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Abstract

An (Awassi X Merino) X Merino single-sire backcross family with 165 male offspring was used to map quantitative
trait loci (QTL) for body composition traits on a framework map of 189 microsatellite loci across all autosomes. Two
cohorts were created from the experimental progeny to represent alternative maturity classes for body composition
assessment. Animals were raised under paddock conditions prior to entering the feedlot for a 90-day fattening phase.
Body composition traits were derived in vivo at the end of the experiment prior to slaughter at 2 (cohort 1) and

3.5 (cohort 2) years of age, using computed tomography. Image analysis was used to gain accurate predictions for
13 traits describing major fat depots, lean muscle, bone, body proportions and body weight which were used for
single- and two-QTL mapping analysis. Using a maximum-likelihood approach, three highly significant (LOD > 3),

15 significant (LOD = 2), and 11 suggestive QTL (1.7 < LOD < 2) were detected on eleven chromosomes. Regression
analysis confirmed 28 of these QTL and an additional 17 suggestive (P < 0.1) and two significant (P < 0.05) QTL were
identified using this method. QTL with pleiotropic effects for two or more tissues were identified on chromosomes 1,

6, 10, 14, 16 and 23. No tissue-specific QTL were identified.

A meta-assembly of ovine QTL for carcass traits from this study and public domain sources was performed and
compared with a corresponding bovine meta-assembly. The assembly demonstrated QTL with effects on carcass
composition in homologous regions on OART, 2, 6 and 21.

Background

Sheep production is a major contributor to global food
production and sheep are one of the few sources of
meat with little cultural and religious restriction in con-
sumption. Body composition traits in sheep, primarily
muscle mass and fatness, are economically important to
the sheep meat industry. There are numerous methods
to predict body composition in sheep. Much of the var-
iation that exists in sheep body composition is expressed
as between- and within-breed differences. In order to
understand the genetic architecture of these economic-
ally important traits it is essential to accurately define
the phenotypes which describe carcass composition [1].
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Live-weight is considered as a standard measurement
of body mass, but is a poor indicator of body composi-
tion due to the inability to distinguish between different
stages of physiological maturity. Body weight may be
used as indicator of body composition in animals of
similar genetic backgrounds and at the same physiologi-
cal maturity, however, at different maturity stages the
accuracy is greatly reduced [2,3]. Improved predictions
of carcass composition can be determined by using
ultrasound. Such scans provide a basis to estimate
breeding values for eye muscle area and subcutaneous
fat depth [3-5]. Increased accuracy and prediction of full
body carcass characteristics can be achieved using com-
puted tomography (CT) [6,7] but this is not routinely
implemented due to cost constraints.

In addition to the difficulties in obtaining accurate
carcass measurements, generation intervals are large,
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time to assessment is long and therefore the response to
selection is slow. Therefore, the use of marker assisted
selection or MAS is seen as an attractive aid to increase
the efficiency of selection for these traits expensive to
measure.

Linkage studies indicate the presence of one or a few
major genes for increased muscling and fatness in differ-
ent sheep populations [8-10]. Two full and 12 partial
genome scans have reported QTL for carcass composi-
tion including bone density on chromosomes 1-6, 8, 18,
20, 21, and 24 in populations of Coopworth, Scottish
Blackface, British Texel, Charollais, Suffolk, Texel and
different cross-breed sheep populations [8,11-18]. At
present two DNA tests (LoinMax and MyoMax; http://
www.pfizeranimalgenetics.com.au/sites/PAG/aus/Pages/
sheep.aspx[19]) are commercially available, which test
for genetic variants in the Carwell and Myostatin genes
[8,10,16,17,20-25].

This study uses CT imaging to accurately determine
body composition in vivo in relation to body weight at
two different stages of maturity. For the first time, a full
genome scan was conducted to identify genomic regions
associated with CT-derived parameters in an ovine
backcross resource population.

Methods

Resource population

A resource population from crosses between fat-tail
Awassi (A) and small-framed Merino (M) sheep was
established. Further details of the development of the
resource population can be found in Raadsma et al.
[26,27]. In the QTL study reported here, only phenoty-
pic and genotypic information from the second genera-
tion male backcross (AMM) progeny from one of four
F; sires was analysed in full.

