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Carcinogenesis consists of oncogenesis and metastasis, and intriguingly microRNAs (miRNAs) are involved
in both processes. Although aberrant miRNA activities are prevalent in diverse tumor types, the exact
mechanisms for how they regulate cancerous processes are not always clear. To this end, we performed a
large-scale pan-cancer analysis via a novel probabilistic approach to infer recurrent miRNA-target
interactions implicated in 12 cancer types using data from The Cancer Genome Atlas. We discovered
,20,000 recurrent miRNA regulations, which are enriched for cancer-related miRNAs/genes. Notably,
miRNA 200 family (miR-200/141/429) is among the most prominent miRNA regulators, which is known to
be involved in metastasis. Importantly, the recurrent miRNA regulatory network is not only enriched for
cancer pathways but also for extracellular matrix (ECM) organization and ECM-receptor interactions. The
results suggest an intriguing cancer mechanism involving miRNA-mediated cell-to-cell communication,
which possibly involves delivery of tumorigenic miRNA messengers to adjacent cells via exosomes. Finally,
survival analysis revealed 414 recurrent-prognostic associations, where both gene and miRNA involved in
each interaction conferred significant prognostic power in one or more cancer types. Together, our
comprehensive pan-cancer analysis provided not only biological insights into metastasis but also brought to
bear the clinical relevance of the proposed recurrent miRNA-gene associations.

C
ancer is a complex disease implicated by various molecular abnormalities at the structural and expression
level of both coding and non-coding genes1. While the alterations of protein-coding oncogenes and/or
tumour-suppressor genes have long been considered as the causal variants for oncogenesis, exact molecu-

lar mechanisms on how the tumorigenic signals propagate from tumor cells to adjacent cells are often unclear. A
crucial clue may lie in a class of endogenous 20–22 nucleotide non-coding RNA species called microRNA
(miRNA)1,2. Since the discovery of the first miRNA let-7 in Caenorhabditis elegans3 in 1993, a vast amount of
studies have been dedicated to functionally characterizing miRNAs with a special emphasis on their roles in
cancer4–8. On the other hand, it has proved difficult to identify miRNA-target interactions in mammals based on
sequence features alone primarily due to the imperfect base-pairings between miRNAs and the target genes2.
Some of the earlier popular prediction methods such as TargetScan9 and miRanda10 are based on sequence
complementarity between the 2–7 nucleotide positions termed as the ‘‘seed region’’ of the miRNAs and the
39UTR of the target genes. However, many non-canonical interactions also exist. For instance, a recent techno-
logy called CLASH (cross-linking, ligation, and sequencing of hybrids)11 and a similar protocol12 that directly
interrogate the genome-wide physical interactions between miRNA and RNA targets revealed many interactions
occurring outside of the seed regions in human and worm. Furthermore, these new data revealed that over 40%
(and only about 23%) of the physical interactions in fact occurred at the coding regions (and 39UTRs) of the target
genes11,12.

Nonetheless, physical bindings are not necessarily functional in vivo. To explore miRNA regulatory landscape
implicated in cancer, we need to take into account both the miRNA and target gene expression profiles. In this
regard, The Cancer Genome Atlas (TCGA) Research Network has generated an unprecedented large amount of
high quality paired miRNA and gene expression profiles along with other genomic and epigenetic measurements
for thousands of serous and epithelial specimens across diverse tumor types13. Importantly, the consortium raised
the notion of pan-cancer to identify molecular aberrations that transcend multiple cancer lineages14. MiRNAs
often repress target gene expression by inducing RNA degradation15. Identifying pervasive negative expression
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correlation resulted from specific miRNA-target interactions across
all cancer types may provide functional insights to the oncogenic
mechanism. However, there is a current lack of a systematic
approach to infer the recurrent miRNA-mRNA associations while
taking into account the systematic biases due to different experi-
mental conditions, sample heterogeneity, sample size, and many
other non-uniform aspects that make the pan-cancer analysis par-
ticularly challenging.

Recently, Jacobsen et al. (2013) developed a rank-based method
called recurrence (REC) to evaluate the recurrent interactions across
11 cancer types using TCGA data6. The miRNA-target interaction
strength in individual cancer type is estimated by the corresponding
coefficients in a multivariate linear regression model, which also
takes into account the biases in estimating target expression changes
due to the corresponding copy number and DNA methylation
changes. Essentially, a specific miRNA-target pair that is ranked high
in terms of its regression coefficients among all cancer types will
confer a high REC score. Since the rank-based approach is scale-free,
REC avoids direct comparisons between cancer types, which can be
misleading due to the aforementioned systematic biases inherent in
each cancer dataset. Notably, however, the REC score is derived from
a x2 approximation, and the magnitude of the score is arbitrary.
Perhaps a more natural way to evaluate the statistical confidence of
the recurrent interactions is by inferring the corresponding posterior
probabilities. In this regard, a related but not directly applicable
method called MCMG (Multiple Cancer for MicroRNA-Gene inter-
actions) employs an empirical Bayes approach to infer the posterior
probability of the interaction within a specific cancer by borrowing
information from other cancer types in order to estimate the prior
distribution for the interactions7.

In this study, we developed a probabilistic approach called
PanMiRa (Pan-cancer MiRNA-target Associations) to infer recur-
rent miRNA-target interactions across 12 cancer types from TCGA.
The major innovation in our method in comparison to previously
published methods is its Bayesian inference of the posterior distri-
bution of the recurrent interactions after taking into consideration
the confounding effects from copy number and DNA methylation.
Sequence-based feature scores, known interactions, CLASH-
detected chimera, and miRNA perturbation data all corroborate
the ,20,000 positive recurrent interactions identified by PanMiRa.
Moreover, PanMiRa predictions are enriched for oncomirs and
oncogenes, implying their functional relevance in cancer biology.
Intriguingly, we find that the targets involved in the 1480 high-con-
fidence pan-cancer interactions are not only enriched for cancer
pathways such as TGF-b signalling pathways but also pathways
related to extracellular matrix (ECM) organization, focal adhesion,

and ECM-receptor interactions, all of which are essential pathways
in oncogenesis. A natural way to interpret these results is perhaps
that miRNA may mediate cell-to-cell communication through
modulating the expression of the ECM-constituents to facilitate
tumor invasion during metastasis. Moreover, survival analysis
revealed 414 prognostic-recurrent interactions, some of which are
also associated with ECM organization and intercellular interaction.
Together, the large pan-cancer atlas and the novel pan-cancer
inference method provide a valuable resource for the scientific com-
munity. Finally, we further postulate that the hypothesized miRNA-
mediated intercellular communication may involve extracellular
RNA (also known as exosomal RNA or abbreviated as exRNA) trans-
fer mechanism16, where the extracellular vesicles manoeuvre through
ECM to deliver tumorigenic miRNA messengers to the cells in
vicinity.

