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Abstract: Some conjugated benzene ring molecules were prepared using the Sonogashira reaction,
and the molecules were post-functionally modified using click chemistry. The optical and electrical
band gaps were measured using UV-VIS absorption spectroscopy and the three-electrode method,
and the results of both were verified against each other to prove the accuracy of the characterization.
In addition, the optical performances of the material were studied by z-scan; almost all materials
exhibited good nonlinear optical properties and interconversion between saturable and anti-saturable
absorption due to the invocation of click reagents.
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1. Introduction

In recent years, many small molecules with excellent nonlinear optical properties have
entered the limelight because of promising potential in a wide diversity of optical fields, for
example, quantum communication, optical limiting, and information storage [1–3]. Organic
small molecules have excellent properties such as diverse structural composition and wide
space for property tuning, and the molecules can be designed to tune the actually desired
properties. However, the preparation of current small-molecule conjugated materials is
very complicated, and the chemical synthesis and purification are very tedious, which
limits its development in some cases [4–7].

The emergence of click chemistry has effectively solved this problem. The click
chemistry occurs in fast, side-reaction-free, near-100% yields and is easily purified [8,9].
The introduction of click chemistry into the preparation of nonlinear materials has led to
the synthesis of a wide variety of organic small molecule nonlinear materials that express
strong nonlinearity [10–13].

Traditionally, biphenyl-like molecules are widely used in pharmaceuticals, pesticides,
dyes, liquid crystal materials [14–17], and also in the manufacture of fuels, engineering
plastics, and high-energy fuels [18–20]. However, Biphenyl materials are rarely used as
non-linear optical materials.

In this paper, a biphenyl-based conjugated structure molecule was constructed by
Sonogashira coupling reaction and functionalized by click reagents, and the effects of differ-
ent amounts and categories of click reagents on the molecular properties were investigated.
The results indicate that these functionally modified molecules show a wide absorption.
The type of click reagent has a strong influence on the molecular properties, compared to
the symmetry of the molecule and the number of click reagents, which have less influence.
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2. Preparation and Research
2.1. Preparation

The synthetic route of dibiphenyl derivatives is placed in Figure 1. Monobromo-
biphenyl and dibromobiphenyl and N, N-dibutyl−4-ethynylaniline are firstly used as raw
materials and the target dibiphenyl derivatives are obtained in moderate yields by linking
the two by Sonogashira coupling reaction. The dibiphenyl derivatives have two clickable
triple bonds, to which different electron acceptors are introduced by a two-step click reac-
tion, resulting in five molecules with different click structures. The yields of the different
structural click products are presented in detail in the experimental section. Due to the
difference in the number and structure of the introduced acceptor molecules, the polarity
of all the obtained click products varies widely, which makes the separation of the click
products very simple.
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peak of the precursor (Q) at 376 nm started to decrease, and an absorption peak occurred 
in 470 nm, which represents the production of new compounds (Q-1, Q-11). As TCNE is 
continuously added to the solution, the absorption peak at 470 nm gradually increased 
until the absorption peak at 376 nm decreased to a minimum after the addition of 2 equiv-
alents of TCNE, which indicates the complete conversion of Q to Q-11. In previous works 
[21–26], click chemistry is shown to be efficient and free of side reactions. In Figure 2a, the 
production of extinction dots at 348 nm and 405 nm proves that the click reaction is side-
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TCNQ, and F4-TCNQ give brown R-1, green R-2, and purple R-3, respectively. In Figure 
4b, the same redshift occurs in the click product of Q. 

Figure 1. Total Synthesis route (1) PdCl2 (PPh3), CuI, DIPA, 60 ◦C, Ar, 36 h; (2) TCNE/TCNQ/F4-
TCNQ, CH2Cl2, rt, 1 h.

2.2. UV-Vis-NIR Spectro

To study the occurrence of click chemistry and its occurrence or not of side reactions, a
click-track reaction is carried out in this paper using compound Q. The TCNE is titrated to
Q in a fixed amount twenty times, and the progress of the reaction is monitored by UV-Vis
spectroscopy. The titration experiments of 0–1 equivalents of TCNE are shown in Figure 2a.
When 0.1 equivalents of TCNE are added to the CH2Cl2 solution, the absorption peak of
the precursor (Q) at 376 nm started to decrease, and an absorption peak occurred in 470 nm,
which represents the production of new compounds (Q-1, Q-11). As TCNE is continuously
added to the solution, the absorption peak at 470 nm gradually increased until the absorp-
tion peak at 376 nm decreased to a minimum after the addition of 2 equivalents of TCNE,
which indicates the complete conversion of Q to Q-11. In previous works [21–26], click
chemistry is shown to be efficient and free of side reactions. In Figure 2a, the production of
extinction dots at 348 nm and 405 nm proves that the click reaction is side-reaction free.
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Figure 2. UV-VIS-NIR tracking spectrum of click response (a) TCNE (0–1.0 equivalent); (b) TCNE
(1.0–2.0 equivalent).