Carcass traits
The backcross progeny were weighed approximately bi-
monthly until 83 weeks of age. Weights were recorded
as non-fasted body weights immediately off pasture on
the same day. At 83 weeks of age, male animals were
randomly allocated to two management cohorts. Cohort
1 (n = 86) was lot fed for 90 days after which time all
animals were CT scanned prior to slaughter at two
years of age. Cohort 2 (n = 79) were grazed under pad-
dock conditions for a further 18 months and then lot
fed for 90 days followed by CT scanning and slaughter
at 3.5 years of age. Both cohorts were fed ad libitum on
a grain and lucerne pelleted ratio with a metabolisable
energy content of 12.1 MJ/kg during the feedlot period.
The two cohorts were created to capture the differences
in fat deposition due to changes in maturity.

At the end of the ad libitum phase and three days
prior slaughter, CT scanning was used to estimate lean,
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fat and bone quantities for individual sheep. Animals
were fasted overnight, body weights were recorded and
animals were scanned using a Hitachi CT-W400 scanner
located in the Meat Science Group at the University of
New England, Armidale. Animals were restrained in the
supine position using three adjustable belts over the
abdomen, chest and neck during the scans at 120 kV
tube voltages and 150 mA current. Cross-section images
were collected every 40 mm starting proximal to the
articulatio genus (rear knee joint) and finishing at the
first cervical vertebra. Between 24 and 28 images were
collected from each animal depending on their length.
The carcass weight was estimated from the CT images.
Three sets of data (images) were derived from each
image by cropping restraining equipment, internal
organs and hooves, distal portion of leg, internal fat and
kidney, using AUTOCAT ([28]. These images provided
an estimate of total body composition including hooves,
internal organs and abdominal fat (first set), internal fat
- comprising kidney, pelvic, mesenteric and heart fat
(second set minus third set) and typical carcass compo-
nents including total lean, carcass lean and total amount
of bone (third set). Furthermore AUTOCAT was used
to calculate the area, mean pixel value and variance of
each tissue group for each animal from the three sets of
images. Subcutaneous fat depth was measured over the
eye muscle at the first lumbar two thirds ventral to the
vertebrae. The area of fat surrounding the eye muscle
(M. longissimus dorsi) was termed the subcutaneous fat
area. The eye muscle area was estimated by averaging
the area of muscle at the closest image to the first lum-
bar and the next caudal image. Percentages of lean, fat
and bone were calculated as a percentage of the carcass
weight estimated by CT (i.e. the sum of individual com-
ponents estimated by CT). A list of all traits used in this
study is provided in Table 1.

A linear model was fitted using SAS (version 9.2) to
adjust the scanning results for final body weight and
cohort. For some of the traits, a scatter plot of the trait
versus final body weight revealed a linear association for
the first cohort but a nonlinear association for the sec-
ond cohort. To allow for this nonlinearity, a quadratic
term was included for the second cohort only. The full
model allowing for this takes the form

Trait = 8, + f8;Cohort2 + ,FBW + B;Cohort2 x FBW + 8,Cohort2 x FBW? + ¢

where Trait is the measurement to be adjusted for,
Cohort2 is a 0-1 indicator variable taking the value 1 for
the second cohort, FBW is the final body weight of the
sheep, and ¢ is the random error. Non-significant terms
from the above model were dropped, with quadratic terms
retained for all traits except dressing percentage, carcass
bone, percentage fat in carcass, percentage lean in carcass.
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Table 1 Summary statistics of traits used in this in this study

Trait Unit Biological importance n AVG sD max min
Body weight kg 162 51 9.0 31 77
Carcass weight kg 165 28 44 16 40
Dressing percentage % Proportion final weight to carcass weight 161 55 3 71 46
Total fat kg Indicator of total fatness 165 14 56 46 33
Carcass fat kg Indicator of carcass fatness 165 87 24 35 18
Internal fat kg Indicator of fatness in the internal depots 165 38 1.6 1.1 88
Percent fat in carcass % Proportion of fat in the carcass 165 31 4 22 45
Subcutaneous fat depth* Pixel Indicator of fatness 161 59 23 1 13
Subcutaneous fat area mm? Indicator of fatness 165 980 480 36 2597
Total lean kg Indicator of total lean 152 22 561 12 32
Carcass lean kg Indicator of muscularity 165 16 2.34 10 22
Percent lean in carcass % Proportion of lean in carcass 165 59 3 48 67
Eye muscle area* mm? Indicator of muscularity 165 4205 502 1245 5333
Total bone kg Indicator of total bone 152 74 44 25 12
Carcass bone kg Indicator of size/quantity of bone 165 29 0.34 1.98 4.2
Percent bone in carcass % Proportion of bone in carcass 165 11 2 7 16

*Industry relevant refers to a trait that is used in the industry as a standard measure and hence is incorporated as a means for comparing this study with other

studies

Carcass weight and final body weight were adjusted only
for cohort effects (Additional file 1). Residuals from the
fitted models were obtained, and these were treated as the
adjusted traits for subsequent QTL mapping.

