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Simple Summary: The diamondback moth is a serious pest of crucifer crops. To control this pest,
the use of intercropping (such as trap crops) is gaining attention since they are ecologically safe.
However, such approaches require an understanding host plants which are most attractive to the
pest. In this study, we quantified different volatiles released by Barbarea vulgaris in response to the
diamondback moth larval feeding. We investigated olfactory responses of the adult diamondback
moth to natural and simulated volatiles released by infested plants. We also investigated how
volatile effects changed in response to larval feeding treatments. Overall, our findings indicated
the relationship between key volatile compound, host plant cues emission and regulation of the
diamondback moth adult female behavior due to key volatile triggered by the diamondback moth
larvae feeding on B. vulgaris.

Abstract: The diamondback moth (DBM) is a destructive pest of crucifer crops. In this study, DBM
larvae shown to herbivore induced plant volatiles (HIPVs) that were attractive to adult females
exposed in a Y-tube olfactometer. Our results showed that olfactory responses of adult females to
HIPVs induced by third instar larvae feeding on Barbarea vulgaris were significantly higher (20.40± 1.78;
mean moths (%) ± SD) than those induced by first instar larvae (14.80 ± 1.86; mean moths (%) ± SD).
Meanwhile, a significant concentration of Sulphur-containing isothiocyanate, 3-methylsulfinylpropyl
isothiocyanate, and 4-methylsulfinyl-3-butenyl isothiocyanate were detected in HIPVs released by
third instar larvae compared to those released by first instar larvae while feeding on B. vulgaris.
When the DBM females were exposed to synthetic chemicals, singly and in blend form, a similar
response was observed as to natural HIPVs. Our study demonstrated that the relationship between
isothiocyanates acting as plant defense compounds, host plant cues emission and regulation of the
DBM adult female behavior due to key volatile triggered by the DBM larvae feeding on B. vulgaris.

Keywords: crucifer crops; diamondback moth; insect-plant interaction; HIPVs; volatile organic
compounds; oviposition
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1. Introduction

Plants are continuously at risks of attack by herbivore insect. As a result, they have evolved
many inducible defense mechanisms to avoid damage [1]. For example, herbivory may modify
the reallocation of primary plant metabolites or trigger other resistance-related plant responses in
undamaged neighbors which act directly or indirectly against herbivores [2,3]. Direct defenses include a
diverse array of strategies, such as strengthening of plant cell walls by regulating secondary metabolites,
induction of hypersensitive cell death, and production of toxic and deterrent substances, such as
glucosinolates and saponins in crucifers [4–7]. Indirect defenses can involve the emission of volatile
compounds in response to arthropod feeding, which can influence trophic guilds by attracting natural
enemies [8,9].

The diamondback moth (DBM), Plutella xylostella L., is a serious pest of crucifer crops with a
cosmopolitan distribution [10]. The DBM has developed resistance to many chemical insecticides,
as well as Bt toxins [11] making it difficult to control [12]. Efforts to find alternative control approaches
include cultural methods, such as the use of trap crops and intercropping [11]. Such approaches require
an understanding of competing host plants which are most attractive to the pest.

Host plant volatiles play an important role in host finding, recognition and acceptance by
herbivores [13–18]. The brassica family produces a wide range of compounds which are protective
against polyphagous species [19]. However, some of these secondary metabolites, such as glucosinolates,
are used for host recognition cues by specialist Lepidoptera, including the DBM [19–21]. In addition,
some plant volatiles are induced HIPVs, which can mediate ecological functions, including directly
inhibiting development of herbivores and pathogens [11,14,15].

In this study, we hypothesize that host attraction by the DBM may reflect upregulated levels
of key volatile compounds. Thus, we quantified different volatiles released by brassica plants in
response to the DBM larval feeding. We investigated olfactory responses of adult the DBM to natural
and simulated volatiles released by infested plants. We also studied how volatile effects changed in
response to different larval feeding treatments.

2. Materials and Methods

2.1. Plants and Insects

Seed of wintercress (Barbarea vulgaris) (G-type R. Br, glabrous type; Hedeland population)
obtained from the Department of Plant and Environmental Sciences, University of Copenhagen,
Denmark were stored at 4 ◦C until use. Seeds were sown in a greenhouse under long-day conditions,
25 ◦C (light) and 20 ◦C (dark) with 16:8-h photoperiod and 60–75% relative humidity (RH). Plants were
watered weekly and fertilized every other week. After two weeks, 120 seedlings were transplanted
individually into 1-L plastic pots and maintained in climate-controlled room at 25 ◦C (light), 20 ◦C
(dark), 16:8 h photoperiod and 60–65% RH.

