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PI4K-beta and MKNK1 are 
regulators of hepatitis C virus  
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Cellular translation is down-regulated by host antiviral responses. Picornaviridae and Flaviviridae 
including hepatitis C virus (HCV) evade this process using internal ribosomal entry sequences (IRESs). 
Although HCV IRES translation is a prerequisite for HCV replication, only few host factors critical 
for IRES activity are known and the global regulator network remains largely unknown. Since signal 
transduction is an import regulator of viral infections and the host antiviral response we combined 
a functional RNAi screen targeting the human signaling network with a HCV IRES-specific reporter 
mRNA assay. We demonstrate that the HCV host cell cofactors PI4K and MKNK1 are positive 
regulators of HCV IRES translation representing a novel pathway with a functional relevance for the 
HCV life cycle and IRES-mediated translation of viral RNA.

Hepatitis C virus (HCV) is a positive stranded RNA virus replicating in intracellular phospholipid-enriched 
membrane domains. Several unbiased RNAi screens identified a panel of host factors required for HCV 
entry, replication and assembly1–4 but none of these previous approaches discriminates effects on mRNA 
translation. Host protein translation is initiated with the recruitment of the 40S ribosomal subunit to 
mRNA. This process mostly involves the recognition of a 5′  m7GpppN cap structure by eIF4E of the 
cap binding complex eIF4F5. Most eukaryotic mRNAs also contain a 3′  poly(A) tail, which is acting 
synergistically with the cap structure to enhance translation6–8. Initiation of cap-dependent translation 
is susceptible to regulation via eIF4F by eIF4E inhibitory proteins by phosphoinositide 3-kinase (PI3K)/
Akt and mammalian target of rapamycin (mTOR) signaling pathways9. Furthermore, MAP kinase path-
ways modulate cap-dependent translation by phosphorylation of ribosomal protein S610 and by eIF4E 
phosphorylation via MAP kinase interacting serine/threonine kinase 1 (MKNK1)11,12. Furthermore, cap 
translation is inhibited by heatshock proteins13 and by protein kinase R (PKR) and PKR-like endoplas-
mic reticulum kinase (PERK), which are activated by double stranded viral RNA intermediates and 
ER-stress, respectively14. PKR and PERK are thus triggered by a cell in despair trying to prevent viral 
RNA replication and to activate repair mechanisms that rely on an alternative translation initiation 
mechanism mediated by internal ribosomal entry sequences (IRESs). IRES translation is thus of par-
ticular physiological importance when cap-dependent translation is compromised15–18, but which is also 
used by some positive strand RNA viruses including HCV5,19,20 promoting viral protein synthesis21. It 
has been demonstrated that miR-122 stimulates HCV IRES translation20,22 and that RACK1 controls the 
IRES-mediated translation of viruses including HCV23 but additional host factors which are critical for 
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HCV IRES activity remain largely to be determined. Since cellular signaling events regulate key aspects 
cap-dependent translation9, miRNA expression24 and the HCV life cycle2,25 we studied the role of host 
kinases and protein phosphatases in IRES-dependent translation.

Results
To analyze the impact of gene silencing on IRES- and cap-dependent translation, respectively, we 
co-transfected reporter mRNAs (100 ng/0.3 cm2) in gene silenced hepatoma cells 48 h post siRNA trans-
fection as described previously26,27 (Fig.  1): Renilla luciferase mRNA initiated by a m7G cap structure 
and firefly luciferase mRNA containing a non-physiological adenosine cap structure (‘A-cap’) and the 
HCV IRES element. The A-cap maintains stability of the mRNA, but is not recognized by the cap bind-
ing complex. Luciferase expression was assessed by a Mithras LB 940 (Berthold Technologies) using 
Dual-Luciferase Reporter Assay or Bright-Glo (Promega). Toxicity of gene silencing was assessed using 
MTT (Sigma) and Presto Blue (Sigma) for the tertiary screen. In the primary screen targeting 893 
genes we identified 46 candidates that predominant impact HCV IRES-dependent over cap-dependent 
translation (Supplementary table S1). In a secondary validation screen using side-by-side transfection 
of firefly reporter mRNAs of cap and HCV IRES (Fig.  1) we validated 11 hits of the primary screen 
(Supplementary table S2) and thus confirmed that these genes predominantly affect HCV IRES- rather 
than cap-dependent translation. As HCV IRES translation is a key step in the viral life cycle we assessed 
whether the identified genes confirm as positive regulators of HCV infection. We validated the results 
from the two foregoing screens (performed with siRNA pools) in a tertiary screen by at least two of four 
individual siRNAs per target (Fig.  1) to minimize off-target effects and validated mRNA knockdown 
specificity of the final hits by qPCR (Supplementary figure S1). As a result we confirmed that silencing 
of 3 genes from the secondary screening have a reproducible and significant impact on HCV infec-
tion: phosphatidylinositol 4-kinase catalytical subunit beta (PIK4CB), MAP kinase interacting serine/
threonine kinase 1 (MKNK1), and tumor protein D52-like 3 (NYD-SP25) (Supplementary table S3). 
We were not able to validate a specific silencing of NYD-SP25 mRNA expression and therefore cannot 
rule out that off-target effects being responsible for the impact in IRES-dependent translation. Using a 
specific inhibitor of MKNK128 we demonstrate a significant (p <  0.01, t-test) and preferential inhibition 
of IRES-dependent translation over cap-dependent translation of luciferase reporter genes (Fig.  2a) at 
absent cell toxicity (Fig.  2b). Long-term treatment with the MKNK1 inhibitor over three days signifi-
cantly (p <  0.01, t-test) block HCV infection (Fig. 2c) demonstrating that the molecular mechanism of 
action of MKNK1 involves its kinase activity.

