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Abstract

Current dogma is that pathological hypertrophy of the right ventricle is a direct consequence of pulmonary vascular remodeling.

However, progression of right ventricle dysfunction is not always lung-dependent. Increased afterload caused by pulmonary

vascular remodeling initiates the right ventricle hypertrophy, but determinants leading to adaptive or maladaptive hypertrophy

and failure remain unknown. Ischemia in a hypertrophic right ventricle may directly contribute to right heart failure. Rapidly

enlarging cardiomyocytes switch from aerobic to anaerobic energy generation resulting in cell growth under relatively hypoxic

conditions. Cardiac muscle reacts to an increased afterload by over-activation of the sympathetic system and uncoupling and

downregulation of b-adrenergic receptors. Recent studies suggest that b blocker therapy in PH is safe, well tolerated, and

preserves right ventricle function and cardiac output by reducing right ventricular glycolysis. Fibrosis, an evolutionary conserved

process in host defense and wound healing, is dysregulated in maladaptive cardiac tissue contributing directly to right ventricle

failure. Despite several mechanisms having been suggested in right heart disease, the causes of maladaptive cardiac remodeling

remain unknown and require further research.
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Introduction

Pulmonary hypertension (PH) is a heterogeneous group of
diseases characterized by right ventricle hypertrophy and
pulmonary vascular remodeling.1 Failure of the right heart
is the major cause of death in PH patients.2,3 Current dogma
is that enlargement of the right ventricle is a consequence of
pulmonary vascular remodeling. This is supported by
the observation that lung transplantation in patients with
pulmonary arterial hypertension (PAH) and pulmonary
endarterectomy in patients with chronic thromboembolic
pulmonary hypertension (CTEPH) reverses the right
ventricle hypertrophy.4–7 However, progression of right ven-
tricle dysfunction is not always lung-dependent. For exam-
ple, subsets of patients on vasodilator therapy continue to
develop worsening of right ventricle function despite
improved pulmonary artery hemodynamics.8–11 In a small
cohort study, improved right ventricle ejection volume,
but not decreased pulmonary vascular resistance, predicted

survival rates in patients on vasodilator drugs.12

Although there is consensus that increased afterload
caused by pulmonary vascular remodeling initiates the
right ventricle hypertrophy, determinants leading to adap-
tive remodeling versus right ventricle failure (maladaptive
hypertrophy) remain unknown. Here we provide a synopsis
of mechanisms that are linked to maladaptive right ventricle
hypertrophy in patients and preclinical models.

Right ventricular ischemia

Ischemia in a hypertrophic right ventricle may directly
contribute to right heart failure. Several lines of evidence
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support that blood supply to the right ventricle in PH is
impaired. Right ventricles of rats in hypoxia/Sugen and
monocrotaline models have capillary rarefaction.13–17

In patients, chest pain, reduced technetium 99m sestamibi
uptake to evaluate myocardial perfusion,18 and increased
retention of 18F-fluorodeoxyglucose (FDG) in the right
ventricle19,20 indicate metabolic reprogramming and poten-
tially the presence of ischemia. However, histological studies
also show a reduced microvessel density in the right ventricle
of patients with PAH associated to scleroderma.15 The pre-
cise causes for right ventricle ischemia remains unknown,
but several mechanisms have been suggested in the litera-
ture, including impaired angiogenesis to meet the increasing
demands of a hypertrophic myocardium,13,16,17,21–23

endothelial dysfunction,13,24 or dropped coronary perfusion
pressure.25 Loss of capillary density may mark the transition
from adaptive to maladaptive right ventricle hypertrophy.
In the monocrotaline model, adaptive right ventricle hyper-
trophy was associated with preserved capillary density.22

Coagulopathy may be another mechanism causing right
heart ischemia.11 In mice xenografted with bone marrow
CD133þ hematopoietic stem cells isolated from PAH
patients, ischemia and infraction in hypertrophic right ven-
tricles were observed without changes in the right ventricle
capillary density.26 It is noteworthy that ischemia has not
been directly assessed and stereologic approaches of right
ventricle angiogenesis depicts a somewhat different concept.
In a small cohort, patients with PH showed compensatory
angiogenesis in the right ventricle which may be helpful to
sustain right ventricle function.27 In a mouse model of
chronic hypoxia-induced PH, early adoptive right ventricle
angiogenesis was observed.28 Therapeutic strategies to
potentially target right ventricle ischemia will thus depend
on further research identifying the precise causes and
whether or not ischemia occurs in the right heart in PH.