Results
Pan-cancer data compendium construction across 12 cancer
types. We constructed a large pan-cancer data compendium from
TCGA, which is by far the most comprehensive data resource,
providing paired mRNA and miRNA (m/miRNA) expression data
as well as copy number (CN) and DNA methylation (DM) data
measured for the same sample across diverse cancer types13. Here
we chose 12 cancer types from the TCGA Data Portal based on the
availability of the above-mentioned molecular measurements for at
least 100 samples per cancer type. For each cancer type, we
downloaded the processed long and short RNA-seq data. We then
filtered the target RNAs or miRNAs by non-zero expression level in
at least 5% of the samples within the same cancer type. Additionally,
we required that each target RNA must also have CN measurements
for the same sample, which are the processed SNP array data from
Broad Institute-Firehose17. Moreover, we obtained the processed DM
microarray data measured for each target RNA, and retained the
probes at the promoter regions by their negative correlations with
the target RNA expression level. Finally, we merged the data from the
12 cancer types to form a pan-cancer data compendium containing
4,258 samples, each having the expression, CN, and DM values for
17,788 target RNAs and expression levels for 677 miRNAs. Table 1
summarizes the pan-cancer data atlas. More details are described in
Methods.

Inferring recurrent miRNA-target interactions implicated by the
pan-cancer data. To reliably infer the distribution of recurrent
miRNA-target interactions from the pan-cancer data compendium,
we developed a novel Bayesian framework called PanMiRa (Pan-
cancer MiRNA-target Associations). Fig. 1 illustrates the concept of

Table 1 | Summary of the analyzed TCGA data sets of 12 major cancer types

Disease Description Samples target RNAs miRNAs

BLCA Bladder urothelial carcinoma 134 18,622 875
BRCA Breast invasive carcinoma 847 18,564 806
CRC* Colon rectum carcinoma 395 (155) 18,395 (18,390) 794 (804)
HNSC Head and neck squamous-cell carcinoma 303 18,689 864
KIRC Kidney renal clear-cell carcinoma 474 18,648 737
LGG Brain Lower Grade Glioma 179 18,525 993
LUAD Lung adenocarcinoma 350 18,539 847
LUSC Lung squamous-cell carcinoma 315 18,670 857
PRAD Prostate adenocarcinoma 170 18,514 765
SKCM Skin Cutaneous Melanoma 234 18,552 892
THCA Thyroid carcinoma 224 18,299 830
UCEC Uterine corpus endometrioid carcinoma 478 19,003 877
Pan-cancer panel of the above 12 cancer types 4,258 17,788 677

For each target RNA or miRNA, we obtained the corresponding expression levels, copy number, and DNA methylation at the promoter region within the same sample. Genes or miRNA expressed in less
than 10% of the samples in the same cancer type were filtered out. The pan-cancer panel combines the 12 cancer types based on commonly measured genes and miRNA.
*The CRC data is the union of colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ) data from TCGA.
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the proposed model (detailed in Methods). Suppose the mRNA target
expression level is a function of DM, CN, and miRNA regulation
(Fig. 1a). To estimate the individual miRNA-target relationships, we
employed a multivariate linear regression model, which was fitted to
the observed target expression, taking into account the biases due to
the baseline expression level, DM, and CN effects (Fig. 1b). The
resulting linear coefficients are indicative of the corresponding
miRNA-target relationships in the specific cancer type: the more
negative they are the more likely the interactions are real. To
translate the numerical coefficients into the language of probability,
we first transformed the coefficients into z-scores and then estimated
the corresponding local false discovery rate (locfdr) using the
procedure developed by Efron (2004) (Fig. 1c). The technique was
invented for large-scale simultaneous hypothesis testings by
estimating the null distribution directly from the test statistics18. The
resulting local FDR can be considered as an empirical Bayes version of
the FDR derived from the popular Benjamini-Hochberg (BH)
method19 and is in principle equivalent to the posterior probability
of false interactions given the z-scores.

Additionally, the empirical distribution estimated from the locfdr
approach is essentially the likelihood of z-scores given the underlying
interaction status and enables estimating the joint posterior of the
true interactions across the 12 cancer types via an empirical Bayes
algorithm7 (Fig. 1d). For each interaction, we first assume a uniform
prior for all possible combinations of its binary value over the 12
cancer types. In particular, each interaction can take on 212 5 4096
possible combinations, and the initial prior is 1/4096 for each com-
bination. Using Bayes rule and assuming the interactions at different
cancer types are conditionally independent given their true inter-
action status, we can compute the posterior for each combination

and re-estimate the prior by marginalizing the joint posteriors. We
then alternate between the prior and posterior inference steps until
little change occurs between the likelihoods at the current and pre-
vious iteration. The posteriors of interest associated with the recur-
rent interaction correspond to the particular binary combination,
where the interaction status is positive across all of the 12 cancer
types. From the pan-cancer compendium constructed above,
PanMiRa identified 20,819 recurrent interactions with positive joint
posterior among the ,1.8 million candidate interactions with nega-
tive z-scores between the corresponding miRNAs and target genes in
at least 75% of the cancer types.

Functional validation of the predicted recurrent interactions. As a
proof-of-principle, we used four types of complementary functional
data to examine the validity of the 20,819 predicted recurrent
interactions, each having a positive joint posterior probability
(Supplementary Table S1): (1) sequence-based scores from
miRanda-mirSVR10 and TargetScan9; (2) validated interactions from
miRTarBase (release 4.5)20; (3) interactions detected by CLASH
(cross-linking, ligation, and sequencing of hybrids)11 in HEK293
cell; (4) miRNA perturbation data extracted from public domains.
As a comparison, we implemented the recently developed rank-
based method called REC (RECurrence)6, which (to our knowledge)
is the only published method to predict recurrent miRNA-target
interactions, and we defined the positive interactions as having REC
score , 21 (Methods). We also explored several more lenient/
stringent REC cutoffs and observed similar or worse performances.
First, we found that the positive interactions predicted by PanMiRa
exhibit significantly higher sequence-based scores than the remaining
non-recurrent interactions (p , 1.72 3 1022; one-sided Wilcoxon

Figure 1 | PanMiRa model schema. (a) Suppose target RNA expression (yi,t,d) in sample t of cancer type d is a function of DNA methylation (xDM
i,t,d),

copy number (xCN
i,t,d) and miRNA regulation (xmiR

k,t,d). (b) The expression change across samples for the target RNA is modelled as the response variable in a

multivariate linear regression framework using the input variables as indicted above. (c) The resulting linear coefficient bmiR
i,k,d indicate the

corresponding interaction between miRNA k and target gene i of cancer type d and are transformed into z-scores, which are then subsequently subjected

to local false discovery rate (locfdr) estimation18. (d) The joint posteriors for the recurrent interactions given the z-scores are inferred by empirical Bayes

using the probabilistic quantities obtained from the locfdr procedure above.
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rank-sum test), which together contributed to the general pool of ,1.8
million interactions with negative correlations in at least 75% of the
cancer types (Fig. 2a). Supplementary Fig. S1 illustrates the full results
for the analysis using the sequence-based predictions as a ‘‘gold-
standard’’. Additionally, the general interaction pool with
randomized recurrent scores performed much poorer than the
predicted recurrent interactions, further confirming that the
improvement is due to the recurrence nature of the interactions
(Fig. 2b). Notably, REC-predictions can also distinguish strong from
weak sequence-based interactions whereas the overall statistical
significance is lower when compared with PanMiRa-interactions
(Fig. 2b; Supplementary Fig. S1). Thus, the unbiased pan-cancer
predictions indeed accurately reflect the sequence-context features
such as the canonical 2–7 position seed match, AU content,
sequence conservation, etc9,10.