Marker analysis QTL mapping procedure

A genome scan using 189 polymorphic microsatellite
markers covering all 26 sheep autosomes was conducted
in 510 backcross animals. For the linkage analysis, geno-
typic and phenotypic information from the CT scan of
165 animals was used. The procedure of DNA extrac-
tion, genotyping, allele calling and map positions has
been outlined previously [26].

QTL analyses were performed for all traits using two
methods. Based on a type I error of 0.05, the design
(n = 160 animals) had a predicted power of 0.88 to
detect QTL with 0.5 SD effect [29]. Solutions were
obtained using the QTL-MLE procedure for normally
distributed traits in ‘R’ [26]. As described in previous
papers [26,27], when using QTL-MLE, a QTL with LOD
3.0 was deemed highly significant, significant if LOD
2.0, and suggestive for QTL with 1.75 < LOD < 2.0.
The second method involved regression analysis for a
half-sib design implemented using the web-based pro-
gram QTL Express [30]. QTL with chromosome-wide
significance (P < 0.05) were described as suggestive
QTL, whereas QTL exceeding the P < 0.01 chromo-
some-wide levels and P < 0.05 experiment-wide levels
were labelled as significant and highly significant QTL,
respectively. A two-QTL model was also fitted to the
data using a full two-dimensional scan of each chromo-
some in QTL Express [30].

>
>

Meta-assembly

A meta-assembly of QTL identified in this study was
conducted by collating all known QTL from public
sources for matched traits based on individual QTL
locations and meta-scores as described previously [27].
The positions and confidence intervals of ovine and
bovine QTL and blocks of conserved synteny across
both species were identified and aligned to the genomes
of both species. The individual QTL locations and their
scores, and meta-score profiles can be browsed at
http://crcidp.vetsci.usyd.edu.au/cgi-bin/gbrowse/oaries_-
genome/. In addition to the lactation traits, QTL profiles
for growth, body weight and carcass composition can
now be browsed on this website. Growth and body
weight meta-scores from the first paper of this series
[26] were also loaded into the website. The carcass com-
position traits were summarised into four trait classes:
bone (percentage bone, bone weight, bone yield), fat
(fat yield, back fat, fat depth, marbling, fat thickness,
subcutaneous fat thickness), muscle (longissimus muscle
area, rib eye area, carcass yield, retail product yield,
shear force, lean meat yield) and weight (hot and cold
carcass weight, yearling, weaning and slaughter weight).
Single and aggregated bars, heat maps and plots can be
selected for sheep and cattle as well as meta-scores for
both species. Hyperlinks to the original manuscript
reference are given.

Results

Analysis of carcass data

The summary statistics for each phenotype are shown in
Table 1. For the second cohort, carcass weight and
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predicted carcass weight from the scan were highly corre-
lated (r = 0.90, P < 0.01) and both traits were also highly
correlated with final body weight (» = 0.92 and 0.89, for
both cohorts respectively, P < 0.01) (Additional file 2).
Across both cohorts, the average body weight at scanning
was 51 kg, with an average carcass weight of 28 kg (dres-
sing percentage 55%). Animals from cohort 2 were signif-
icantly (P < 0.01) heavier, with a higher mass of total
bone, fat and lean compared to cohort 1. However, they
had a significantly (P < 0.01) lower percentage bone in
the carcass (Additional file 3). Within tissue groups, lean,
fat (except internal fat and subcutaneous fat depth) and
bone parameters were significantly correlated (r = 0.27 to
0.81, all P < 0.01) (Additional file 4). Significant correla-
tions (P < 0.05) were also detected between many traits
among fat and lean tissue groups, with the highest corre-
lation between percentage lean and fat (r = -0.97,
P < 0.01). No significant correlations were detected
between carcass bone, total bone and eye muscle area
and most of the other traits (Additional file 4).