Right ventricle metabolism

During postnatal life, mitochondrial fatty acid oxidation
becomes the predominant source of energy, in addition to
glycolysis in lesser amount.29,30 Several lines of evidence
indicate that mitochondrial metabolism is suppressed
during right ventricular hypertrophy. The fast enlarging car-
diomyocytes switch from aerobic to anaerobic ATP gener-
ation similar to cancer cell growth (Warburg effect),
allowing rapid cell growth under hypoxic conditions.31,32

Glucose uptake is increased in hypertrophic right ventricles,
as demonstrated by FDG-PET cardiac imaging,19,20,30,33

while Iodine-123-labeled 15-(p-iodophenyl)-3-(R,S)-methyl-
pentadecanoic acid (BMIPP) SPECT showed impaired fatty
acid uptake in the failing hypertrophied RV.34 Increased
expression of glycolysis-related genes or glycolysis enzym-
atic activities were observed in right ventricles in the hyp-
oxia/Sugen and monocrotaline rat models.15,35 Oxidative
energy generation is lessened in hypertrophic right ventricles
by several mechanisms. Pyruvate dehydrogenase in the

mitochondria that links cytosolic glycolysis to the Krebs
cycle by conversion of glycolysis end-product pyruvate
into acetyl CoA, may be inhibited by upregulated pyruvate
dehydrogenase kinase as illustrated in a case report.36 A key
question is: what are the alternations in mitochondrial bio-
energetics that mark the transition from adaptive to mal-
adaptive right ventricle hypertrophy? In the monocrotaline
rat model, the maladaptive right ventricle hypertrophy
was associated with decreased pyruvate dehydrogenase
kinase levels and decrease glucose uptake and an increase
in mitochondrial reactive oxygen species production.37 In
a case report, long-term PAH survival was also correlated
with lower expression of aerobic glycolysis regulators
compared to a patient with decompensated right heart fail-
ure.24 Glutaminolysis, the conversion of glutamine into
a-ketoglutarate to fuel the Krebs Cycle, another maladap-
tive metabolic pathway allowing rapid cell growth, may also
play a role in pathological right ventricle hypertrophy.38

Although the Warburg effect and glutaminolysis may pro-
vide benefit to hypertrophic cardiomyocytes to maintain
normal function during initial stages of PH, it is insufficient
in progressive right ventricle hypertrophy, supported by the
observation that fatty acid oxidation is maintained or even
increased in left ventricle hypertrophy, but reduced in left
ventricle failure.39 Thus, therapies targeted to restore
normal mitochondrial bioenergetics may be beneficial to
PH patients.

Right ventricular b-adrenergic receptor
function

b-adrenergic receptors have critical roles in pathogenesis of
several cardiac diseases such as chronic left heart failure,
coronary artery by-pass grafting, and ischemic heart dis-
ease.40 Heart tissue expresses both b1- and b2-adrenergic
receptors, which mediate myocardial contractility and
heart rate. Both right and left ventricles react to an increased
afterload by overactivation of the sympathetic system and
uncoupling and downregulation of b-adrenergic recep-
tors.30,41–43 In the rat monocrotaline model, b1-adrenergic
receptors were downregulated in a failing hypertrophied
right ventricle, but not in a hypertrophied right ventricle
that maintained normal function.44 Several animal studies
demonstrated that b-adrenergic receptor blockade may
rescue receptor function and have improved outcomes.
In the hypoxia/Sugen and/or monocrotaline rat models,
b-blocker therapy improved right heart function26,45 but
did not affect right ventricle afterload.21,46,47 b-blocker treat-
ment restored b-adrenergic signaling47 and reduced right
ventricle fibrosis,21,46,47 by downregulating TGFb 1 expres-
sion and blocking pro-fibrotic signaling,46 and decreased
capillary rarefaction, by upregulating vascular endothelial
cell growth factor (VEGF).21 Expression of apoptotic mar-
kers in the right ventricle were also lessened in rodents trea-
ted with b-blocker.46 However, progression of right ventricle
hypertrophy and failure induced by pulmonary trunk
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banding in rats was not improved by b-blocker therapy.48

Despite major favorable effects of b-blocker therapy in these
preclinical studies, clinical use of b-blockers for the treat-
ment of PH is not without risks. Indeed, b-blocker ther-
apy was initially contraindicated in PH due to concern of
possible mortality.49 However, several non-randomized
small clinical cohorts showed that b-blocker therapy
may be safe in the treatment of PAH patients and pro-
vided clinical benefits.26,49–56 A recent six-month double-
blind, placebo-controlled, and randomized clinical trial
demonstrated that treatment of patients with a non-selec-
tive b-blocker/vasodilator carvedilol is well tolerated and
safe.57 b-blocker therapy in this study preserved right ven-
tricle function and cardiac output. Mechanistically,
patients treated with carvedilol, but not placebo, had
reduced right ventricular glycolysis and increased b-adre-
nergic receptor levels.57 Overall, this promising clinical
study warrants a larger clinical trial to further evaluate
b-blocker therapy in PAH.