We then examined whether the PanMiRa-predicted interactions
were more enriched for validated interactions from miRTarBase20

than random or REC-predicted pairs. Due to the paucity of the
known interactions, however, conventional power analysis such as
Receiver Operating Characteristic (ROC) curves is unable to dis-
criminate method performances. Instead, we ranked the interactions
based on the corresponding posteriors or REC scores and counted
within the top 2000–20,000 interactions with 2000-interval the total
number of validated interactions. As shown in Fig. 2c, PanMiRa

predictions are significantly more enriched for the known interactions
than random and REC-predicted pairs (p , 1.33 3 1023, p , 1.38 3

1022, respectively; Wilcoxon signed rank test). Similarly, we observed a
significantly higher enrichment for interactions detected by CLASH
when comparing PanMiRa with REC and randomly shuffled poster-
iors (p , 2.5 3 1022, Wilcoxon signed rank test; Fig. 2d).

To further ascertain the functional implication of the pan-cancer
miRNA-target interactions, we compared the expression fold-
changes of the predicted targets with the remaining genes using
publicly available microarray data for six miRNA perturbation
experiments (Methods). Notably, three of the six experiments were
done by knocking down (or overexpressing) the respective miRNAs
using anti-mirs (or miRNA mimics) expecting an up-regulation (or
down-regulation) of the true targets. Indeed, we observed an overall
coherent expression changes for both the PanMiRa and REC-pre-
dicted targets (Fig. 3a), where four of the six tests passed the statistical
significance test (p , 0.05, one-sided Wilcoxon rank-sum test).
Notably, however, the targets predicted by PanMiRa exhibit more
significant expression changes in four out of the six tests (Fig. 3b).
Together, we show that the predicted pan-cancer interactions from
the proposed model are corroborated by the sequence-based context
and conservation scores, experimental validations, physical interac-
tions from CLASH, the miRNA perturbation experiments, and
therefore biologically plausible.
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and CLASH-detected chimera are counted as a function of the top rankings from 2000–20,000 with 2000-interval. P-values indicated above were

computed by comparing PanMiRa with random/REC using Wilcoxon rank-sum test.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 7097 | DOI: 10.1038/srep07097 4



Enrichment for cancer-related miRNAs and target genes in the
recurrent interactions. To explore the biological implications of the
recurrent interactions in oncogenesis, we first examined whether
the miRNAs and genes involved in the pan-cancer pairs are
enriched for the known cancer miRNAs and genes, which are
previously shown by independent studies to exhibit aberrant
expression in tumors and denoted from now on as oncomir and
oncogenes, respectively. To this end, we compiled cancer-related
miRNAs from two separate sources21,22 and collected canonical
cancer genes from COSMIC database23. Remarkably, the recurrent
interactions are significantly enriched for both the oncomirs and
oncogenes/tumor suppressors (p , 6.38 3 1028, p , 0.019,
respectively; hypergeometric test) (Fig. 4a). We confirmed that the
enrichment for cancer related miRNAs and genes are also due to the
recurrence nature by repeating the same enrichment analysis using
genes or miRNAs involved in the non-recurrent interactions (i.e.,
excluding genes and miRNAs in the ,20,000 positive recurrent
interactions) (Fig. 4a lower panel). Using only the recurrent
interactions each involving both the oncomirs and oncogenes, we
generated a cancer network and visualized it under Cytoscape24,
where the size of the nodes were drawn proportional to their in/
out-degree in the overall network, and the edge widths are
proportional to the recurrence posterior probabilities
(Supplementary Fig. S2). Importantly, we observed that a large
number of pan-cancer interactions involve miR-200 miRNA
family (MIPF0000019; miRBase release 21)25, which contains miR-
200a/b/c, miR-141, and miR-429. Fig. 4b depicts the corresponding
subnetwork. Growing evidences suggest that miR-200 miRNAs are
involved in cell proliferation26 and cancer metastasis27,28. In
particular, Nam et al. (2008) observed an up-regulation of the
miR-200 family members in ovarian cancer27. Korpal et al. (2008)
demonstrated that overexpressing each miR-200 family member in
NMuMG murine mammary epithelial cells consistently inhibited
epithelial-mesenchymal transition (EMT) and promoted
mesenchymal-epithelial transition (MET) by de-repressing E-
cadherin via targeting of ZEB1 and ZEB2, which are repressors of
E-cadherin (but not oncogenes themselves)28. In line with these

recent studies, our results suggest a prominent cancer-related role
of the miR-200 family in not only regulating E-cadherin repressor
ZEB1 (by miR-141-3p with posterior equal to 0.42; Supplementary
Table S1) but also a large number of known oncogenes. Notably,
most of the oncomir-oncogenes interactions remain to be
validated, which calls for focused experimental studies.

Target genes in the recurrent interactions are enriched for cancer-
related pathways. To gain mechanistic insights into the recurrent
interaction effects in cancer, we performed a functional enrichment
analysis by DAVID29 using the target genes involved in the 1480 high
confidence recurrent interactions with posteriors at least 0.2. Indeed,
we found that the target genes are significantly enriched for
meaningful cancer-related processes or pathways such as
regulation of endothelial cell proliferation (GO:0001936; p , 3.09
3 10204), p53 binding (GO:0002039; p , 0.0022), TGF-b signalling
pathways (hsa04350; p , 0.01), regulation of EMT (GO:0010717; p
, 0.0011), and pathways in cancers (hsa05200; p , 0.0058)
(Supplementary Table S2). Fig. 5a depicts the miRNAs (red
diamond) and the target genes (purple circle) involved in the
KEGG (Kyoto Encyclopedia of Genes and Genomes)30 pathways in
cancer (hsa05200), where the edges are annotated with the
corresponding posterior probabilities. Moreover, we generated 49
scattered plots each corresponding to a recurrent interaction
involved in this pathway (Supplementary Fig. S3). As expected, we
observed that the miRNA-target pairs indeed exhibit negative
correlations pervasively across the 12 cancer types. Fig. 5b
illustrates two of the 49 examples, namely miR-22-5p-EP300 and
miR-107-TGFB1, whose recurrence posterior probabilities are
0.669 and 0.871, respectively.

For the former example, EP300 is a well-known oncogene23 and
has been recently considered based on exome sequencing and
RNA interference as one of the 28 postulated cancer-driver gene
hubs, which exhibit distinctive expression pattern in the luminal
and basal subtypes of the 16 breast cancer cell lines and 402
breast tumor samples31. However, to our best knowledge, the
cancer recurrent interaction relationship between EP300 and
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miR-22-5p has not been previously elucidated. Perhaps one rea-
son is that miR-22-5p is on the star strand (*) of the stem-loop
precursor miRNA hairpin, which gives rise to the more conserved
counterpart miR-22-3p (TargetScanHuman database 6.2)9.
Nonetheless, Smith-Waterman local alignment by EMBOSS32

(default settings) between EP300 39UTR sequence (Ensembl 75)
and the mature miR-22-5p sequence (miRBase 21) revealed a
canonical 6-mer seed match at the 2-7 position of the miRNA2

(green vertical lines in Fig. 5b left) plus the base-pairing at the
first position.