Putative QTL identified

In total, three highly significant (LOD > 3.0), 15 signifi-
cant (LOD = 2.0) and 12 suggestive (1.7 < LOD < 2.0)
QTL were detected on chromosomes 1 to 3, 6, 7, 9-11,
14, 16 and 23 across the 13 traits using QTL-MLE.
A summary of the suggestive and significant QTL posi-
tions, effect sizes, and 1-LOD support intervals is shown
in Table 2. The genome-wide LOD score profiles for all
traits are shown in Figures 1, 2, 3 and 4. With the
exception of one suggestive QTL on chromosome 6, all
QTL detected by QTL-MLE were confirmed by the
QTL regression analysis of QTL Express. A total of five
highly significant (experiment-wide P < 0.05), six signifi-
cant (chromosome-wide P < 0.01) and 34 suggestive
(chromosome-wide P < 0.05) QTL were identified on
chromosomes 1-3, 6, 7, 9, 10, 11, 14, 16, 19, 23 and 26
using QTL Express (Additional file 5). Among these,
two significant (chromosome-wide P < 0.01) and 16 sug-
gestive (chromosome-wide P < 0.05) QTL on chromo-
somes 6, 8-14, 16, 23 and 26 were not detected using
QTL-MLE. Confidence intervals and 1-LOD support
intervals for QTL locations extended across a large pro-
portion of each of the chromosomes (Table 2, additional
file 5).

Common QTL for body and carcass weight were iden-
tified on chromosomes 2, 6 and 11 using both QTL
analysis methods, in addition to the QTL for body
weight on chromosome 16 and for dressing percentage
on chromosome 14. For muscle traits, eight QTL were
detected on seven chromosomes, for fat traits ten QTL
on seven chromosomes and for bone traits only two
QTL. There were no QTL which solely contributed to
traits related to a single tissue i.e. QTL just for muscle,
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fat or bone. For chromosomes 1, 6, 10, 14, 16 and 23,
the QTL for different tissue groups acted pleiotropically,
with the same QTL describing traits for different tissue
groups. Among the six QTL identified on chromosome
6, two were for weight and three for fat parameters,
although the peak positions of the QTL for these two
traits groups differed. Similarly, the QTL regions for
final body weight, percent lean and subcutaneous fat
area were all on chromosome 16, but the peak positions
varied. The effect sizes of the QTL ranged from 0.73 to
0.99 SD (Table 2) and accounted for 3.8 to 9.4% of the
phenotypic variance (Additional file 5). Three of the
QTL identified here were deemed cryptic QTL, with an
effect opposite to what was expected based on breed of
origin.

The two-QTL model implemented in QTL Express
showed four pairs of QTL which were separated by at
least one marker; carcass lean (OAR1), percent bone
(OAR1), percent fat (OAR18) and internal fat (OAR19).
QTL for carcass lean on chromosome 1 were in cou-
pling phase, whereas all other QTL pairs were in repul-
sion phase. The QTL in repulsion phase were not
identified using the single QTL model since the opposite
sign of the QTL effects may have prevented detection
under the single QTL model. Details describing QTL
positions and effect sizes, and comparisons with single
and no QTL models are in Table 3.

Meta-assembly

Published QTL reports for carcass traits in sheep, com-
prising four genome-wide linkage studies [26,31-33] and
13 partial genome scans [8,11,13-18,34-36] were used for
the meta-assembly. QTL for a wide range of carcass
traits, including traits not measured in our study (muscle
growth, muscle depth, and meat colour), were reported
on chromosomes 1-6, 8, 11, 18, 20, 21, 23, 24 and 26 in
various sheep populations [8,13,15-18,31-33,35,36]. For
two of the studies, the locations of the QTL were not
given [11,34]. No QTL were reported on chromosomes 7,
9,10, 12-17, 19, 22, and 25, but these results might be
biased due to partial genome scans, favouring chromo-
somes with known QTL or candidate genes. The meta-
scores showed consistency on six regions of interest
across multiple studies for fat, muscle and weight traits,
specifically for fat on OAR2 (BTA2) and OAR6 (BTA6),
for muscle QTL on OAR2 (BTA2) and for weight on
OARI (BTA1), 6 (BTA6) and 21 (BTA29) (Figure 5).

The results of the ovine and bovine meta-assembly are
shown as a comparative meta-score plot against the
ovine genome in Figure 5 and are visualised on the
ovine genome browser http://crcidp.vetsci.usyd.edu.au/
cgi-bin/gbrowse/oaries_genome/. The very broad range
of traits describing carcass and body composition in cat-
tle resulted in QTL being reported on all chromosomes.
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Table 2 Summary of QTL for carcass traits using QTL-MLE

OAR Trait QTL 1-LOD support interval Marker closest to Lower Upper LOD QTL effect

[ecM] [cM] peak marker marker score (SD)