Right ventricular fibrosis

Fibrosis is conserved during evolution as a highly regulated
and critical process in host defense and wound healing, but
results in uncontrolled disease.58 In cardiac tissue, fibrosis is
triggered by early inflammation in response to pressure
overload.59 Several magnetic resonance imaging (MRI)-
delayed gadolinium enhancement studies showed presence
of interstitial or local myocardial fibrosis in PH
patients.60–62 Not all animal models with PH develop right
ventricle fibrosis, including models of compensated right
ventricle hypertrophy such as wild-type (WT) rodents
under chronic hypoxia and pulmonary artery banding.13,35

In contrast, substantial right ventricle fibrosis is observed in
models of decompensated right ventricle failure including
Sugen/hypoxia, pulmonary artery banding combined with
Cu2þ-depleted diet or high dose monocrotaline treat-
ment,13,35,63 and caveolin-1-deficient mice.64–67 Collagen
synthesis kinetics in rabbits with increased right ventricle
afterload caused by pulmonary artery banding showed a
rapid increase in right ventricle collagen synthesis followed
by degradation,68 supporting the notion that controlled
fibrosis may be part of a reparative process in compensated
right ventricle hypertrophic response.69 Growth factors and
cytokines involved in cardiac fibrosis have been elegantly
reviewed in a previous report.69 Myofibroblasts are key
cells in fibrosis and have several origins including differen-
tiation of tissue resident fibroblasts, bone marrow hemato-
poietic stem cell-derived, or endothelial-derived via
endothelial to mesenchymal transition.70–73 A recent report
demonstrated that bone marrow-hematopoietic stem cell-
derived fibroblasts are mobilized and recruited into the left
ventricle where they differentiate into myofibroblast in
response to transverse aortic constriction induced pressure
overload in mice and substantially contribute to cardiac
fibrosis.74 In line with these findings, another report

showed that right ventricle fibrosis in caveolin-1-deficient
mice is prevented by transplantation of WT bone mar-
row independent of pulmonary vascular disease.64

Whether caveolin-1 affects bone marrow hematopoietic
stem cell-derived fibroblast progenitors needs to be further
investigated. Fibrocytes, a subset of circulating hematopoi-
etic cells with established role remodeling of the pulmonary
artery wall in animal models of PAH75,76 may also be
involved in cardiac fibrosis. It is unclear at what point
during right ventricle hypertrophy fibrosis transits from a
reparative process into excessive extracellular matrix depos-
ition and pathological remodeling of the myocardium. The
reversal of right ventricle fibrosis by b-blocker therapy21,46,47

and associated beneficial effects indicate that fibrosis may be
therapeutic target in PH.

Conclusions

Several adaptive mechanisms have been identified in the
right ventricle in PAH, some of which may be detrimental
and others beneficial to sustain right heart function.
Blocking all adaptation will be harmful, because the exact
mechanisms of right ventricle failure in PAH remain uniden-
tified. Inflammation and angiogenesis induced by an
increased right ventricle afterload may result in regenerative
fibrosis resulting in compensated right ventricle hypertrophy
with sustained mitochondria and b-adrenergic receptor
function. Impaired angiogenesis, coagulopathy, reduced
coronary perfusion, or other unknown factors may derail
the reparative process resulting in ischemia and pathological
fibrosis. Glutaminolysis, increased glycolysis, and dysfunc-
tional b-adrenergic receptor may further impair right ven-
tricle function resulting in decompensated hypertrophy and
failure. Further research is required to identify the determin-
ants of adaptive and maladaptive right ventricle hypertro-
phy (Fig. 1). Heterogeneity likely exists in mechanisms

Fig. 1. Mechanisms of right heart disease in pulmonary hypertension.
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initiating right heart disease. Discovery of root cause(s) of
right ventricle failure will aid in the development of cardiac
targeting therapies.
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