For the latter example, TGFB1 (transforming growth factor beta 1)
was predicted by our analysis to be regulated by the oncomir miR-
107 (posterior: 0.871), which is supported by the negative correlation
observed in 11 out of the 12 cancer types (Fig. 5b right). Notably,
TGFB1 is also an oncogene23 and a putative cancer gene hub31. It is
one of the TGF-b family ligands that bind to TFG-b type II receptor
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from outside the cell to initiate the well-known TGF-b signaling
pathway, which is involved in tumor suppression through apoptosis
but paradoxically also modulates cell proliferation, cell invasion, and
immune regulation that tumor cells can take advantage of33. On the
other hand, overexpression of miR-107 has been associated with
metastastic potential of colorectal cancer (CRC) cell lines, poor pro-
gnosis in CRC patients34, and may function as tumor suppressor gene
in Head and neck squamous cell carcinoma (HNSC)35. Notably, miR-
107 and TGFB1 are negatively correlated in both CRC and HNSC in
our pan-cancer TCGA data compendium along with other cancer
types (Fig. 5b right). Here again, to the best of our knowledge, their
cancer recurrent interaction is elusive in the current literature.

Perhaps the main reason is due to the disrupted seed match region
at the 7th position of miR-107, where an A is facing against a G in the
39UTR of the TFGB1 transcript (Fig. 5b right). Consequently, most
well-known databases such as TargetScan9, which are primarily
based on the seed matches, do not report this interaction pair.
Notably, however, the downstream 3 base-pairings at the non-seed
region plus the anchor A at the 39UTR facing the first miRNA nuc-
leotide may compensate for the mismatch in the seed region and may
in fact give rise to an effective interaction. Thus, our pan-cancer
analyses not only identified canonical interactions between non-con-
served miRNA and target genes but also non-canonical ones, which
are nonetheless highly implicated by their confidence recurrence

Figure 5 | Confidence recurrent subnetwork involved in the KEGG pathways in cancer. (a) Pan-cancer miRNA-mRNA interactions with

posteriors at least 0.2 were used to construct a confidence recurrent network and visualized via Cytoscape24. The subnetwork shown above involved target

genes in the KEGG pathways in cancer (KEGG ID: hsa05200)30. The miRNAs and genes are displayed in red diamonds and blue ellipses, respectively, and

the edge labels are the posterior probabilities. The yellow highlighted nodes are chosen as two detailed examples described below. (b) We generated the

scatterplots to visualize the expression correlation between miR-22-5p and EP300 (left panel) and between miR-107 and TGFB1 (right panel). The

corresponding base-paring between the mature miRNAs and the 39UTR sequences displayed in the bottom were predicted by Smith-Waterman local

alignment from EMBOSS suite32.
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posteriors as well as the strong negative correlations across the 12
cancer types.

Possibility of miRNA-mediated intercellular communication in
metastasis. The above analyses identified a plausible role of recurrent
interactions in regulating TGF-b signalling, eluding the possibility
for miRNA-mediated intercellular communication. More
intriguingly, however, the top hits from the functional enrichment
analysis are mostly related to extracellular matrix (ECM)
organization, cell focal adhesion, and ECM-receptor interactions
(Table 2). Notably, the enrichment results was based on a standard
hypergeometric test performed by DAVID online database29 using a
general gene pool as background and the signature genes involved in
the 1480 putative recurrent interactions as gene list. To ascertain
these enrichments, we performed a randomization test by
sampling 1480 random interactions from the ,1.8 million
interactions pool and counted the number of genes involved in the
above-mentioned KEGG pathways or GO-BP terms. We repeated
the samplings 1 million times to construct an empirical distribution
to assess the significance of the observed gene counts in each gene set.
As expected, we observed a significant enrichment attributed to the
1480 recurrent interaction for each of the four gene sets of interest
relative to the background distributions (p , 0.0007 or 0.017;
Supplementary Fig. S4). Thus, the empirical enrichment analysis
confirmed the validity of the above parametric enrichment results
obtained from DAVID.

These results point to the intriguing possibility that miRNAs may
not only regulate the ligand-receptor interaction but may also modu-
late the extracellular environment to facilitate cell-to-cell commun-
ication during metastasis. For instance, Fig. 6 depicts the recurrent
pairs related to ECM-receptor interaction pathway from KEGG
(hsa04512; also see original KEGG screenshot with targets high-
lighted in Supplementary Fig. S5). The targets are divided into two
categories, namely the transmembrane receptors and the ECM com-
ponents. Each target group are regulated by a set of specific miRNAs
as implicated by the recurrence posterior probabilities (edge labels).

The ECM components include (among others) collagens, fibro-
nectin, laminin, thrombospondin, which are the targets involved in
the confidence recurrent interactions (Fig. 6 top panel). These extra-
cellular macromolecules are produced intracellularly by resident cells
and secreted into the ECM via exocytosis36. Specific interactions
between cells and the ECM are mediated by the transmembrane

receptors including integrins and syndecan29, whose components
are targeted by five separate miRNAs as shown in the bottom panel
of Fig. 6. The diverse ECM structure and composition enable a com-
plex dynamics of tumor invasion and metastasis in cancer biology36.
For instance, an early study suggested that metastasis is often accom-
panied with local dissolution of the ECM components including
degradation of collagens to perhaps facilitate the invading tumour
cells to traverse through the extracellular matrix37. Moreover, many
cells bind to components of the ECM by focal adhesions, which is
indeed another enriched GO biological process we identified from
the pan-cancer interactions (Table 2).

Survival analysis. To examine the clinical relevance of the identified
recurrent interactions, we performed an extensive survival analyses
by considering each gene or miRNA involved in the 1480 confidence
recurrent interactions as a potential prognostic signature38. For each
of the 12 cancer types, we obtained the corresponding clinical
information from TCGA Data Portal. In particular, we used as a
prognostic indicator the number of days elapsed before death or
whether the patients were still alive since the initial diagnosis. We
excluded PRAD (Prostate adenocarcinoma) due to the paucity of the
survival data because most patients were still alive at the time of the
measurements. For each interaction, we divided the samples into two
groups depending on whether the corresponding gene or miRNA
expression level is lower or higher than the sample means. We then
employed Kaplan-Meier (KM) method using R package survival39 to
compare the survival rates of the two groups, where the significance
was determined by log-rank test. For each putative recurrent
interaction, we required both the corresponding gene and miRNA
to confer prognostic power at the significance level of p , 0.1.