1 Carcass bone 261 220 - 277 CSSM4 MAF64 INRAO11 2.1%* 0.56

1 Carcass lean 293 238 - 314 INRAO11 CSSM4 BM6506 2.2%% 0.69

1 Percent fat in 296 228 - 324 INRAO11 CSSM4 BM6506 1.8* -0.60
carcass

1 Percent lean in 299 253 - 323 BM6506 INRAOT1 BMS4045 2.2%% 0.68
carcass

2 Carcass weight 294 284 - 309 MCM554 CSSM045 ARO28 2.5%*% 0.60

2 Final body weight 294 280 - 318 MCM554 CSSM045 ARO28 1.9* 051

3 Internal fat 155 144 - 175 BM827 BM304 EPCDV25 2.1 0.57

6 Internal fat 8 5-32 OARCP125 OARCP125 MCM204 1.7*% 0.50

6 Percent fat in 10 5-50 OARCP125 OARCP125 MCM204 2.0%* 057
carcass

6 Percent lean in 13 5-52 OARCP125 OARCP125 BM1329 24%% -0.64
carcass

6 Total fat 15 5-42 OARCP125 OARCP125 BM1329 2.0%* 0.61

6 Carcass fat 16 5-61 OARCP125 OARCP125 BM1329 1.8* 0.56

6 Carcass weight 75 60 - 91 OARHH55 BM1329 OARIJMP1 2.8%* 0.64

6 Final body weight 76 62 - 91 OARHH55 BM1329 OARIJMP1 2.8%* 0.64

7 Eye muscle area 51 29-70 BMS528 BM3033 MCM223 3455 -0.99

9 Carcass lean 116 95 - 154 BMS1304 MAF33 BM4513 1.7* 0.51

10 Carcass fat 112 101 - 112 OARDB3 TGLA441 OARDB3 2.7 0.68

10 Percent fat in 12 98 - 112 OARDB3 TGLA441 OARDB3 2.3%* 071
carcass

10 Percent lean in 112 81-112 OARDB3 TGLA441 OARDB3 1.8* -0.62
carcass

Il Carcass weight 92 79 - 107 EPCDV23 BM17132 ETH3 3.0 0.64

Il Final body weight 88 75 -107 EPCDV23 BM17132 ETH3 2.5% 0.62

14 Carcass fat 29 14 - 54 CSRD270 TGLA357 MCM133 1.8* -0.53

14 Dressing percentage 33 14 - 56 CSRD270 TGLA357 MCM133 2.38** -0.57

14 Total bone 36 14 - 57 CSRD270 TGLA357 MCM133 1.7% -047

16 Final body weight 32 1-60 OARCP99 BM1225 TGLA126 1.8* -0.58

16 Percent lean in 113 95 - 121 MCM150 DIK4612 DIK2269 1.8% -048
carcass

16 Subcutaneous fat 62 38-75 BMS2361 TGLA126 BM4107 3.5%x* 0.73
area

23 Percent lean in 14 3-45 MCMAT1 BLOO6 MAF35 1.7* 0.57
carcass

23 Total fat 25 8-38 MCMA1 BLOO6 MAF35 2.5% -0.61

Shown are the relative positions and the confidence interval (Cl) along the 1 male distance map [26], P-values were obtained from likelihood ratio tests (LRT) with 1
df (QTL only); * 1.75 < LOD < 2.0, ** 2.0 < LOD < 3.0, *** LOD = 3.0; standardised QTL effects (SD) are expressed as the estimated effect difference (Awassi - Merino)

relative to the estimated residual standard deviation

Furthermore, in contrast to studies in sheep, the major-
ity of studies in cattle reviewed here refer to genome-
wide genome scans (1 = 14) [37-39]. In addition, eight
partial genome scans or candidate gene analyses in cat-
tle were included here [40-47].

Discussion

This study is interesting in that it is the fourth full gen-
ome scan for mapping QTL in sheep with respect to
carcass traits, and the first where carcass traits were

determined from data derived by CT scan which can
provide highly accurate profiles of tissue distribution.

Analysis of carcass data

CT scanning was first developed for medical applica-
tions and has been extended to animal applications
since the 1980s, firstly in pigs and subsequently in sheep
[48]. Experiments in sheep and lambs showed that the
correlation between CT measures of carcass composi-
tion and those derived from manual dissection is very
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Figure 1 QTL map of the entire genome for body and carcass weight and dressing percentage.

high, but CT or virtual dissection is more precise and
reliable [48]. Our study confirmed the high correlation
between carcass weight and estimates of carcass weight
from scanning [49]. Compared to ultrasound, the stan-
dard errors of the predicted values are lower [48,50].
Vester-Christensen et al. [51] and Young et al. [48] have
proposed that CT scanning should be an essential refer-
ence tool for body and carcass composition. The use of
the more precise phenotypes derived from CT measures
will also lead to better phenotypes for genetic analysis.
Heritabilities for CT-derived traits have been found to
be moderate to high [48,52,53]. Theoretical predictions
of the genetic progress by incorporating CT traits into
selection indices suggest increases in response by 50%
or even 100% when combining different measurement
methods [6].

