þ

where θ1 and θ2 are the phase of the oscillators, K12 and K21 are the coupling strengths, and δ
represents the interaction phase (that relates to the delay τ as δ = ωlocked

� τ). This approxima-

tion is valid when delays are smaller of, or comparable with, the period of the oscillations [55].

We assumed that the strength of the connections were equal K12 = K21 = K and that the

response functions were the same Q1 = Q2 = Q. We then defined the new variables ϕ = θ1 − θ2

and Θ = θ1 + θ2 and found

_Y ¼ W þ K Qð� � � dÞ þ K Qð� � dÞ

¼ W þ KLð�; dÞ;
ð7Þ

_� ¼ Dþ K Qð� � � dÞ � K Qð� � dÞ

¼ Dþ KGð�; dÞ;
ð8Þ

where, O = ω1 + ω2 and Δ = ω1 − ω2. Phase-locking is then determined by _� ¼ 0. The phase

difference in the locked state is implicitly given by

Gð�
�
; dÞ ¼ �

D

K
: ð9Þ

Fig 6. Effect of connection asymmetry on the information transfer. In (A) the connection is unidirectional from the

sender to the receiver. The mutual information transfer depends on the detuning but, as expected, is independent of

the delay. In (B) the delayed mutual information is plotted, in color code, in the ratio between feedforward and

feedback strength versus delay plane for a positive inhomogeneity value (Δ = 0.4).

https://doi.org/10.1371/journal.pcbi.1008129.g006
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A solution of this system exists while minðGÞ < � D

K < maxðGÞ, and the stability condition for

a locked state is given by dG
d� j�� � 0.

The main objective was to explore how a local external signal imposed on one of the oscilla-

tors affected the other, i.e., how the signal transmits. The signal appeared as a weak time-

dependent perturbation on the intrinsic frequency of one of the oscillators–the sender oscilla-

tor. We then addressed the question of how the signal injected into one oscillator (the sender)

affected the other oscillator (the receiver). Here we considered both tonic signals, which varied

in a long time scale compared to the period of the oscillations, and pulsatile signals, that mod-

eled the synaptic inputs whose time constants (mainly decay time) were short compared to the

oscillation period of the populations. These two types of signals can be related to the rate and

spike-time coding schemes in neuroscience [50, 51].

To quantify the transmission of synchronous signals, we defined a non-local phase response

curve (nPRC) which was specified as the change in the phase of the receiver oscillator upon

the incidence of the pulse injected into the sender one [56]. We assumed that the unperturbed

oscillators were locked at the phase difference ϕ�(Δ, δ) determined by Eq (9). The impact of a

pulse at a given phase β on the sender oscillator, changes its phase as Δϕ1 = Q(β) (see Fig 7A).

This gives rise to an instantaneous change in the argument of the coupling function in the sec-

ond equation of Eq (6) by Q(β) and changes the right hand side of that equation by Q(β)Q0(ϕ�

− δ) (where Q0 is derivative of Q with respect to its argument), given Q(β) is small (Fig 7A). As

a result, the phase changes in the receiver oscillator (and in the nPRC) is

Q21ðb; dÞ ¼ QðbÞQ0ð�� � dÞ: ð10Þ

Note that in the above equation, Q(β) quantifies how much the sender is affected by the signal,

Fig 7. Analytical results. (A) The schematic of how a pulsatile perturbation in the first oscillator affects the phase of

the second oscillator, as discussed in the text. (B) The absolute value of derivative of the PRC (Q), at phase (ϕ� − δ). To

plot this figure, we first find the locked phase difference for each value of Δ and δ in the locked regime using the Eq (9)

and then we find the absolute value of sin(ϕ� − δ). Locking zone borders is shown by dashed lines. (C) The response

function Si (Eq (12)) to the input of slow signals for the case of two delay-coupled phase oscillators is plotted in color

code, in the detuning and delay phase plane. In (D) the same results as (C) are shown for Δ = −2, 0, 2, depicted by red,

green and blue colors in (C), for the sake of clarification.

https://doi.org/10.1371/journal.pcbi.1008129.g007
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and Q0(ϕ� − δ) quantifies to what extent the change in the phase of the sender is sensed by the

receiver. In other words, the net transmission can be solely quantified by the absolute value of

Q0(ϕ� − δ). As noted above, the phase difference ϕ� can be calculated for any value of the delay

and frequency mismatch for Q(θ) = sin(θ). This type of PRC serves as a canonical form for

type-II excitable systems and resembles the interaction function in the Kuramoto model [57].