P. xylostella L. (strain Fuzhou-S) larvae were collected from a brassica field in Fuzhou in southeastern
China (26.08◦ N, 119.28◦ E), and reared on an artificial diet [22], in a climate-controlled room maintained
at 24 ± 1 ◦C (light) and 24 ± 1 ◦C (dark) with a 12:12 h photoperiod and 60–70% RH. Emerging adult
moths were released into mesh cages (60 × 60 × 60 cm) in groups of 400 (50:50 sex ratio) for mating.
Adult female moths were used in the experiments

2.2. Behavioral Response Treatments

B. vulgaris plants (60–70 day old) were randomly assigned to three comparison groups with the
DBM adult females for olfactory response, (1) healthy (HB) control versus mechanically damaged
plants (MB), (2) plants exposed to first instar (FLB) versus third instars (TLB), and (3) first instars reared
on artificial diet (FLA) versus first instar larvae (FL). Mechanical damage was induced by cutting
across 30% of the B. vulgaris leaf veins with a sterilized knife. In each treatment, the DBM larvae were
released on plants using a camel hair brush. There were four replicates for each treatment.
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2.3. Olfactory Responses to Volatiles

Three treatment combinations were used to test the attraction of the chemicals to mated DBM
adult female with an olfactometer: (1) healthy (HB) control versus mechanically damaged plants (MB),
(2) plants exposed to first instar (FLB) versus third instar (TLB), and (3) first instars reared on artificial
diet (FLA) versus first instar larvae (FL). The preference of the mated DBM adult female for HIPVs was
studied in two-choice tests with a closed system Y-tube olfactometer, using the method described by
Lin et al. [23]. The test chamber consisted of a Y-shaped glass tube (base tube: 10.5 cm; Y arms: 10 cm;
tube internal diameter: 1.6 cm, and 90◦ angle between the two arms). Each arm was connected to a flow
meter and an odor source container consisting of a glass jar (30 cm high, 28 cm diameter) large enough
to hold a potted B. vulgaris plant. Parafilm was used to cover the soil of the pot, isolating it from the
plant foliage. The airflow was purified through a charcoal filter and then passed through a humidifier
bottle. The humidified airflow was split between two channels, and each channel was directed through
an odor container. The two odor flows were sent through each arm of the olfactometer. The airflow
through each arm was 300 mL/min as verified by a flow meter. The experiment was conducted at
20–25 ◦C with 60–70% RH, in a black box with an artificial light source from a single 35 W fluorescent
tube placed above the arms of the Y-tube.

For olfactory responses, mated adult females were released individually at the open end of the
Y-tube (joint arm). The time spent by adult females in each arm was recorded over 300 s, which began
after an adult female touched the cotton placed at the end of the Y-tube arm. The olfactometer
treatments were alternated between arms every five tests to prevent locational bias. Every 10 trials,
the olfactometer tube was washed with alcohol and dried, and the two plants were replaced. Fifty
adult females were tested per sets of plant treatments with a new unexposed adult female used for
each trial replicate. In total, there were five replicates in this experiment.

2.4. Headspace Collection and Volatiles Analysis

We investigated the production of isothiocyanate (SIT) levels in response to larval feeding as
potential host-attraction cues. The DBM larvae (3rd instar larvae) were infested on the surface of the
plants with a camel hair brush. Volatiles were collected (after 24 h) from the olfactometer headspace
as described by Pineda et al. [24]. The four treatments were: healthy B. vulgaris; B. vulgaris fed by
first instar larvae (n = 50); B. vulgaris fed by third instar larvae (n = 50); and mechanically damaged
B. vulgaris (n = 4).