The sheep in our study were managed as two cohorts.
These cohorts differed significantly in carcass weight
and stage of maturity and were considerably heavier

than animals in studies published previously [49]. Ani-
mals investigated here were taken to a greater stage of
maturity to measure specific effects on fat and fat distri-
bution. Sheep from cohort 1 had similar muscle/carcass
lean weights compared to meat sheep [54] and Norwe-
gian lambs [49]. However, for both these studies, the
proportion of muscle was higher than in our study,
largely due to differences in fatness and stage of devel-
opment (age, maturity). For the same reasons, the pro-
portion of bone in the carcass was lower in our study
than in studies presented by Young et al. [54] and
Kongsro et al. [49].

The main focus of our project was the study of fat
characteristics in the carcass. Therefore, older and con-
sequently more mature sheep were used. Adjusting body
composition traits for body weight at the time of scan-
ning was considered the best method to accurately mea-
sure tissue groups independently of their body mass.
Animals from the second cohort had higher fat content



Cavanagh et al. Genetics Selection Evolution 2010, 42:36
http://www.gsejournal.org/content/42/1/36

Page 7 of 14

\

Carcass lean
L]
o

] [ap}

L=}

i | e |-+ = -~ |-d----F-F-d-} -+ - - --|-+-F{-4 -}
- | F,‘/"Lh A da .)‘m.f\ e ¥

1 2 3 4 5 6 T &8 9 10 12 14 16 15 20 22 24
Total lean
[yl
ﬂ-—

=) [ap}

o]

O ™ g4 ===} - === = -—4---4-----+-----4----F-F-4--F-+---4---+-E4-1-F
] )
o WAMN _/\\f'"u""" A AL AL L AR _.'I.I"'._.I\';_.. L

1 2 3 4 5 B 7 8§ 9 10 12 14 16 15 20 22 24
- Eye muscle area
o

o ™ -

o]

I RS RN R U N ——d -] — ---F=-----4----F-}F-H--}F-F-=--4--]-+-F{ -4 -}
o m.ﬁ. rﬂmnhnff‘l”\.-“n.ha - Afhl.l"'—\ N P S LT W O A T

1 2 3 4 5 6 F & 9 10 12 14 16 15 20 22 24
Percent lean in carcass
[yl
o

] ]

o]

O g ———— e e e -4 - ------+-----4----F-F-4--F-+---4---+-F4-1-F
o] MJ —_rm A b '\.__I'l| Fa IJ -|||I./ ,\l.- J\AﬂmﬂJﬂx "tll’ll\ . A

1 2 3 4 5 6 F & 9 10 12 14 16 15 20 22 24
Chromozome number
Figure 2 QTL map of the entire genome for carcass lean, total lean, eye muscle area and lean percentage.

and total percent fat compared to animals from cohort
1. There were significant correlations between the major
tissue groups (lean, fat and bone). Fat traits tended to
be significantly and negatively correlated with lean traits,
as reported by Lambe et al. [55]. Without adjusting for
body weight, the correlations would have been strongly
positive [55,56], as was also the case here (results not
shown). The importance of adjustment for body weight
is that properties of body tissue can be investigated free
from the effects of body mass. The differences in stage

of maturity resulted in different adjustments for body
weight, namely a linear effect for cohort 1 and a curvi-
linear effect for cohort 2, suggesting a plateau of growth
had been reached and animals were in the mature
fattening phase of development.

QTL analysis

Genome-wise error rates were controlled by adjustment
of P-values through the use of a chromosome- and
experiment-wide permutation test in the case of QTL
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Table 3 Summary of significant QTL for carcass traits using QTL Express under a two-QTL model

OAR Trait Position QTL [cM] with flanking markers  F-value Herit [%]* QTL effect SD (SE)®
A B 2vs0' 2vs 12 A B