Figure 3 shows the CH2Cl2 solution of the click-modified products of R and Q.
Figure 4a shows the UV-VIS-NIR spectroscopy of the compounds in the CH2Cl2 solu-
tion. The reaction of the light-yellow molecule R with one equivalent of the click reagents
TCNE, TCNQ, and F4-TCNQ give brown R-1, green R-2, and purple R-3, respectively. In
Figure 4b, the same redshift occurs in the click product of Q.
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The main reason for the occurrence of the red-shift phenomenon is the introduction
of click reagents that grow the conjugate length of the backbone and enhance the electron
affinity [27,28]. The absorption peak of R-3 shows a larger redshift than R-1 and R-2, which
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is due to the introduction of strong electron-absorbing groups-CN and -F, which have a
more pronounced effect of extending the conjugation length of the molecule. Compared
with R, Q has two clickable triple bonds, so two acceptor molecules can be introduced.
However, in Figure 4b, Q-11, Q-22 with two acceptor molecules introduced to show the
same redshift of the maximum absorption peaks relative to R-1, R-2 with one acceptor
molecule introduced, and the absorption peaks do not shift due to the different number
of clickable reagents introduced, which indicates that the symmetry of the molecule has
almost no effect on the position of the maximum absorption peak, and the type of click
reagent has the greatest effect on redshift.

In conclusion, the introduction of click reagents can prolong the conjugation length of
molecules, thus causing movement of the maximum peak, the degree of movement varies
depending on the type of click reagents, resulting in a series of broadband absorbing dyes
that can absorb different wavelengths.

2.3. Electrochemistry

Electron off-domain is related to the nonlinear nature [25,29,30]. Figure 5 shows
the cycle voltammogram and Figure 6 shows the energy level results of the compound.
Table 1 also shows the initial redox potential. Electrical and optical energy bandwidths
can be well matched, and both tend to decrease, thanks to the introduction of the acceptor
molecules [31,32].

Table 1. Electrical properties of molecules.

Molecules λend
a (nm) Eg

b (eV) Eox
on

c (V) Ered
on

c (V) HOMO (eV) LUMO (eV) Eg
d (eV)

R 412 3.00 1.25 −1.08 −5.85 −3.52 2.33
R-1 692 1.79 0.88 −0.83 −5.48 −3.77 1.71
R-2 982 1.26 0.62 −0.61 −5.22 −3.99 1.23
R-3 1188 1.04 0.50 −0.42 −5.10 −4.18 0.92
Q 442 2.80 1.15 −1.02 −5.75 −3.58 2.17

Q-11 686 1.80 0.86 −0.80 −5.46 −3.80 1.66
Q-22 1006 1.23 0.61 −0.59 −5.21 −4.01 1.20

a UV-VIS spectrum cut-off absorption wavelength. b Optical energy bandwidth. c Initial oxidation potential and
initial reduction potential (obtained by cyclic voltammetry characteristic curve). d Electrochemical band gaps.
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After the introduction of click reagents, the LUMO levels and band gaps of R-1, R-2,
and R-3 showed a decreasing trend and the HOMO levels increased, and the band gap
of R-3 decreased most significantly compared with R-1 and R-2, because of the groups -F
and -CN in F4-TCNQ. Similarly, Q, Q-11, Q-22 show the same effect. By comparing R-1
and Q-11, R-2 and Q-22, it can be seen that the introduction of more click reagents in the
molecule is less effective in reducing the bandgap, which can also indicate that the degree of
conjugation of the molecule has a greater effect on the electrochemistry than the symmetry
of the molecule. This is because the symmetry of the molecule has little effect on the degree
of conjugation and does not change the conjugation structure, while the different kinds
of click reagents introduced lengthen the conjugation length of the molecule, reduce the
electron cloud density and the energy of the system, accelerate the intramolecular charge
transfer, narrow the molecular band gap and make it easier for the leap.

2.4. Nonlinear Optics

The third-order nonlinear polarizability is one of the important parameters of the
material [33]. The materials in this paper are tested under picosecond laser, some of
them have poor nonlinear refractive properties, therefore, only the nonlinear absorption
properties of the materials are investigated in this paper.