For the assessment, each plant pot was wrapped with parafilm (Neenah, WI54956, USA) to prevent
the soil odor from mixing with plant odor. Plants were placed in glass jars (10 L, cleaned with acetone,
which was allowed to evaporate, and heated to 70 ◦C overnight before use). Pots containing soil alone
were used as control treatments. Air was drawn from the glass jar through a glass tube (charcoal filter
trap column, 3-mm ID, 65 mm long, 1.5 mg Prec charcoal, Klaüstrott, Chromatographie, Deerfield, MA,
USA) using a mini vacuum pump (CD12/16NK, 1KL, Billerica, MA, USA), connected to the glass jar
by a mini steel tube (2 mm ID) at 30 mL/min (negative pressure) for 24 h. Before use, the filter trap
column was washed with dichloromethane-methanol (1:2 v/v), chloroform, acetone, dichloromethane,
and n-pentene (in that order) and then heated to 100 ◦C for 12 h. All experiments were performed in a
temperature-controlled room (24 ± 1 ◦C) with three replicates (n = 50) per treatment [23]. Collected
volatiles were absorbed using Tenax® TA 200 mg (60/80 mesh; Grace-Alltech, Deerfield, IL, USA),
eluted into 30% chloroform, and the mixture was subsequently stored at −20 ◦C until analysis.

The adsorbed samples were analyzed using a gas chromatograph (Agilent Technologies (Santa
Clara, CA, USA) 7890B GC System) mass spectrometer (Agilent Technologies 5977A MSD) (GC-MS)
with an HP-5 column (30 mm × 0.25 mm i.d., 1.0 µm film thickness, Agilent). The GC oven temperature
was increased from 40 ◦C (5-min hold) to 280 ◦C at a rate of 10 ◦C per min. Column effluent was
ionized by electron impact ionization at 70 eV. Mass spectra were acquired by scanning from 35 to
350 m/z at a scan rate of 5.38 scans/sec.
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Compounds were identified using the deconvolution software AMDIS (version 2.64, NIST, USA)
in combination with NIST 05 and Wiley 7th edition spectral libraries, and by comparing retention
indices with those from the literature.

2.5. Adult Female Response to Synthetic HIPV Sources

The response of the adult female DBM was compared between natural and synthetic HIPVs sources.
For testing synthetics of active chemicals (sulfur-containing isothiocyanate, 3-methylsulfinylpropyl
isothiocyanate, and 4-methylsulfinyl-3-butenyl isothiocyanate volatile compounds from the headspace)
were purchased from Macklin Biochemical Co. Ltd. (Shanghai, China) at 97–99% purity.

For testing single doses, 3-methylsulfinylpropyl isothiocyanate were dissolved with triethyl citrate
(TEC) to 0.01, 0.5, 5, 10, 20, and 30 nmol·mL−1. In addition, 4-methylsulfinyl-3-butenyl isothiocyanate
was dissolved with TEC to 0.1, 0.5, 1, 5, 10, and 25 nmol·mL−1 concentrations. The range of dilutions
used for the bioassay varied from Quantities of chemicals emitted from cotton roll to Quantities
detected in B. vulgaris by GC-MS (Supplementary Materials Tables S1 and S2). For testing blends,
3-methylsulfinylpropyl isothiocyanate and 4-methylsulfinyl-3-butenyl isothiocyanate were tested
at the following ratios; blend HB (18.71 and 0.10 nmol·mL−1, respectively), blend MB (8.32 and
1.36 nmol·mL−1, respectively), blend FLB (22.91 and 1.89 nmol·mL−1, respectively) and blend TLB
(18.78 and 1.43 nmol·mL−1, respectively (Table S1). Each suspension solution (1 mL) was applied to a
small cotton roll and placed into the volatiles collecting chamber. The response of mated adult DBM to
each blend were tested in the Y-tube olfactometer as described above. The selected adult females were
starved for 24 h before the behavioral test, and the test was replicated five times.

2.6. Statistical Analysis

Responses of adult females to HIPVs in the five treatments were compared using chi-square
tests for dependent samples with five replicates. We performed Pearson Correlation, the p-value for
each test (not merely “significant” or “p < 0.05”), to determine the correlation between the olfactory
responses of the adult DBM females to B. vulgaris volatile blends. We used SPSS 19.0 for overall
statistical analyses.

3. Results

3.1. Quantities of Isothiocyanate Detected from the Headspace of Multiple Damaged Barbarea vulgaris Plants

The DBM larval feeding affected the levels of isothiocyanate volatiles produced by B. vulgaris plants.
In the FLB and TLB treatments, means of 3-methylsulfinylpropyl isothiocyanate were significantly lower,
while the MB treatments were not significantly different from the HB (control). (Table 1). These findings
demonstrated that the FLB suppressed the emission of this sulphur containing isothiocyanates (SIT)
volatile compound. The first instar feeding caused a decreased attraction of adult females to host plants
(Table 2) (Mean quantity (ng) ± SE; 0.12 ± 0.03 c). In contrast, third instar larvae feeding on B. vulgaris
did not affect the attraction of adult females to host plants when compared with first instars (Figure 1).
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Table 1. Mean quantities (ng) ± SE of isothiocyanate from the headspace of multiple damaged Barbarea
vulgaris plants.