1 Carcass lean 40 272 9.4* 8.7* 9.5 0.642 (0.218) 0.803 (0.258)
BMS835-OARHH51 INRAO11-BM6506

1 Percent bone in carcass 72 216 6.8% 7.3% 6.9 -74.3 (26.5) 102.2 (37.6)
OARHH51-BM6465 MAF64-CSSM4

9 Eye muscle area 72 76 6.8% 6.8* 6.8 -0.0198 (0.0054)  0.0207 (0.0057)
ILSTOT1-MAF33 MAF33-BMS1304

18 Percent fat in carcass 80 88 6.0 8.1* 59 626 (18.2) -55.7 (18.2)
BM7243-OARHH47 TGLA122-MCM38

19 Internal fat 80 88 7.1% 1% 7.1 -3.54 (0.94) 3.35 (0.92)

OAFCB304-MCM111 MCM111-OARCP88

'F(2 versus 0) is F-statistic for testing two QTL vs no QTL on chromosome

2F(2 versus 1) is F-statistic for testing two QTL vs one QTL on chromosome

3standardised QTL effect (SD) = QTL Effect/Residual Std Dev; and the standard error (SE) of QTL positions A and B
“variance or QTL heritability as a proportion of the phenotypic variance accounted for by the QTL in %

* chromosome-wide P < 0.05; ** chromosome-wide P < 0.01
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Figure 5 Comparative genome map of aggregated meta-scores for carcass-related QTL derived from sheep and cattle studies.

Express, therefore the number of false positive QTL was
assumed to be minimal. For the maximum-likelihood
analysis we chose thresholds for a LOD statistic which
was deemed to be conservative at LOD of 2 (P ~ 0.01)
and LOD of 3 (P = 0.001). The close agreement between
the number of QTL detected in each method suggests
that the likelihood of random false positives is expected
to be small.

For body and carcass weight, QTL were identified on
chromosomes 2, 6, 11 and 16. The QTL on chromo-
somes 6 and 11 were consistent with those reported in
the same study population at earlier time points [26].
The QTL for final and carcass weight on chromosome 2
was the only one that corresponded to a QTL for live
weight in Scottish Blackface and Suffolk, Texel sheep
[13,17]. A total of eight QTL across seven chromosomal
regions were identified for muscle. QTL on chromo-
somes 1 and 6 were consistent with other studies in Suf-
folk and Texel populations [11,16,17], whereas QTL on
chromosomes 7, 9, 10, 16 and 23 can be considered
novel.

QTL for fat have previously been reported on OAR
1-4, 18 and 20 in different sheep populations
[14,16,17,31,33,34]. Within the confidence interval of
our QTL, we confirmed QTL on chromosome 1 and 3,

and novel QTL were identified on OAR 6, 10, 14, 16
and 23. QTL for fatness have consistently been reported
on chromosomes 2, 3 and 18 [14,16,17], but the QTL
on OAR18 was only identified using the two-QTL
model and no QTL on OAR2 was detected in the cur-
rent study despite the emphasis on fat traits.

Few reports are available for bone-related traits in
sheep, and no QTL study on bone yield in the carcass
has been reported. Previous QTL studies have analysed
bone density and cross sectional area in Scottish Black-
face and Coopworth sheep [13,31,32]. The two QTL
detected here for bone yield suggest that the QTL land-
scape is rather featureless for this trait.

In summary, the first interesting discovery of this
paper was the identification of novel QTL with small to
moderate effects on body composition and body weight
on chromosomes 1, 6, 7, 9, 10, 14, 16 and 23. This may
in part be due to an increase in accuracy of phenotyping
using CT image analysis.

A notable finding of this study was that there were no
QTL which exclusively affected multiple measures of
the same tissue group, i.e. fat, lean or bone. The effect
of measuring fat at individual or a limited number of
sites was discussed by Thompson [57], who proposed
that individual depots may not reflect total body fat in
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the animal. This is seen in the correlations of non-unity
between traits indicative of fatness at different sites
(Table 1). This suggests that different measures of the
same tissue reflect different traits with different QTL.
This may have implications for QTL detection and
application. For instance, QTL used to reduce subcuta-
neous fat content may not necessarily result in a reduc-
tion of total carcass fat.

Despite many QTL reports and a significant associa-
tion on chromosome 18, we could not confirm the
effects of the important loci such as the Carwell and
Callipyge genes with known effects on muscle lean in
sheep [20,58,59]. These and other genes on the same
chromosomal region are known to be imprinted with
paternally expressed protein-coding genes, as well as
several maternally expressed non-coding RNA genes
[20], which may have prevented their detection in our
study, which used only one paternal half-sib family. Sin-
gle-marker association analyses revealed significant asso-
ciations for markers close these genes (results not
shown) but this requires more detailed analysis. In
future studies, the use of multi-sire families and linkage
disequilibrium among maternal alleles should focus on
the identification of these imprinting effects.

We considered an interdependency of QTL for body
weight on OAR11 and 16. These chromosomes contain
the growth hormone (GH) and growth hormone receptor
(GHR) genes, with known effects on body weight and
carcass composition across species [60-66]. Even though
we identified QTL for final body weight on both chromo-
somes, we could not detect an interaction between these
two QTL and assume that the genes underlying these
two QTL act in a simple additive fashion.