Fig 7B shows a generic form of the dependence of the transmission with respect to the delay

and mismatch which can be sketched for any oscillator once the PRC of the population Q is

known. The advantage of a positive mismatch (higher intrinsic frequency of the sender) for an

efficient transmission is seen for small delays δ< π/2 while the reverse preferred direction can

be seen in the range π/2< δ< π. This pattern of transmission is repeated for π< δ< 2π due

to the symmetry of the PRC (this symmetry is not the case for a general oscillator). Note also

that our analytical results are valid in the locked state whose domain is shown by the dashed

lines. We found similar results for the case of two coupled HH oscillators/populations,

although the pattern is not as symmetric as for the sinusoidal PRC.

In the second case we considered a slowly varying signal and quantified the transmission of

the signal by calculating a non-local response function defined as the derivative of the rate of

the collective phase change _Y with respect to the free-running frequency of the sender oscilla-

tor i

Si ¼
d _Y

doi
¼

dW
doi
þ K

dL
doi

¼
dW
doi
þ K

dL
d��
�

d��
doi

:

ð11Þ

Note that the signal was assumed to be weak enough so that the system remains in the locked

state, therefore, the dynamics of the collective phase is also representative of the dynamics of

the receiver oscillator. The response function can be considered as a measure of the impact of

the signal on the dynamics of the receiver oscillator. We will show through numerical simula-

tion of Eq (6) that this quantity can indeed qualitatively predict the correlation between the

signal and the rate of change in the phase of the receiver oscillator.

As an example we considered again Q(θ) = sin(θ). In this case, the phase difference ϕ� in

the locked state is determined by sin(ϕ�) = Δ/2K cos(δ) (Eq (9)), provided that |W/2K cos(δ)|

� 1. The non-local PRC, which quantifies the transmission of pulse signals, is proportional to

cos(ϕ� − δ). For the slow (rate) signals the response function is given by:

Si ¼ 1þ D
tand

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K2cos2d � D

2
p : ð12Þ

We also defined an imbalance measure, as the difference of response functions in two direc-

tions which quantifies the asymmetry in the signal transmission, from the high to low fre-

quency oscillator and in the reverse direction. For the above example the imbalance was

calculated as:

DS ¼ 2D
tand

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K2cos2d � D

2
p : ð13Þ

The analytical results for the response function Si, for different values of frequency mis-

match Δ and delay δ, are plotted in Fig 7C and 7D. The results show that similar to the case of

pulsatile signal in the locked state, for relatively small delays 0< δ< π/2 the signal is better

transmitted when it is injected into the high-frequency oscillator. Instead, for larger delays,

phases π/2 < δ< π, the transmission is facilitated in the reverse direction from the low- to the
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high-frequency oscillator. Interestingly, the maximum response (and the minimum response

in the reverse direction) is found near the boundaries of the locking zone.

To check the validity of our analytical results for the pulse packets and rate signals and the

robustness of the results to the type of signal, we performed numerical simulations for two

delay-coupled phase oscillators with Q(θ) = sin(θ). We then applied a small amplitude dichoto-

mous random signal, which switched between two states at random times, on the sender and

calculated the correlation of the rate of the oscillations at the receiver with the input signal.

The results shown in Fig 8A closely match the analytical ones (Fig 7C), within the locking

region (whose borders are marked by dashed lines). An interesting point is that the numerical

results, out of and near the locking region, reveal a reliable transmission and large imbalance

between the transmissions in the two directions. However, since the analytical results were

obtained assuming phase-locking, they are not valid for this region. Extension of the results to

this region can be explained by the presence of intermittent locked epochs when the system

approaches the locking zone [58].

Although the results normally depend on the exact form of PRC, a qualitative agreement

with the numerical results for two neural populations (Fig 3) can be observed since the pPRC

of the population is type-II. But since the two PRCs are not exactly the same, the results do not

conform in details, e.g., the transmission is not symmetric in the two directions over different

delay ranges and favor fast-to-slow direction (compare Fig 8 with Fig 3).