Treatment *
Major Active Compounds (ng)

3-Methylsulfinylpropyl
Isothiocyanate

4-Methylsulfinyl-3-Butenyl
Isothiocyanate

HB 2.09 ± 0.16 b 20.13 ± 2.4 a

FLB 0.12 ± 0.03 c 1.56 ± 0.04 c

TLB 3.51 ± 0.28 a 3.55 ± 0.55 c

MB 2.18 ± 0.31 b 12.01 ± 2.47 b

* HB, healthy B. vulgaris; FLB, first instar larvae feeding on B. vulgaris; TLB, third instar larvae feeding on B. vulgaris;
MB, mechanically damaged B. vulgaris. Means followed by different letter within a column represent significant
differences at p < 0.05.

Table 2. The peak area of the main volatile compounds emitted from multi-treated Barbarea
vulgaris plants.

Main Compounds
Peak Area × 10−6 pA·s (µL/mL)

HB * FLB TLB MB

hexahydrofarnesyl acetone 4.18 5.38 10.21 3.53
n-heptanal 4.19 4.74 0.17 3.59
α-pinene 2.34 5.07 2.92 3.16

hexadecanoic acid 12.20 9.97 15.62 11.28
while phytol 2.59 2.9 0.14 2.75

(Z)-3-hexenyl acetate 7.67 7.78 6.36 8.3
sabinene 2.8 2.99 2.52 3.15

3-methylsulfinylpropyl isothiocyanate 26.64 1.63 7.36 24.9
4-methylsulfinyl-3-butenyl isothiocyanate 1.68 0.65 0.45 1.88

* HB, healthy B. vulgaris; FLB, first instar larvae feeding on B. vulgaris; TLB, third instar larvae feeding on B. vulgaris;
MB, mechanically damaged B. vulgaris.

Figure 1. Olfactory responses of Plutella xylostella adults to natural volatiles. Bars represent the mean
(±SE) response of adult female (compared using the χ2 test) exposed to natural volatiles from Barbarea
vulgaris plants. Different letters indicate differences between two treatments at p < 0.05. HB, healthy
B. vulgaris; FLB, first instar larvae feeding on B. vulgaris; TLB, third instar larvae feeding on B. vulgaris;
MB, mechanically damaged B. vulgaris; FLA, first instar larvae feeding on artificial diet; FL, first instar
larvae only (FL).

3.2. Y-Tube Olfactometer Bioassays

Our Y-tube olfactometer bioassay responses indicated that HIPVs affected the behavior of adult
female moths. Firstly, healthy plants were more attractive to the DBM adult female compared with
mechanically damaged plants (Table 3). Moreover, plants infested with first instars were less attractive
to the DBM adult females than plants infested with third instars or healthy plants (Table 3).
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Table 3. Olfactory response of the DBM adult females to volatile blends emitted from multi-treated
Barbarea vulgaris plants.

Treatment * Mean Moths (%) ± SD ** 95% Confidence Interval

HB 32.00 ± 1.949 a 26.58–37.41

FLB 14.80 ± 1.855 d 9.65–19.95

TLB 20.40 ± 1.778 c 15.46–25.33

MB 26.60 ± 1.931 b 21.28–31.91

* HB, healthy B. vulgaris; FLB, first instar larvae feeding on B. vulgaris; TLB, third instar larvae feeding on B. vulgaris;
MB, mechanically damaged B. vulgaris. ** Means followed by the same letter within the column are not significantly
different at p < 0.05.

3.3. Adult Female Responses to Synthetic Compounds

The responses of the adult female DBM to single dosages and blends of 3-methylsulfinylpropyl
isothiocyanate and 4-methylsulfinyl-3-butenyl as odor sources are shown in Figures 2 and 3. In the
single dosage treatment, 3-methylsulfinylpropyl isothiocyanate concentrations of 30 nmol·mL−1

(χ2 = 32.22, df = 4, p = 0.001), 20 nmol·mL−1 (χ2 = 29.20, df = 4, p = 0.015), 10 nmol·mL−1 (χ2 = 25.4,
df = 4, p = 0.001), and 5 nmol·mL−1 (χ2 = 17.80, df = 4, p = 0.002) were significantly more attractive to
adult females than HB (control). However, no significant differences were observed between the control
and concentrations of 0.50 nmol·mL−1 (χ2 = 1.80, df = 4, p = 0.205) and 0.01 nmol·mL−1 (χ2 = 1.40,
df = 4, p = 0.213) (Figure 2).