Although we examined the likely importance of two
QTL for all traits and report on five cases with signifi-
cant support for QTL pairs, the interpretation of the
results warrant caution, especially where the QTL are
closely located or no corresponding QTL were detected
under the single QTL model.

Meta-assembly and comparative analysis

A meta-assembly of QTL identified for carcass traits was
conducted by collating all known ovine QTL from pub-
lic sources for matched traits, as previously described
[27]. Additionally, studies in cattle were summarised
using the same methodology. A summary of the carcass
meta-scores from cattle and sheep that is incorporated
into the ovine genome browser http://crcidp.vetsci.usyd.
edu.au/cgi-bin/gbrowse/oaries_genome/ is shown in Fig-
ure 5. Furthermore, due to the lack of studies based on
CT-derived phenotypes, and the different methods,
models, and population types used across studies, we
considered them to be the same carcass trait if they
described the same carcass characteristic.
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Despite the large number of QTL detected in cattle,
relatively few QTL in sheep were found in comparative
locations. However, for some traits, especially for muscle
and fat, loci were mapped to homologous regions; these
QTL may possibly describe the same gene.

Among the 11 studies summarised using the meta-
assembly in cattle, four reported QTL for body weight
on chromosome 14 [39,46,67,68], but no QTL was
found in sheep in the homologous position. The highest
ovine meta-scores for body weight were derived for
chromosomes 1 [13,14,17], 6 [26] and 21 [13,26]. QTL
were reported for body weight in cattle on the homolo-
gous chromosomes 1 [37,39,67], 6 [40,67,69] and 29
[39,70,71].

Amongst the six ovine and 13 bovine QTL studies
reporting linkage regions for muscle related traits, we
found one region in common between sheep and cattle,
namely OAR2 and BTA2 for carcass weight, eye muscle
area and retail product yield [8,16,36-38,67,70,72]
(Figure 5).

High meta-scores for fat QTL were derived for sheep
and cattle on homologous chromosomes OAR2/BTA2
and OAR6/BTA6 [37,38,45,67,68,70,71,73]. However, no
QTL for fat traits were identified in sheep, which align
to bovine chromosome 14, where the highest meta-
score was calculated for corresponding traits in cattle
[46,67,69,70,74].

No homologous regions were found between sheep
and cattle for bone traits. This is likely due to the lim-
ited number of studies conducted and QTL reported for
these traits in either species.

Conclusion

This is the first study using CT-derived carcass mea-
sures for a full-genome scan in sheep. To our knowl-
edge this is the only study with a focus on carcass fat
characteristics in mature sheep. We present evidence for
a significant number of new QTL for muscle, fat and
bone traits in sheep. We also confirm and support the
presence of previously published QTL in breeds other
than those studied here. Finally, homology in QTL
regions between sheep and cattle for muscle, bone, fat
and body weight was demonstrated.

Additional material

Additional file 1: Summary of linear models for trait pre-correction
used in this study. R-square, overall P-value (Model P-value) and P-
values for the regression coefficients in the fitted models. Models were
adjusted for final body weight (FBW) and cohort allowing for nonlinearity
if observed in a scatter plot of the trait versus final body weight

Additional file 2: Phenotypic correlation between body weight and

carcass weight measures. Phenotypic correlation between body weight
and carcass weight measures. Correlations exceeded the P < 0.01

threshold using with n = 160 animals and 'n = 72 animals
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Additional file 3: Summary statistics of traits used in this study.
Summary statistics of traits used in this in this study within the two
cohorts

Additional file 4: Phenotypic correlation between the carcass traits.
Phenotypic correlation between carcass lean (CL), total lean (TL), eye
muscle area (EMA), carcass fat (CF), total fat (TF), internal fat (IF),
subcutaneous fat depth (SFD), carcass bone (B), total bone (TB), percent
lean in carcass (PL), percent fat in carcass (PF), percent bone in carcass
(PB); r > 0.2 corresponds to P < 0.05, and r > 0.3 corresponds to P < 0.01
with n = 160

Additional file 5: QTL for body weight and carcass traits using QTL
Express. QTL for body weight and carcass traits using QTL Express;
*chromosome-wide P < 0.05; **chromosome-wide P < 0.01;
***experiment-wide P < 0.05; ****experiment-wide P < 0.01; variance or
QTL heritability (Heritab) as a proportion of the phenotypic variance
accounted for by the QTL [variance explained by the QTL effect = 1-(MS

of full model/MS of reduced model)]
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