Discussion
Understanding the IRES-mediated control of HCV protein synthesis is important for the understanding 
of HCV infection. Although much progress has been made in understanding HCV entry and replication 
translational control by the HCV IRES and the involved host factors remain largely unknown. For genes 

Figure 1.  High-throughput RNAi screen identifying human kinases and protein phosphatases with
predominant impact on IRES-dependent translation and HCV infection. 
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identified as HCV cofactors it was mostly not conclusive whether they affect HCV translation or -replication 
or both steps in the viral life cycle. An established unbiased multistep screening approach identified five 
genes modulating HCV IRES-dependent translation. Among the genes was MKNK1, a regulator of cap 
translation and recently described HCV entry factor29. MKNK1 regulates EIF4E affinity to cap mRNA in 
fibroblasts and is required for Herpes simplex virus (HSV-1) replication. For the first time we demonstrate 
that MKNK1 predominantly promotes IRES-dependent translation in hepatocytes (Supplementary table 
S1) that likely contributes to decreased core protein expression levels observed upon MKNK1 inhibition29. 
A specific MKNK1 inhibitor predominantly impairs IRES over cap-dependent translation demonstrating 
that the molecular mechanism of action of MKNK1 involves its kinase activity. Indeed, MKNK1 inhib-
itor specifically and dose-dependently impairs HCV infection highlighting its potential as antiviral tar-
get for IRES-dependent viruses. No phosphatase was identified suggesting that HCV IRES translation is 
mainly dependent on protein phosphorylation. Interestingly, the screen identified a phosphatidylinositol 
4-kinase (PI4K), another key member of the phospholipid metabolism. PI4K generate membranes enriched 
in phosphatidylinositide 4-phosphate lipids, which serve as replication platforms for RNA viruses from 
the Picornaviridae and the Flaviviridae30. Strikingly, most members of these virus families replicate in 
such membranous platforms (poliovirus, coxsackievirus, Aichi virus, enterovirus, HCV)30,31 also rely on 
IRES-dependent translation. PI4K alpha and beta isoforms have been implicated in entry, replication and 
packaging of HCV1–4,32. Thus our data suggest an additional and previously unrecognized role of PI4K-beta 
for HCV IRES-mediated translation of the viral polyprotein and potentially also for other viruses that 
employ an IRES mechanism. Collectively, our data identify a novel pathway of HCV-host interactions with 
functional relevance for the HCV life cycle and IRES-mediated translation of viral RNA.

Methods
Transcription and transfection and RT-PCR.  All transfections were performed at the High 
Throughput Screening platform of the Institut de Génétique et de Biologie Moléculaire et Cellulaire 
(IGBMC) in Illkirch, France. Gene silencing by RNAi for all screens was performed on 5000 cells/3.5 pmol 
siRNA/0.3 cm2 in 96 well plates by reverse transfection using Interferin (Polyplus Transfection) as described 
previously2,25. Non-targeting scrambled siRNA (Qiagen) and RISC-free siGlo RNA (Dharmacon) were 