Fig 8. Numerical results for the case of two Kuramoto oscillators. In panel (A) top, we plot the stochastic dichotomous signal that is applied to the

first oscillator (the sender). In panel (A) middle, we plot the correlation of the rate of the phase change of the second oscillator (the receiver) with the

signal. The bottom panel is the transmission imbalance (Eq (13)) which quantifies the difference of the signal transmission in the two directions. In

panel (B) top, we plot the random signal that is applied to the sender oscillator. In the middle panel, we plot the rate of the phase change of the receiver

oscillator with the signal, and the bottom panel is the transmission imbalance. (C) Rate of phase change of two coupled oscillators for δ = π/4 and Δ = 0,

±2, ±4. The black line is the scaled input signal. The simulation parameters: ω = 55Hz, K = 4, δ 2 [0, 2π], Δ = 4, and we added noisy input with μ = 0,

and σ = 1.

https://doi.org/10.1371/journal.pcbi.1008129.g008
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Discussion

Extensive experimental and theoretical studies over recent decades have unleashed the role of

brain oscillations in several cognitive and executive brain functions like sensory processing

[59], memory [60, 61] attention [62], and motor functions [63]. Oscillations and the coordi-

nated activity of neurons facilitate the transmission of signals along different stages of neural

processing systems and enable an efficient communication between brain areas [64–66]. Inte-

gration of information which is processed across distributed specialized brain regions, is

hypothesized to be controlled by the temporal coordination of their local dynamics [67]. Oscil-

lations change the excitability of the neurons over time and enable control of communication

between brain areas by adjusting their phase relationships [18]. In addition, oscillations pro-

vide a functional substrate to transmit multiple information along different routes and direc-

tions over different frequency bands [68–71]. Numerous theoretical and numerical studies

have been carried out to shed light on the mechanisms through which the oscillations control

the transmission of information and give rise to flexible communication channels in brain cir-

cuits [19, 20, 65, 72]. It was has been shown that the phase relationship between the oscillatory

activity of brain regions can determine the efficacy and the preferred direction of the informa-

tion flow [24, 26, 46, 52]. Diverse and dynamic phase relationships between the activity of dif-

ferent brain regions are a hallmark of a flexible pattern of communication in brain circuits [5].

In recent years, the mechanism that determines these phase relationships has been the focus of

several theoretical studies addressing the control of information routing in brain circuits [19,

20, 26, 73, 74]. It is well-known that a mismatch between the natural frequencies exerts a finite

phase difference between coupled oscillators operating in the locked state. This has been

observed in coupled neural oscillators and for interconnected oscillatory populations of neu-

rons [30, 33, 72]. In the case of zero, or very short, communication delay the oscillators with

higher natural frequency tend to phase lead when the in-phase state is the stable mode [33].

These phase leaders have been usually considered as those that determine the preferred direc-

tion of information flow [19, 26]. In this framework, it is possible to tailor phase differences by

changing the natural frequency of the neural populations. The oscillating frequencies can be

modified by several networks and external parameters [11, 75]. Since the networks’ parame-

ters, like the synaptic strengths and time constants, are less (or are not even) tunable in short

time scales, the external inputs to the networks are ideal candidates for controlling the oscilla-

tion frequency of the populations, at least in theoretical models [11, 75]. Therefore, the level of

the external input can directly control the phase differences and the efficacy and direction of

information transfer channels.

In this paper, we showed the essential role that the transmission delay plays in the efficiency

and the direction of functional interaction between oscillating regions, when their natural fre-

quencies are different. By systematically changing the natural-frequency mismatch and the

delay time in the coupling between two oscillating neuronal populations, we showed that pre-

vious results on the information flow from high-frequency to low-frequency oscillating popu-

lations is only correct for small delays [20, 26]. Interestingly, other patterns of effective

communication, including almost symmetric communication channel or information flow in

the reverse direction, from the low- to the high-frequency population, can be observed over

different ranges of delay. Our results indicate that phase-leading populations are not necessar-

ily the source of information flow in brain networks. Parameters as the delay and the response

function of the populations are important to determine this information flow.

It is well accepted that information can be processed and transmitted in brain circuits either

using the rate coding or the time coding [50, 51]. To account for these two modes, we applied

both slowly varying signals and synchronous pulse packets to the neural populations.
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Interestingly, we found that our results were qualitatively the same for both types of signals.

That is, the quality of the signal transmission as a function of the delay and frequency mis-

match was similar in the two cases.

Role of collective phase response functions

The PRC has been extensively shown to be important to explain different synchronization sce-

narios between coupled dynamical systems (see .e.g. [24, 30, 76, 77]). While the collective

phase response is widely studied for populations of oscillators [78–81], those results are not

readily applicable to the neural ensembles. The neural populations composed of excitatory and

inhibitory neurons show collective oscillations at the population level while the single neurons

irregularly fire [11, 82]. Since the mechanism of the synchrony and mathematical formulations

of the emergence of the rhythms in such networks are far different from those of networks of

coupled oscillators [75, 83]; though their response to the external inputs might be different

and warrants for more systematic studies [24, 56, 84].