As a result, 414 out of the 1480 interactions passed the threshold in
at least one cancer type. Among these prognostic-recurrent interac-
tions, 64 interactions are prominent in more than one cancer type
(Supplementary Table S3). As a proof-of-principle, we repeated the
same survival analysis on the genes and miRNAs involved in the ,1
million remaining interactions (i.e., excluding genes or miRNAs
belonging to the 1480 recurrent interactions). Notably, all of these
interactions exhibit negative correlation in at least 75% of the cancer
types (Methods). Remarkably, we observed only 20% (or 225141) of
the non-recurrent pairs that satisfied the selection criteria in contrast
to 27% in the case of recurrent interactions. Thus, the recurrent

Table 2 | Functional enrichment of genes involved in the recurrent interactions

Database Term Hits Total Hits p-value q-value

UniProt Extracellular matrix (ECM) 62 241 6.7E-26 3.7E-23
GO-BP GO:0030198 extracellular matrix organization 33 104 7.9E-16 2.2E-12
GO-BP GO:0007155 cell adhesion 91 700 8.3E-14 1.2E-10
GO-BP GO:0022610 biological adhesion 91 701 8.9E-14 8.5E-11
GO-BP GO:0043062 extracellular structure organization 35 163 2.2E-11 1.3E-08
KEGG hsa04510:Focal adhesion 38 201 7.6E-11 1.2E-08
GO-MF GO:0019838 growth factor binding 25 105 4.2E-09 1.7E-06
KEGG hsa04512:ECM-receptor interaction 22 84 4.3E-09 3.3E-07
GO-BP GO:0051271 negative regulation of cell motion 15 63 8.3E-06 1.7E-03
GO-CC GO:0044459 plasma membrane part 171 2203 1.1E-05 2.9E-04
GO-BP GO:0030155 regulation of cell adhesion 22 137 2.6E-05 3.8E-03
GO-BP GO:0048771 tissue remodeling 13 56 5.3E-05 6.3E-03
GO-BP GO:0030334 regulation of cell migration 24 169 7.6E-05 8.7E-03
GO-BP GO:0001936 regulation of endothelial cell prolif. 9 32 3.1E-04 3.0E-02
GO-BP GO:0002039 p53 binding 6 17 2.1E-03 1.1E-01
GO-MF GO:0046332 SMAD binding 9 46 4.3E-03 1.8E-01
KEGG hsa05200:Pathways in cancer 31 328 5.7E-03 1.0E-01
KEGG hsa04350:TGF-beta signaling pathway 12 87 9.7E-03 1.3E-01

Targets from recurrent miRNA-target interactions were subjected to functional enrichment tests using DAVID29. The top functional terms were listed above along with its database sources, (total) number of
target genes, p-value, and q-value (Benjamini-Hochberg adjusted).
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interactions were significantly associated with patient survival out-
comes (Fisher’s exact test p , 9.52 3 10212).

We then generated the survival curves for the 414 prognostic-
recurrent interactions in the corresponding cancer types
(Supplementary Fig. S7). For instance, both the expression of onco-
mir hsa-miR-200c-3p21 and LYVE1 (lymphatic vessel endothelial
hyaluronan receptor 1) involved in a recurrent interaction
(PanMiRa recurrence posterior . 0.51) conferred significant log-
rank statistics in CRC (colon rectum carcinoma) and LUSC (lung
squamous-cell carcinoma) (Fig. 7). Notably, miR-200c-3p and
LYVE1 assume prominent negative expression correlation in CRC
(Pearson correlation: 20.38) and LUSC (20.30) (Fig. 7a). More
remarkably, the patient survival curves exhibit a coherent trend,
namely patients with higher miR-200c-3p expression (lower

LYVE1 expression) suffered poor prognostic outcomes, and vice
versa (Fig. 7b). Interestingly, the expression of LYVE1 alone can
significantly explained the survival rates in 4 other cancer types,
namely BLCA, LGG, THCA, and UCEC (Supplementary Table
S3). Importantly, LYVE1 (although not an oncogene per se; hence
not shown in Fig. 4) is involved in cell-matrix adhesion and cellular
component movement40. In particular, the gene LYVE1 encodes type
I integral membrane glycoprotein, which acts as a major receptor for
the extracellular matrix (ECM) glycosaminoglycan hyaluronan (HA)
and binds to both soluble and immobilized HA40. HA is an abundant
component of skin and mesenchymal tissues where it facilitates cell
migration40. Recent studies have shown that LYVE1 may function in
lymphatic HA transport and have a role in tumor metastasis41,42. In
particular, the interaction between LYVE1 and HA on the cell
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Figure 7 | An example of the prognostic and recurrent miRNA-target interaction. (a). Scatterplots of miR-200c-3p and LYVE1 expression across

samples in CRC and LUSC illustrate a recurrent negative expression correlation pattern (PanMiRa Bayesian joint posterior . 0.51 across all cancers) and

cancer-specific Pearson correlation equal to 20.38 and 20.30, respectively. (b). Kaplan-Meier survival plots. Samples with the corresponding miR-200c-

3p or LYVE1 expression higher (red dash) and lower (blue dot) than the sample means were divided into two groups, which were subject to KM survival

estimates39. The fit was plotted as KM survival plot for CRC (upper panels) and LUSC (lower panels). P-values indicated above were computed by log-

rank test.
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surface may play a role in the diversity of adhesion to cancer
cells41. Moreover, LYVE1 dysregulation and lymphatic invasion are
associated with poor prognostic outcomes and lymph node meta-
stasis in neuroblastoma42.

Additionally, we also found in various cancer types several other
prognostic pairs potentially associated with intercellular communi-
cations such as the recurrent interactions between miR-532-5p and
COL5A1 (prognostically promising in KIRC and LGG) and between
miR-1307-3p and ST6GALNAC6 (Supplementary Table S3;
Supplementary Fig. S7). Notably, ST6GALNAC6 belongs to a family
of sialyltransferases that modify proteins and ceramides on the cell
surface to alter cell-cell or cell-extracellular matrix interactions43.
Remarkably, both miR-1307-3p and ST6GALNAC6 conferred sig-
nificant prognostic power in three different cancer types namely
KIRC (Kidney renal clear-cell carcinoma), LUAD (Lung adenocarci-
noma), and LUSC (Lung squamous-cell carcinoma). Together, our
survival analysis revealed that some of the recurrent interactions
associated with ECM organization are also prognostically promising,
thus providing further support to the proposed miRNA-mediated
intercellular communication mechanism in metastasis.

Discussion
MicroRNAs (miRNAs) have been proposed to contribute to onco-
genesis because they can function as tumour suppressors (e.g., miR-
200 family), oncogenes (e.g., miR-155), or both (e.g., miR-29
family)1,21. Aberrant expression level of miRNAs are implicated in
various cancers, and miRNA expression profiles have been shown to
provide better discriminative power in classifying human cancers
than mRNA profiles4. Furthermore, in one of our own recent studies,
we demonstrated the diagnostic power of using a novel class of
probabilistic miRNA-mRNA interaction signatures derived from
the paired miRNA and mRNA expression from individual samples
and sequence-based information to discriminate tumor from normal
samples in thyroid and breast cancer patients8. However, one intri-
guing question remained for us was whether there is a set of recurrent
miRNA-target interactions that are present in most if not all of the
cancers. To examine this hypothesis, we constructed from TCGA
Data Portal13 a large-scale pan-cancer data compendium of 12 cancer
types each consisting of expression profiles of long RNAs and
miRNAs measured by RNA-seq as well as DNA methylation (DM)
and copy number (CN) measured by microarrays over hundreds of
samples. In total, our pan-cancer data compendium contains
molecular measurements of 17,788 genes and 677 miRNAs in each
of the 4258 samples, which to our knowledge represents one of the
largest pan-cancer studies in the recent literature.