The Z-scan results of molecules are placed in Figure 7. No nonlinear optical properties
are observed for molecule R which are shown in Table 2. Therefore, only R-1, R-2, R-3
are compared. It can be seen that after the click reaction, R-1 and R-3 have a peak in
transmittance at the focal point and exhibit saturable absorption properties (SA), while
R-2 has a valley in transmittance at the focal point and exhibits anti-saturation absorption
properties (RSA), due to the alteration of the length of the molecular conjugate group
as a result of the introduction of the click reagent, leading to a saturable absorption-
trans-saturable absorption transition. The factors affecting the saturable to anti-saturable
absorption transition are the absorption cross-section and the horizontal lifetime [34].



Molecules 2022, 27, 5551 7 of 11
Molecules 2022, 27, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 7. (a) R−1, (b) R−2, (c) R−3 Z-scan curves. The red line is the fitted data, and the scattered 
points are the Z-scan experimental data. 

3. Conclusions 
Some benzene ring derivatives were prepared and systematically studied. UV-VIS-

NIR spectroscopy and electrical testing showed that the introduction of click reagents in-
creased the conjugate groups of the molecules, caused a movement of the maximum peak, 
while the energy bandwidth of the click products was reduced to different degrees. Z-
scan tests showed that after clicking, the molecules all showed different nonlinear prop-
erties, and with the use of different click reagents, the molecules could undergo a transi-
tion between anti-saturation absorption and saturation absorption, yielding nonlinear ma-
terials with different properties. 

4. Experimental 
4.1. Material and Instrumental Characterization Equipment 

All reagents were purchased from company sources and were ready for use. 1H-NMR 
spectra of the materials were measured using a BRUKER AVANCEIIIHD400 with deuter-
ated chloroform as the solvent and tetramethylsilane (TMS) as the internal standard. The 
UV absorption was measured by a JASCO V-570 spectrophotometer. The instruments for 
mass spectrometry analysis of materials were AB SCIEX MALDI-TOF/TOF 5800. Cyclic 
voltammetric curves of materials were measured using the CHI 660C instrument. Meas-
urement of the response of nonlinear optical (NLO) characteristics uses a Z-scan technique 
(NLO-Z), where the laser pulse is chosen to be 21 ps. 

4.2. Preparation of Materials 
4.2.1. Preparation of the Molecular R 

N,N-dibutyl-4-ethynylaniline obtained from previous work [35] (1.6488 g, 0.0072 
mol), 4-iodobiphenyl (0.6722 mg, 0.0024 mol), [PdCh (PPh3)] (0.00017 mol, 0.1206 g), CuI 
(0.00017 mmol, 0.034 g) were placed in the flask and 30 mL iPrNH was added, then shaken 

Figure 7. (a) R−1, (b) R−2, (c) R−3 Z-scan curves. The red line is the fitted data, and the scattered
points are the Z-scan experimental data.

Table 2. Nonlinear data for molecules.

Molecules β × 10−17 (m/W) χ(3) × 10−17 (esu)

R-1 −30 6.45
R-2 30 6.45
R-3 −20 4.30
Q 15 3.23

Q-11 −33 7.09
Q-22 13 2.79

3. Materials and Methods
3.1. Material and Instrumental Characterization Equipment

All reagents were purchased from company sources and were ready for use. 1H
NMR spectra of the materials were measured using a BRUKER AVANCEIIIHD400 with
deuterated chloroform as the solvent and tetramethylsilane (TMS) as the internal standard.
The UV absorption was measured by a JASCO V-570 spectrophotometer. The instruments
for mass spectrometry analysis of materials were AB SCIEX MALDI-TOF/TOF 5800. Cyclic
voltammetric curves of materials were measured using the CHI 660C instrument. Measure-
ment of the response of nonlinear optical (NLO) characteristics uses a Z-scan technique
(NLO-Z), where the laser pulse is chosen to be 21 ps.

3.2. Preparation of Materials
3.2.1. Preparation of the Molecular R

N,N-dibutyl-4-ethynylaniline obtained from previous work [35] (1.6488 g, 0.0072 mol),
4-iodobiphenyl (0.6722 mg, 0.0024 mol), [PdCh (PPh3)] (0.00017 mol, 0.1206 g), CuI
(0.00017 mmol, 0.034 g) were placed in the flask and 30 mL iPrNH was added, then shaken



Molecules 2022, 27, 5551 8 of 11

for 36 h at 60 ◦C. After the temperature dropped to room temperature, the solvent was
cleared, and the separation technology column chromatography, the eluent is CH2Cl2, and
the first crude purification was performed to remove the catalyst in the system. Then the
product was purified by column chromatography and after distillation under reduced
pressure, 566 mg of light-yellow solid product R was obtained, with a yield of 62%.