In the case of delay-coupled neuronal populations, the PRC can accurately determine the

phase difference between populations operating in the locked state [24, 47]. A symmetric sys-

tem composed of two identical populations in the presence of delayed interactions can exhibit

in-phase or anti-phase-locking, or locking in other phases due to a symmetry breaking. Nota-

bly, a symmetry broken locking leads to a directional effective connectivity with the population

that advances in phase playing the role of the information source. The role of symmetry break-

ing in the determination of the directional effective connectivity has been also reported in

other studies [52]. These results confirm that phase-locking in a phase other than zero or π can

lead to a directional effective connectivity even if the underlying system is structurally symmet-

ric and the populations have equal natural frequencies. The focus of our study was to provide a

general framework for the quality and the preferred direction of the signal transmission

between neural populations, in presence of delay and frequency mismatch. Our theoretical

framework went beyond the determination of the phase differences, and showed how the

transmission of rate- and time-coded signals non-trivially depend on the delay and frequency

mismatch. We showed that once the collective PRCs of the neural populations are known, the

regions to transmit signals efficiently can be predicted in the time delay vs. frequency detuning

phase space. These results were in good agreement with those obtained when modulating the

sender population and computing the information flow.

Finally, although the theoretical results were valid in the locked state, simulation results

showed that they can be extrapolated to the region out of, and near to, the locked state (see Fig

8). We hypothesize that the presence of intermittent synchrony in the transition regions leads

to the epochs of transient phase-locking where the theoretical results can be still valid. This

can be of importance in realistic models of cortical activity where the synchronization and

phase-locking modes are not stable and bursts of phase-locked strong oscillations appear

between periods of low synchrony states [19].

Role of the frequency detuning and connection delay

Based on the theory of communication through coherence (CTC) it is the phase difference

between brain local oscillations that determines the efficacy of communication channels

between brain regions [1, 20]. So, the study of the phase-locking between collective local oscil-

lations in brain circuits has attracted much interest in recent years [24, 42]. Theoretical and

numerical studies using networks of spiking neurons and low-dimensional mass models have

shown that the delay in homogeneous systems [24, 42], and the frequency mismatch [33]

affects the synchronization properties of brain networks. In general, in-phase and
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anti-phase-locking are the main stable states of coupled neural oscillators in a symmetric sys-

tem with delayed interaction (see [24, 46]), and in the presence of mismatch between the natu-

ral frequencies with the faster population leading the dynamics [42].

We found that such faster (phase leading) populations are not necessarily the source of

information flow as was shown by several studies [19, 20, 26, 73, 74]. Depending on the delay,

the preferred direction of signal transmission and information transfer can be established

from fast-to-slow or in the reverse direction. Our results showed that, in general, it is the com-

bination of the natural frequency detuning and the connection delay which matters and deter-

mines the effective connectivity.

Based on our results, for a symmetric interaction function like a sinusoidal one in Kura-

moto model, there is a balance between two directions of effective connectivity in the parame-

ter space. But as our numerical results showed, for two coupled neural populations the shape

of the collective PRC warrants that there is a certain preference towards a larger flow of infor-

mation for positive detuning than for negative ones, compatible with previous studies. Still,

symmetric information exchange and information flow from the low to the high frequency

population is also possible in some narrow range of delays.

Limitations and future studies

In this study, our network operated at an oscillatory state with a single frequency. We showed

that the signals and information transmission change with delay, when the latter is changed

over a period of oscillation. At a given delay time, then, the transmission changes with the

oscillation frequencies. It can be concluded that the effective connectivity between brain

regions is different at different frequencies because of the delayed interactions. This provides

the possibility to transmit information over different routes and directions at different fre-

quency bands as is observed in experimental studies [68, 69]. Since our network was capable to

produce oscillation in single frequency in the gamma range, it was not possible to check the

transmission in multiple frequency bands.

In the brain, networks operate at multiple frequency bands (including a fast and a slow

oscillatory component); several modeling studies have suggested mechanisms to reproduce

this regime [85–87]. In our model we only considered synapses mediated by AMPA and

GABAA receptors, and used the classical description of the Hodgkin-Huxley neuron model. To

account for networks with richer dynamics and to produce oscillations at multiple frequencies,

we need to incorporate synapses with slow dynamics and chose more appropriate neuronal

models [85, 88]. Moreover, to highlight the role of delay we set our network in a high coher-

ence regime. It is necessary to explore how the results translate to more realistic networks with

unstable oscillatory dynamics and lower coherence [19].
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