Figure 2. Responses of P. xylostella adult females to synthetic 3-methylsulfinylpropyl isothiocyanate
(MSPI) compared with control. Bars represent the mean (± SE) response of adult female exposed to
synthetic active volatile from Barbarea vulgaris plants. Different letters indicate differences between two
treatments at p < 0.05.

Figure 3. Responses of P. xylostella adult females to synthetic 4-methylsulfinyl-3-butenyl isothiocyanate
(MSBI) compared with controls. Bars represent the mean (± SE) response of adult female exposed to
synthetic active volatile from Barbarea vulgaris plants. Different letters indicate differences between
two treatments at p < 0.05.
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Similarly, in the single treatment of 4-methylsulfinyl-3-butenyl, concentrations of 25 nmol·mL−1

(χ2 = 21.20, df = 4, p = 0.013), 10 nmol·mL−1 (χ2 = 17.20, df = 4, p = 0.007), 5 nmol·mL−1(χ2 = 20.16,
df = 4, p = 0.012), and 1 nmol·mL−1 (χ2 = 17.81, df = 4, p = 0.005) had significant effects on adult
females as compared to the control, while no significant differences were observed between the control
and 0.50 nmol·mL−1 (χ2 = 5.00, df = 4, p = 0.288) and 0.10 nmol·mL−1 (χ2 = 1.80, df = 4, p = 0.205)
concentrations (Figure 3).

For the blended treatments, the results showed that the HB blend (χ2 = 21.20, df = 4, p = 0.001)
was more attractive to adult females than the FLB blends (χ2 = 4.20, df = 4, p = 0.12) or TLB blends
(χ2 = 9.01, df = 4, p = 0.20), while the HB blend (χ2 = 21.20, df = 4, p = 0.10) and MB blend (χ2 = 17.60,
df = 4, p = 0.15) showed no significant difference (Figure 4).

Figure 4. Responses of P. xylostella adult females to synthetic blends. HB, healthy B. vulgaris; FLB,
first instar larvae feeding on B. vulgaris; TLB, third instar larvae feeding on B. vulgaris; MB, mechanically
damaged B. vulgaris. Bars represent the mean (± SE) response of adult female exposed to synthetic
active volatile from Barbarea vulgaris plants. Different letters indicate differences between two treatments
at p < 0.05.

Sulfur-containing isothiocyanate; 3-methylsulfinylpropyl isothiocyanate, and 4-methylsulfinyl-3-butenyl
isothiocyanate volatile compounds from the headspace were significantly correlated with the olfactory
response of adult females. Therefore were considered for single and blended bioassays, while the others
were not (Table 4).

Table 4. Correlation between olfactory response of adult females to the multi-treated Barbarea vulgaris
plant volatiles and peak area of the main volatile compounds emitted from multi-treated B. vulgaris.

Main Compounds
Correlation Coefficients between Compounds and

Activity of Volatile Blends

Pearson Correlation Sig. (2-Tailed)

hexahydrofarnesyl acetone −0.455 0.55
n-heptanal 0.122 0.88
α-pinene −0.861 0.14

hexadecanoic acid −0.665 0.34
while phytol −0.181 0.82

(Z)-3-hexenyl acetate −0.272 0.73
sabinene 0.052 0.95

3-methylsulfinylpropyl isothiocyanate 0.962 * 0.04
4-methylsulfinyl-3-butenyl isothiocyanate 0.825 * 0.18

* Correlation coefficients with significant differences.

Adult female responses to the two active chemical compound blends in a Y-olfactometer were
compared using the χ2 test. (1) blend HB: 3-methylsulfinylpropyl isothiocyanate 18.71 nmol·mL−1;
(2) blend FLB: 3-methylsulfinylpropyl isothiocyanate 8.32 nmol·mL−1 and 4-methylsulfinyl-3-butenyl
isothiocyanate 1.36 nmol·mL−1; (3) blend TLB: 3-methylsulfinylpropyl isothiocyanate 22.91 nmol·mL−1

and 4-methylsulfinyl-3-butenyl isothiocyanate 1.89 nmol·mL−1; (4) blend MB: 3-methylsulfinylpropyl



Insects 2020, 11, 725 8 of 12

isothiocyanate 18.78 nmol·mL−1 and 4-methylsulfinyl-3-butenyl isothiocyanate 1.43 nmol·mL−1. Bars
indicate mean ± SE; means followed by different letters indicate significant differences at p < 0.05.