Notably, to identify recurrent interactions, a simple approach
would have been using negative correlation in all cancers as a direct
filter. However, population heterogeneity, non-uniform tumor pur-
ity, various laboratory settings, and different sample sizes between
different cancer types will confer different statistical confidence even
for the same correlation scores or linear coefficients calculated in
different cancer types. For instance, a negative correlation of 20.1
may be only modestly significant in one cancer type but highly sig-
nificant in another cancer type due to different sample sizes, which
may to some extent even mislead one to think that the identified
interactions were cancer-specific when it in fact ubiquitously occurs
among many other cancers. Thus, it is difficult to choose a universal
cutoff based directly on the correlation scores without arbitrary
decision. Jacobsen et al. (2013) has recently proposed a rank-based
method called REC to evaluate the recurrence of miRNA-target
association, which avoids direct comparison between cancer types
and thus mitigates the above-mentioned issues6. In this study, we
introduced a probabilistic approach called PanMiRa to directly infer
the posterior distribution of the pan-cancer miRNA-target associa-
tions, thus obviating the need of resorting to x2 approximation as was
the case in the rank-based REC scoring regime. Some of the ideas

from PanMiRa were based on a recent method called MCMG
(Multiple Cancers for MicroRNA-Gene interactions)7. However,
the objectives are fundamentally different: MCMG was developed
for predicting cancer-specific interactions by borrowing information
from other cancers whereas PanMiRa aims at inferring recurrent
interactions across all cancer types. Moreover, MCMG operates on
a Fisher-transformed Pearson correlation matrix, which does not
take into account the CN and DM effects as in REC and PanMiRa.

To establish the confidence of the method, we performed a com-
prehensive evaluation on the ,20 thousand positive recurrent inter-
actions identified by PanMiRa as having positive recurrence
posterior probabilities among the ,1.8 million candidate interac-
tions with negative z-scores in at least 75% of the cancer types.
Encouragingly, we found that these interactions exhibit significantly
higher sequence-based scores than the remaining interactions and
more enriched for validated and CLASH-detected interactions than
the interaction pairs derived from randomly shuffled posteriors and
from REC. Moreover, targets involved in the recurrent interactions
exhibit significantly stronger expression fold-changes than the
remaining genes in four out of the six publicly available miRNA
perturbation datasets. Importantly, miRNAs and targets involved
in the recurrent interactions are significantly enriched for known
oncomirs and oncogenes, respectively. In particular, we found that
miR-200 family is especially prevalent in the oncomir-oncogene
recurrent network, perhaps highlighting their under-appreciated
importance in cancer pathogenesis.

Nonetheless, compared to the total number of validated and
CLASH interactions the observed number among the top ranked
recurrent interactions are relatively small (Fig. 2). One major reason
could be the indirect interactions between miRNAs and targets,
which are currently difficult to distinguish from the genuine inter-
actions because of the confounding effects such as the cascading
transcriptional events. Most previous methods used sequence-based
information to filter false positive interactions44–46. However, our
knowledge about the general principles of miRNA target recognition
is still limited. In this regard, CLASH is an unbiased experimental
approach to tackle such problem11. For future reference, we dedicated
an additional column in Supplementary Table S1 to indicate whether
each recurrent interaction is also implicated in CLASH. However, the
retention rates of CLASH (i.e., sensitivity of the protocol to detect all
Argonaute-pulled down miRNA:RNA interactions) is not very high,
and many bona fide interactions might be unobserved from the
data12. Additionally, CLASH was performed on a generic cell-line
namely HEK29311, which may exhibit a different miRNA target rep-
ertoire from the actual miRNA-target landscape in the clinical sam-
ples. However, we emphasize that the identified recurrent interactions
from our simple Bayesian model may include both direct and indirect
miRNA and gene associations. As a future work, we will develop a
sophisticated statistical model to first learn the intrinsic miRNA
recognition elements from the CLASH data and then incorporate
that information as Bayesian prior to infer the posterior distributions
of the functional and direct miRNA-target interactions based on
expression data.

Intriguingly and perhaps the highlight of the present study is the
discovery of the significant association of the 1480 high confidence
recurrent interactions with not only the cancer-related pathways
such as TGF-b signalling pathways but also (even more significantly
so) the pathways related to intercellular communication such as
extracellular matrix (ECM) structural organization, cell focal adhe-
sion, and ECM-receptor interactions. The results point to the
possibility of miRNA-mediated re-organization of extracellular
environment to facilitate cell-to-cell communication, which may
be advantageous to tumor cell invasion to adjacent cells during meta-
stasis. Moreover, another possibility in line with the miRNA-related
cancer mechanism is that the miRNA-altered extracellular envir-
onment may in turn facilitate transportations of the extracellular/
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exosomal RNA (exRNA) via extracellular vesicles or exosomes16,
which contain (among other RNA materials) miRNAs themselves,
from tumor cell to adjacent cell16,47. Indeed, tumor-derived exosomes
have been identified in the plasma of various cancer patients16. Only
recently, however, miRNAs were found to be present in these vesi-
cles48,49. Importantly, the exosomal miRNAs can be functionally
delivered to target cells and post-transcriptionally regulate the cog-
nate target genes in the host47. For instance, Montecalvo et al. (2012)
demonstrated that endogenously released exosomes constitute an
effective means of communication between mouse dendritic cells
(DCs), and that such vesicles are capable of delivering functional
exosome-shuttle miRNAs into the cytosol of the target DCs, which
in turn caused a significant and dose-dependent decrease in normal-

ized expression of luciferase reporters in the recipient cells47. If the
theory follows, then the cells in vicinity may be rapidly or insidiously
assimilated with the tumorigenic information in the form of
‘‘miRNA messengers’’ both quantitively and qualitatively and even-
tually turn into cancer cells.

Finally, we postulate a plausible biological mechanism in attempt
to elucidate a novel aspect of the cancer biology. The top panel
depicted in Fig. 8 illustrates the cancer cell invasion to adjacent cells,
which is possibly mediated by miRNA regulation of the expression of
the ECM constituents and ultimately the ECM organization as well as
receptor interactions such as focal adhesion. The bottom panel illus-
trates a sketch of what might occur inside the tumor or tumor-trans-
forming cell, which is drawn based on the KEGG pathways in cancers
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pathways in cancers (hsa05200)30 and the confidence recurrent miRNA regulatory network. Several important cancer signalling pathways possibly

affected by miRNA dysregulation include Jak-STAT, VEGF, PI3K-Akt, mTOR, Wnt, p53, and TGF-b signalling pathways, which may drive phenotypic
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(hsa05200)30 and the cognate targets (green solid circle) identified
from the confidence recurrent interactions (see highlighted boxes in
Supplementary Fig. S6). Several important cancer signalling path-
ways may be affected by miRNA dysregulation including Jak-STAT,
VEGF, PI3K-Akt, mTOR, Wnt, p53, and TGF-b signalling pathways,
which may drive phenotypic changes such as sustained angiogenesis,
cell proliferation, evading apoptosis, insensitivity to anti-growth sig-
nals, and resistant to chemotherapy. On the other hand, intercellular
interactions including cytokine-cytokine receptor interactions,
ECM-receptor interactions, and focal adhesion are also likely to be
mediated by miRNAs to facilitate tumor invasion. As discussed
above, it is also possible that miRNAs not only mediate cell-to-cell
communication by post-transcriptionally altering the expression of
genes involved in ECM organization and receptor interactions but
also contribute to a more profound impact on cell reprogramming by
‘‘infiltrating’’ into adjacent cells via the exRNA transport mech-
anism, which is in turn facilitated by the miRNA-related re-organ-
ization of the extracellular environment. Together, we speculate that
miRNAs may have three regulatory roles in cancer biology: (1) regu-
lating cancer signalling pathways within a cell; (2) regulating extra-
cellular environment to facilitate intercellular communication; (3)
participating exRNA transfer program to infiltrate into adjacent
cells. It is easy to see that the three roles are related and form a
reinforcing feedback loop that appears natural from an informatics
perspective.