1H NMR (400 MHz, CDCl3, δ): 7.66–7.60 (m, 4H), 7.58 (s, 8H), 7.50–7.44 (m, 4H),
7.43–7.35 (m, 6H), 6.64–6.59 (m, 4H), 3.37–3.26 (m, 8H), 1.66–1.58 (m, 8H), 1.41 (m, 8H), 0.99
(m, 12H). IR (neat): 2964, 2937, 2873, 2202, 1590, 1526, 1376, 1200, 814, 773, 692, 542. MALDI-
TOF-MS (dithranol): m/z: [MH]+ calcd. for C28H31N: 381.25, found: 382.76. Elemental
analysis calcd. (%) for C28H31N (381.25): C 88.14, N 3.67, H 8.19, found: C 88.12, N 3.66,
H 8.22.

3.2.2. Preparation of the Molecular R-1

Compound R (152.4 mg, 0.4 mmol) was dissolved in 30 mL CH2Cl2 and TCNE
(0.0512 g, 0.0004 mol) was added to it, then stirred for 40 min. After the reaction is over,
the solvent was removed by distillation under reduced pressure, then a chromatographic
column (the eluent is CH2Cl2) was used for purification to give R-1 (199.6 mg, 98%).

1H NMR (400 MHz, CDCl3, δ): 7.90–7.81 (m, 8H), 7.8–7.75 (m, 4H), 7.67–7.61 (m, 4H),
7.55–7.43 (m, 6H), 6.75–6.69 (m, 4H), 3.49–3.38 (m, 8H), 1.73–1.61 (m, 8H), 1.41 (m, 8H), 1.01
(m, 12H). IR (neat): 2959, 2869, 2220, 1603, 1490, 1340, 1209, 1181, 810, 769, 683, 578. MALDI-
TOF-MS (dithranol): m/z: [M] calcd. For C34H31N5: 509.26, found: 509.69. Elemental
analysis calcd. (%) for C34H31N5 (509.26): C 80.13, H 6.13, N 13.74, found: C 80.10, H 6.16,
N 13.74.

3.2.3. Preparation of the Molecular R-2

Compound R (152.4 mg, 0.4 mmol) was dissolved in 30 mL CH2Cl2 and TCNQ
(0.0817 g, 0.0004 mol) was added to it, then stirred for 40 min. After the reaction is over,
the solvent was removed by distillation under reduced pressure. Then a chromatographic
column was used for purification to give R-2 (226.98 mg, 97%).

1H NMR (400 MHz, CDCl3, δ): 7.83–7.78 (m, 4H), 7.75–7.70 (m, 4H), 7.65–7.55 (m,
6H), 7.53–7.42 (m, 6H), 7.31 (m, 6H), 7.09 (m, 4H), 6.75–6.69 (m, 4H), 3.46–3.37 (m, 8H),
1.69–1.61 (m, 8H), 1.46–1.37 (m, 8H), 1.01 (m, 12H). IR (neat): 2969, 2933, 2869, 2197, 1586,
1399, 1345, 1177, 932, 833, 764, 733, 687, 542. MALDI-TOF-MS (dithranol): m/z: [M] calcd.
for C40H35N5: 585.29, found: 585.96. Elemental analysis calcd. (%) for C40H35N5 (585.29):
C 82.02, N 11.96, H 6.02, found: C 82.00, N 11.95, H 6.05.

3.2.4. Preparation of the Molecular R-3

Compound R (152.4 mg, 0.4 mmol) was dissolved in 30 mL CH2Cl2 and F4-TCNQ
(0.112 g, 0.0004 mol) was added to it, then stirred for 40 min. After the reaction is over,
the CH2Cl2 was cleared by distillation, and then a chromatographic column was used for
purification to give R-3 (259.1 mg, 98%), as a black solid.

1H NMR (400 MHz, CDCl3, δ): 7.77–7.72 (m, 4H), 7.72–7.67 (m, 4H), 7.66–7.61 (m, 4H),
7.54–7.44 (m, 6H), 7.40 (m, 4H), 6.89–6.84 (m, 4H), 3.59 (m, 8H), 1.76 (m, 8H), 1.50 (m, 8H),
1.05 (m, 12H). IR (neat): 2959, 2924, 2873, 2194, 1608, 1390, 1191, 1028, 964, 810, 778, 638,
533. MALDI-TOF-MS (dithranol): m/z: [M] calcd. for C57H55F3N8: 657.25, found: 657.77.
Elemental analysis calcd. (%) for C40H31F4N5 (657.25): C 73.05, N 10.65, H 4.75, F 11.55,
found: C 73.03, N 10.64, H 4.78, F 11.55.