4. Discussion

Crucifer plants effectively use their secondary metabolites to protect themselves against herbivores.
HIPVs are an evolved plants response that stimulates behavioral response in herbivores [25–30].
However, host plant recognition by herbivores is dependent on the perception of a specific
substance, or combination of substances, at or near the surface of leaves [31]. Therefore,
our study results show that volatile constituents (3-methylsulfinylpropyl isothiocyanate and
4-methylsulfinyl-3-butenyl isothiocyanate) may be just as effective as non-volatile constituents
(glucosinolates) to oviposit [20,32–37]. These results suggested that DBM may be aware of host
plants while in flight.

In our study we used B. vulgaris which is considered as a trap crop against the DBM [4,5,34,35,38].
Our Y-tube olfactometer bioassay results show that HIPVs emitted from B. vulgaris affect the behavior
of adult DBM females. We observed that mechanically damaged plants were less attractive to the
DBM adult female compared with healthy plants (Table 3). Moreover, it is surprising that plants
infested with third instars or healthy plants were more attractive to the DBM adult females than
plants infested with first instars (Table 3). Our results also showed that the DBM responded positively
to 3-methylsulfinylpropyl isothiocyanate and 4-methylsulfinyl-3-butenyl isothiocyanate, volatile
compounds found on the leaf surfaces of crucifer plants [21]. This suggests that the up or down
regulation of plant volatiles (isothiocyanate), significantly affect the DBM female attraction to oviposit
on B. vulgaris plants.

Volatile compounds such as isothiocyanates are also involved in the behavioral response to
hydrolysis output of glucosinolates in crucifers [38,39]. However, hydrolysis is expected to occur
only when the leaf is infested with insects which can activate isothicyanates [40]. Isothiocyanates in
crucifer plants [41–45] have been shown to occur in abundance in the airspace above undamaged
plants [46]. Some studies also showed that HIPVs function as host-attraction cues for a range of specialist
herbivores [28,29,47]. The host attraction phenomena was observed in by DBM and another crucifer
feeders, the cabbage root fly [1,48].These finding suggested that the feeding by early instars decreased
attraction of adult DBM females to host plant, which in result may regulates volatiles emission.

Additionally, responses to the synthetic active chemical compounds (Figures 2 and 3) showed
that volatile compounds (host-attraction cues) were perceived by olfactory behavior. Previously, it was
reported that volatiles from various fertilized crucifer plants play a crucial role in herbivore host
preferences [49], although isothiocyanates were not detected in damaged plants (within the threshold
limits of the GC-MS system), these findings are echoed in our result that feeding by early instars
suppressed emissions.

This study concurs with a previous study on the attractiveness of B. vulgaris to ovipositing the
DBM [21], where adult females preferentially oviposited on B. vulgaris despite the fact that P. xylostella
larvae do not survive on this dead-end trap crop [50–58]. Because, the manipulation of trap crops
and their natural enemies has potential applications for pest control in agricultural settings. Thus,
the manipulation of B. vulgaris could help in controlling DBM.

5. Conclusions

Our results provide evidence that the DBM adults can recognize hosts (food odor) in part by
using larvae which activates volatile compounds from B. vulgaris plants. Our results also showed
that host attraction cues (HIPVs) released from B. vulgaris damaged by larvae or mechanical means
were involved in host attraction. Because when B. vulgaris is damaged by larvae it activates secondary
metabolites, such as glucosinolates (non-volatile) and isothiocyanates (volatile), which increased the
attraction among adult of the DBM females to oviposit. Thus, the results of this study suggested that
B. vulgaris infested with early instar larvae with insect secretions may alter the amounts and balance of
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volatiles emitted by the infested plants, thus reducing host attraction. Additional detailed studies on
the effect of the DBM-larvae secretions on damaged B. vulgaris are needed to explore structure-activity
relationship and the sequence of events leading to host attraction.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/11/11/725/s1,
Table S1: Quantities of the active synthetic compounds emitted from the cotton roll in different treatments over
12 h, Table S2: Predicted concentrations of synthetic compounds applied in the experiment.
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