Methods
TCGA data processing. We chose 12 cancer types from the TCGA Data Portal based
on the availability of the molecular measurements and the sample size (Table 1). For
each cancer type, we downloaded the processed (Level 3) long and short RNA-seq
data corresponding to the expression levels of target RNAs and miRNAs, respectively.
For the RNA-seq data, we used RNASeqV2 (i.e., files with extension
rsem.genes.normalized_results) mainly because more samples were recorded in this
version and the gene expression quantification by normalized read counts is more
accurate than simply summing the transcript-level RPKM (reads per kilobase per
million mapped reads) due to the accurate estimation of isoform expression by the
RSEM (RNA-Seq by Expectation Maximization) algorithm50. For the miRNA-seq
data, we chose the mature isoform expression data (i.e., files with extension
isoform.quantification.txt). We filtered out cross-mapped regions and then summed
over the reads per million miRNAs mapped (RPM) values for each mature miRNA
sequence. Both target RNAs and miRNAs with expression in less than 5% samples
within the same cancer type were filtered out. The remaining expression values were
log2-transformed after replacing all the zero values with the lowest non-zero values.
DNA copy number data were obtained as the processed Level 4 data in the form of
Gistic2 scores17 from Firehose (http://gdac.broadinstitute.org/runs/analyses__2012_
12_21/). DNA methylation Level 3 data as the beta-values derived from the Illumina
HumanMethylation (HM) 27 or 450 platform were obtained from TCGA Data
Portal. Only probes mapped to the promoter regions of the target genes were used.
For multiple probes mapped to the same promoter region, we chose the probe with
strongest negative expression correlation with the mRNA expression based on the
Level 4 data from Firehose (http://gdac.broadinstitute.org/runs/analyses__2012_12_
21/). In the case where the same sample were measured with both HM27 and HM450
data, HM450 took precedence due to the higher coverage. The processed TCGA data
panel is available at www.cs.utoronto.ca/,yueli/PanMiRa.html.

PanMiRa model details. Let yi,t,d and xmiR
k,t,d denote the expression of target gene i and

miRNA k in sample t of cancer type d, respectively; and xCN
i,t,d , xDM

i,t,d denote the
corresponding copy number (CN) and DNA methylation (DM) for gene i,
respectively. To estimate the repression effects of miRNA k on gene i (without loss of
generality), we employed a multivariate linear regression model with ordinary least-
squares estimation:

yi,t,d~b0zbDM
i,d xDM

i,t,dzbCN
i,d xCN

i,t,dzbmiR
i,k,dxmiR

k,t,d ð1Þ

where b0 is the bias. bDM
i,d and bCN

i,d are the offsets accounting for the expression
changes due to CN and DM, respectively. In R, this was performed by the built-in
function lm(y , cnv 1 dm 1 miR). The coefficient of interest bmiR

i,k,d indicates the
targeting relationship between miRNA k and gene i in cancer type d and was first
transformed into t-statistic:

ti,k,d~
bmiR

i,k,d

sd bmiR
i,k,d

� � ð2Þ

where sd bmiR
i,k,d

� �
is the standard error of the coefficient as calculated by the standard

ANOVA from the summary.lm function in R. The t-statistics were first transformed
into probabilities based on t-distribution with T 2 4 degrees of freedom, where T is
the number of samples, and then to standard normal statistics or z-scores together by
the R command qnorm(pt(t, T 2 4)). The resulting z-scores are theoretically
distributed as N(0, 1) under the null hypothesis. To reduce false positives, we first
retained only the interactions with negative z-scores in at least 75% of the cancer
types, resulting in 1,848,529 candidate recurrent interactions and subjected them to
the local false discover rate (locfdr) estimation7,18:

locfdr zi,k,dð Þ:p ti,k,d~0 zi,k,djð Þ~ p ti,k,d~0ð Þp zi,k,d ti,k,dj ~0ð Þ
p zi,k,dð Þ ð3Þ

where p(zi,k,d) 5 p(ti,k,d 5 0)p(zi,k,djti,k,d 5 0) 1 p(ti, k,d 5 1)p(zi,k,djti,k,d 5 1).
Similarly,

p ti,k,d~1 zi,k,djð Þ~1{p ti,k,d~0 zi,k,djð Þ

~
p ti,k,d~1ð Þp zi,k,d ti,k,d~1jð Þ

p zi,k,dð Þ
ð4Þ

Rearranging (3) and (4), we can obtain the following likelihoods:

p zi,k,d ti,k,d~0jð Þ~ p zi,k,dð Þp ti,k,d~0 zi,k,djð Þ
p ti,k,d~0ð Þ ð5Þ

p zi,k,d ti,k,d~1jð Þ~ p zi,k,dð Þp ti,k,d~1 zi,k,djð Þ
p ti,k,d~1ð Þ ð6Þ

Suppose the latent variables ti,k,d’s are independent and zi,k,d’s are conditionally
independent given ti,k,d. Then, the joint likelihood can be factorized into the products
of individual likelihoods:

p zi,k,1,zi,k,2, . . . ,zi,k,D ti,k,1,ti,k,2, . . . ,ti,k,Djð Þ~ P
D

d~1
p zi,k,d ti,k,djð Þ ð7Þ

We now have everything except for the prior p(ti,k,1, ti,k,2, …, ti,k,D) to infer the joint
posterior:

p ti,k,1,ti,k,2, . . . ,ti,k,D zi,k,1,zi,k,2, . . . ,zi,k,Djð Þ

~
p ti,k,1,ti,k,2, . . . ,ti,k,Dð Þp zi,k,1,zi,k,2, . . . ,zi,k,D ti,k,1,ti,k,2, . . . ,ti,k,Djð ÞP2D

ti,k
p ti,k,1,ti,k,2, . . . ,ti,k,Dð Þp zi,k,1,zi,k,2, . . . ,zi,k,D ti,k,1,ti,k,2, . . . ti,k,Djð Þ

~
p ti,k,1,ti,k,2, . . . ,ti,k,Dð ÞPD

d~1 zi,k,d ti,k,djð Þ
p zi,k,1,zi,k,2, . . . zi,k,Dð Þ

ð8Þ

In order to perform the above inference, we employ an empirical Bayes approach.
First, we initialize the prior to be uniformly distributed over the binary configuration:

p ti,k,1,ti,k,2, . . . ,ti,k,Dð Þ~ 1
2D

, where D is the total number of cancer types. Then, we

perform the inference using (8). Given the joint posteriors, we then re-estimate the
prior by:

p ti,k,1,ti,k,2, . . . ti,k,Dð Þ

:p t1,t2, . . . ,tDð Þ

~
1

NM

XNM

i,k

p ti,k,1,ti,k,2, . . . ,ti,k,D zi,k,1,zi,k,2, . . . ,zi,k,Djð Þ
ð9Þ

where N and M are the total number of target genes and miRNAs, respectively. We
then iteratively alternate between (8) and (9) until the overall likelihood:

L~
XNM

i,k

X2D

ti,k

p ti,k,1,ti,k,2, . . . ,ti,k,Dð Þp zi,k,1,zi,k,2, . . . ,zi,k,D ti,k,1,ti,k,2, . . . ,ti,k,Djð Þ ð10Þ

increases by less than tol (default: 1025). Finally, the recurrence posterior is defined as
the posterior p(ti,k,1, ti,k,2, …, ti,k,Djzi,k,1, zi,k,2, …, zi, k,D), where ;ti,k,d 5 1. To account
for numerical underflow, some of the above operations such as (7) were performed at
the logarithmic scale, where the log of products becomes the sum of logs, and
transformed back to probabilities in the end. Please see the R source code (www.cs.
utoronto.ca/,yueli/PanMiRa.html) for implementation details.