3.2.5. Preparation of the Molecular Q

N,N-dibutyl-4-ethynylaniline obtained from previous work [34] (1648.8 mg, 7.2 mmol),
4,4′-diiodobiphenyl (974.4 mg, 2.4 mmol), [PdCh (PPh3)] (120.6 mg, 0.172 mmol), CuI
(34.0 mg, 0.178 mmol) were placed in the flask and 30 mL iPrNH was added, shaken for
36 h at 60 ◦C. After the temperature dropped to room temperature, the solvent was cleared,
and the separation technology column chromatography, the eluent was CH2Cl2, and the
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first crude purification was performed to remove the catalyst in the system. Then the
product was refined and after distillation under reduced pressure, 846.3 mg of light-yellow
solid product Q was obtained, with a yield of 58%.

1H NMR (400 MHz, CDCl3, δ): 7.59 (d, J = 1.6 Hz, 4H), 7.46–7.33 (m, 2H), 6.66–6.55 (m,
2H), 3.37–3.27 (m, 4H), 1.59 (m, 4H), 1.39 (m, 4H), 0.99 (m, 6H). IR (neat): 2955, 2924, 2856,
2212, 1599, 1526, 1363, 1295, 1191, 1100, 1000, 928, 805, 533. MALDI-TOF-MS (dithranol):
m/z: [MH]+ calcd. for C44H52N2: 608.41, found: 609.87. Elemental analysis calcd. (%) for
C44H52N2 (608.41): C 86.79, N 4.60, H 8.61, found: C 86.77, N 4.60, H 8.63.

3.2.6. Preparation of the Molecular Q-11

Molecular Q (0.243 g, 0.0004 mol) was dissolved in CH2Cl2 and TCNE (0.102 g,
0.0008 mol) was added, then stirred for 40 min. After the reaction was over, the solvent
was removed by distillation under reduced pressure, and then a chromatographic column
was used for purification to give Q-11 (331.7 mg, 96%).

1H NMR (400 MHz, CDCl3, δ): 7.91–7.76 (m, 6H), 6.76–6.70 (m, 2H), 3.49–3.39 (m, 4H),
1.72–1.60 (m, 4H), 1.42 (m, 4H), 1.01 (m, 6H). IR (neat): 2969, 2938, 2873, 2206, 1603, 1485,
1422, 1345, 1191, 1000, 919, 814, 741, 545. MALDI-TOF-MS (dithranol): m/z: [M] calcd. for
C56H52N10: 864.44, found: 864.84. Elemental analysis calcd. (%) for C56H52N10 (864.44): C
77.75, N 16.19, H 6.06, found: C 77.73, N 16.18, H 6.09.

3.2.7. Preparation of the Molecular Q-22

Compound Q (0.243 g, 0.0004 mol) was dissolved in CH2Cl2 and TCNQ (0.166 g,
0.0008 mol) was added to it, then stirred for 40 min. After the reaction was over, the CH2Cl2
was cleared by distillation, then a chromatographic column for purification was used to
give Q-22 (389.1 mg, 95%).

1H NMR (400 MHz, CDCl3, δ): 8.14–7.75 (m, 4H), 7.75–7.49 (m, 4H), 7.05 (m, 2H), 6.71
(d, J = 9.2 Hz, 2H), 3.40 (m, 4H), 1.42 (m, 4H), 1.21 (m, 4H), 1.01 (m, 6H). IR (neat): 2964,
2918, 2873, 2202, 1571, 1404, 1340, 1187, 914, 846, 678, 532. MALDI-TOF-MS (dithranol):
m/z: [MH]+ calcd. for C68H60N10: 1016.50, found: 1017.88. Elemental analysis calcd. (%)
for C68H60N10 (1016.50): C 80.29, N 13.77, H 5.95, found: C 80.27, N 13.77, H 5.97.

4. Conclusions

Some benzene ring derivatives were prepared and systematically studied. UV-VIS-NIR
spectroscopy and electrical testing showed that the introduction of click reagents increased
the conjugate groups of the molecules, caused a movement of the maximum peak, while
the energy bandwidth of the click products was reduced to different degrees. Z-scan tests
showed that after clicking, the molecules all showed different nonlinear properties, and
with the use of different click reagents, the molecules could undergo a transition between
anti-saturation absorption and saturation absorption, yielding nonlinear materials with
different properties.
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