Figure 2.  Kinase activity of MKNK1 promotes IRES-dependent translation and HCV infection. (a) A 
specific inhibitor of MKNK1 kinase activity preferentially impairs IRES-dependent over CAP-dependent 
luciferase reporter translation. Huh7.5 cells incubated for one hour with increasing doses of MKNK1 
inhibitor. Treated cells were co-transfected with reporter mRNAs (IRES-firefly and cap-renilla) for four 
hours prior measuring of the firefly and renilla luciferase activity as described in the methods section. Data 
are expressed as means of the ratio of firefly/renilla luciferase activity + /−  SEM. *p <  0.01 (Student’s t-test, 
n =  15 of three independent experiments). (b) MKNK1 inhibitor has only a minor impact on cell viability of 
Huh7.5 cells. After 5 h incubation with increasing concentrations of MKNK1 inhibitor the cell number was 
assessed by counting and the cell viability was assessed using Presto Blue. Data are expressed as means + /−  
SEM (n =  3 of one representative experiment). (c) MKNK1 inhibitor significantly and dose-dependently 
inhibits HCV infection at absent cell toxicity. Huh7.5.1 cells were pre-treated for one hour with increasing 
concentrations of MKNK1 inhibitor prior infection with cell culture-derived HCV (strain Luc-Jc1). Infected 
cells were maintained in the presence of the respective MKNK1 inhibitor concentration prior cell lysis and 
the measurement of the luciferase activity at day three. Data are expressed as means + /−  SEM. *p <  0.01 
(Student’s t-test, n =  3 of one representative experiment). All inhibitor dilutions and controls in this figure 
were prepared in a constant background of 1% DMSO.
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transfected as mock controls. 100 ng/0.3 cm2 reporter mRNA was transfected 48 h post siRNA transfec-
tion using TransMessager reagent (Qiagen) as described previously26. In vitro transcription of mRNAs 
were described previously27. Reporter mRNAs were co-transfected in a ratio (IRES-firefly: cap-renilla) 
of 1:4 in the primary screen. In the secondary screen reporter mRNAs (IRES-firefly, cap-firefly) were 
transfected side-by-side. Luciferase expression was assessed by a Mithras LB 940 (Berthold Technologies) 
using Dual-Luciferase Reporter Assay System System or Bright-Glo (Promega). Toxicity was assessed 
using MTT assay (Sigma) and Presto Blue assay (Sigma) for the tertiary screen and the MKNK1 inhibitor 
experiments. RNA was extracted using RNeasy kit (Qiagen) and cDNA were generated using Maxima 
Reverse Transcriptase (Life Technologies). qPCR was performed using RT2 SYBR Green qPCR Mastermix 
(Qiagen) and a C1000 Touch Thermo Cycler (Bio-Rad).

Cells culture, virus, DNA, siRNA and small molecules.  Cell growth conditions of hepatoma cell 
lines Huh7.5 and Huh7.5.1 were described33,34. Infection with HCVcc (strain LUC-Jc1) was described2. 
siRNAs for the primary and secondary screen comprised the Human Kinase RNAi Set V2.0 (pool of 
four siRNAs) targeting 691 kinases and associated proteins and siRNAs targeting 203 human phos-
phatases from the Human Druggable Genome siRNA Set Version 4.0 (pools of four siRNAs) from 
Qiagen. Individual siRNA (four individual siRNAs per target) for the tertiary screen were obtained from 
Qiagen. The plasmids encoding firefly luciferase pT3FireflyLuc(pA), the renilla luciferase control plas-
mid pT3RenillaLuc(pA) and pHCV-IRES-luc has been described previously27,35,36. qPCR primers were 
obtained from Qiagen (RT2 qPCR assays). MKNK1 inhibitor was obtained from Calbiochem (Merck 
Millipore) and solved in DMSO.

Screening hit selection.  To evaluate the impact of gene silencing on IRES and cap-dependent transla-
tion, ratios of relative light units emitted by cells transfected with IRES firefly luciferase and capped renilla 
luciferase reporter mRNAs were formed and values normalized by the plate median of the relative light 
signals. Measurements were scored calculating z-scores using CellHTS2 software. Hits were assigned from 
the primary screen if z =  < − 1.29. Secondary screening results were normalized to % luciferase activ-
ity of control cells transfected with scrambled siRNAs. Hits were assigned if target silencing decreased 
IRES-dependent firefly luciferase activity and if the ratio of IRES- to cap-dependent firefly luciferase activ-
ities is < 0.8. An impact of target-specific siRNA (four siRNA per target) on infection with HCVcc was 
identified in a tertiary screen using the method of strictly standardized mean differences (SSMD)37,38 
using GUItars software39. A target gene with specific impact on HCVcc was considered a hit if at least two 
individual siRNAs impairs HCVcc infection with an SSMD <  = − 1.645 (“fairly strong” inhibition) and 
absent toxicity (cell viability higher than a threshold of 2x plate median of standard deviations). Tertiary 
screen hits were scored by products of SSMD values from individual siRNAs with SSMD <  = − 1.645.
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