Implementation of recurrence score (REC). As a comparison to PanMiRa, we
implemented a recently published method called recurrence (REC)6. We first
calculated the t-statistic ti,k,d the same way as in (2) to estimate the interactions
between gene i and miRNA k in cancer type d. Using ti,k,d’s, we ranked the targets
i for each miRNA k in cancer type d to obtain the rank score ri,k,d’s, which were
then normalized by rri,k,d 5 ri,k,d/N 2 1/2N, where N is the total number of genes.
As a result, rri,k,d is uniformly distributed under null hypothesis on the interval [0,

1]. The rri,k,d’s were then transformed into si,k~{2
XD

d~1
ln rri,k,dð Þ, where D is

the number of cancer types. si,k is assumed to approximately follow x2 distribution
with 2 3 D degrees of freedom. The REC score RECi,k is essentially the log 10
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transformation of the one-sided x2 probability: log10 p x2
2D§si,k

� �
computed by the

R function pchisq(si,k, 2*D, lower.tail 5 TRUE, log.p 5 TRUE)/log(10). Thus, the
more negative the RECi,k the more likely the interaction between miRNA k and
gene i is real.

Sequence-based predictions. Sequence-based feature scores namely MiRanda-
mirSVR (August 2010 release) were downloaded from http://www.microrna.org10.
‘‘Good mirSVR score’’ for conserved and non-conserved miRNA were used.
TargetScan predictions were downloaded from TargetScan-Human 6.2 database
(targetscan.org). We assigned each gene the mirSVR score or TargetScan PCT
corresponding to its transcript with the longest 39UTR based on the RefSeq
annotation (Release 66).

Physical miRNA-target interactions from CLASH. Processed CLASH data were
obtained from Supplementary Table 1 and 2 of the original study11 corresponding to
18,514 miRNA:mRNA and 4,484 miRNA:ncRNA interactions observed in human
HEK293 cell line.

miRNA perturbation data. Microarray miRNA perturbation data were obtained
from Gene Expression Omnibus (GEO) database with accessions GSE6838 for (anti-
)miR-16/106b, GSE38581 for miR-29c, GSE37119 for miR-200b, and from Frankel
et al. (2008) for anti-miR-2151. The expression fold-changes were log2 transformed if
not yet done so by the original studies.

Data and software available. The processed TCGA pan-cancer data compendium as
in R Data, the PanMiRa R source code, and the results generated for this paper are all
available at www.cs.utoronto.ca/,yueli/PanMiRa.html.

1. Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nat. Rev.
Cancer 6, 857–866 (2006).

2. Bartel, D. P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 136,
215–233 (2009).

3. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4
encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854
(1993).

4. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435,
834–838 (2005).

5. Dvinge, H. et al. The shaping and functional consequences of the microrna
landscape in breast cancer. Nature 497, 378–382 (2013).

6. Jacobsen, A. et al. Analysis of microRNA-target interactions across diverse cancer
types. Nat. Struct. & Mol. Biol. 20, 1325–1332 (2013).

7. Chen, X., Slack, F. J. & Zhao, H. Joint analysis of expression profiles from multiple
cancers improves the identification of microRNA-gene interactions.
Bioinformatics 29, 2137–2145 (2013).

8. Li, Y., Liang, C., Wong, K.-C., Jin, K. & Zhang, Z. Inferring probabilistic miRNA-
mRNA interaction signatures in cancers: a role-switch approach. Nucleic Acids
Res. 42, e76 (2014).

9. Friedman, R. C., Farh, K. K.-H., Burge, C. B. & Bartel, D. P. Most mammalian
mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

10. Betel, D., Koppal, A., Agius, P., Sander, C. & Leslie, C. Comprehensive modeling of
microRNA targets predicts functional non-conserved and non-canonical sites.
Genome Biol. 11, R90 (2010).

11. Helwak, A., Kudla, G., Dudnakova, T. & Tollervey, D. Mapping the Human
miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding. Cell
153, 654–665 (2013).

12. Grosswendt, S. et al. Unambiguous identification of mirna:target site interactions
by different types of ligation reactions. Mol. Cell 54, 1042–1054 (2014).

13. Cancer Genome Atlas Research Network. Comprehensive genomic
characterization defines human glioblastoma genes and core pathways. Nature
455, 1061–1068 (2008).

14. Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat.
Genet. 45, 1113–1120 (2013).

15. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs
predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

16. Hu, G., Drescher, K. M. & Chen, X. Exosomal miRNAs: Biological Properties and
Therapeutic Potential. Front. Genet. 3 (2012).

17. Mermel, C. H. et al. GISTIC2. 0 facilitates sensitive and confident localization of
the targets of focal somatic copy-number alteration in human cancers. Genome
Biol 12, R41 (2011).

18. Efron, B. Large-Scale Simultaneous Hypothesis Testing. J. Am. Stat. Assoc. 99,
96–104 (2004).

19. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 289–300 (1995).

20. Hsu, S.-D. et al. miRTarBase: a database curates experimentally validated
microRNA-target interactions. Nucleic Acids Res. 39, D163–D169 (2011).

21. Spizzo, R., Nicoloso, M. S., Croce, C. M. & Calin, G. A. SnapShot: MicroRNAs in
Cancer. Cell 137, 586–586 (2009).

22. Koturbash, I., Zemp, F. J., Pogribny, I. & Kovalchuk, O. Small molecules with big
effects: the role of the microRNAome in cancer and carcinogenesis. Mutat. Res.
722, 94–105 (2011).

23. Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of
Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

24. Shannon, P. et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

25. Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence
microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73 (2014).

26. Hyun, S. et al. Conserved MicroRNA miR-8/miR-200 and its target
USH/FOG2 control growth by regulating PI3K. Cell 139, 1096–1108
(2009).

27. Nam, E. J. et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin.
Cancer Res. 14, 2690–2695 (2008).

28. Korpal, M., Lee, E. S., Hu, G. & Kang, Y. The miR-200 family inhibits
epithelialmesenchymal transition and cancer cell migration by direct targeting of
E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283,
14910–14914 (2008).

29. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4,
44–57 (2009).

30. Kanehisa, M. et al. Data, information, knowledge and principle: back to
metabolism in KEGG. Nucleic Acids Res. 42, D199–D205 (2014).

31. Zaman, N. et al. Signaling Network Assessment of Mutations and Copy Number
Variations PredictBreast Cancer Subtype-Specific Drug Targets. CellReports 5,
216–223 (2013).

32. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology
Open Software Suite. Trends Genet. 16, 276–277 (2000).
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