
ORIGINAL RESEARCH
published: 16 June 2020

doi: 10.3389/fonc.2020.00940

Frontiers in Oncology | www.frontiersin.org 1 June 2020 | Volume 10 | Article 940

Edited by:

Natalie Julie Serkova,

University of Colorado School of

Medicine, United States

Reviewed by:

Ashis Kumer Biswas,

University of Colorado Denver,

United States

Yanwei Miao,

Dalian Medical University, China

*Correspondence:

Hao Sun

sunhao_robert@126.com

Zhengyu Jin

jinzy@pumch.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Cancer Imaging and Image-directed

Interventions,

a section of the journal

Frontiers in Oncology

Received: 18 March 2020

Accepted: 13 May 2020

Published: 16 June 2020

Citation:

Xu L, Zhang G, Zhao L, Mao L, Li X,

Yan W, Xiao Y, Lei J, Sun H and Jin Z

(2020) Radiomics Based on

Multiparametric Magnetic Resonance

Imaging to Predict Extraprostatic

Extension of Prostate Cancer.

Front. Oncol. 10:940.

doi: 10.3389/fonc.2020.00940

Radiomics Based on Multiparametric
Magnetic Resonance Imaging to
Predict Extraprostatic Extension of
Prostate Cancer
Lili Xu 1†, Gumuyang Zhang 1†, Lun Zhao 2, Li Mao 2, Xiuli Li 2, Weigang Yan 3, Yu Xiao 4,

Jing Lei 1, Hao Sun 1* and Zhengyu Jin 1*

1Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of

Medical Sciences, Beijing, China, 2Deepwise AI Lab, Deepwise Inc., Beijing, China, 3Department of Urology, Peking Union

Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,
4Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of

Medical Sciences, Beijing, China

Background: To develop a radiomics model based on multiparametric MRI (mpMRI)

for preoperative prediction of extraprostatic extension (EPE) in patients with prostate

cancer (PCa).

Methods: Ninety-five pathology-confirmed PCa patients with 115 lesions (49 positive

and 66 negative) were retrospectively enrolled. A 3.0T MR scanner was used to

perform T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and dynamic

contrast-enhanced imaging (DCE). Radiomics features extracted from T2WI, DWI,

apparent diffusion coefficient (ADC), and DCE were used to build a radiomics model.

Patients’ clinical and pathological variables were also obtained to build a clinical model.

The radiomics model and clinical model were further integrated to build a combined

nomogram. All lesions were randomly divided into the training group (82 lesions) and

the validation group (33 lesions). A least absolute shrinkage and selection operator

(LASSO) regression algorithm was applied to build the radiomics model. The diagnostic

performance of different models was assessed by calculating the area under the

curve (AUC) and compared using the Delong test. The calibration curve and decision

curve analyses were used to assess the calibration and clinical usefulness of the

radiomics model.

Results: The AUC values for the radiomics model in the training and validation

group were 0.919 and 0.865, respectively, with a good calibration performance. The

decision curve analysis confirmed the clinical utility of the radiomics model. The accuracy,

sensitivity, and specificity were 81.8, 71.4, and 89.5% in the validation group. In the

validation group, the radiomics model outperformed the clinical model (AUC = 0.658, P

= 0.020), and was comparable with the combined nomogram (AUC= 0.857, P= 0.644).

Conclusion: The radiomics model based on mpMRI could different EPE and non-EPE

lesions with satisfactory diagnostic performance, and this model might assist in predicting

EPE before prostatectomy.
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INTRODUCTION

Prostate cancer (PCa) is the most common malignancy
in men worldwide and also the second leading cause of
cancer-related death (1). Additionally, the incidence of
PCa has significantly increased in recent decades (2).
Studies have shown that the presence of extraprostatic
extension (EPE) in radical prostatectomy (RP) specimens
was highly predictive of death from prostate cancer (3)
and indicated a higher risk of biochemical recurrence
(4). The preoperative prediction of EPE has a profound
impact on treatment decision making. Patients without
EPE could consider RP or active surveillance according
to their risk stratification; however, patients with EPE are
recommended to undergo nerve-sacrificing RP or adjuvant
radiotherapy (5).

Clinical models [such as Partin tables, the Cancer of
the Prostate Risk Assessment (CAPRA) score and the
Memorial Sloan Kettering Cancer Center nomogram]
based on clinical and histopathological variables have been
developed to predict EPE. Nevertheless, the diagnostic
performances of these models are unsatisfactory with
reported areas under the curve (AUCs) ranging from 0.702
to 0.806 (6, 7), and their clinical utility is limited. The
preoperative accurate diagnosis of EPE remains challenging
(7, 8).

Multiparametric magnetic resonance imaging (mpMRI) has
emerged as an important tool in the diagnosis and local staging of
prostate cancer (9, 10). However, regarding the diagnosis of EPE,
the sensitivity of subjective mpMRI evaluation is insufficient,
with a reported sensitivity of 0.57 (95% confidence interval
[CI]: 0.49–0.64), and specificity of 0.91 (95% CI: 0.88–0.93)
(11). Additionally, the accuracy is strongly correlated with
the experience of radiologists (12). Radiomics is defined as
high-throughput extraction of mineable, quantitative, and high-
dimensional medical imaging features using machine learning
(13, 14). Recently, the emerging radiomics technique has
been widely applied in PCa research, which was reported to
have added value in PCa detection, aggressiveness assessment,

and survival analysis (15–20). One of the explanations of
radiomics’ superiority maybe that radiomics could provide more
information about the lesion which might be correlated with

the intratumor heterogeneity (13). This quantitative method was
also demonstrated to be useful for EPE prediction (6, 21), but
only T2-weighted images were used for analysis in Ma et al.’s

study. As recommended by the Prostate Imaging Reporting
and Data System (PI-RADS), mpMRI sequences are needed
for prostate lesion identification. A recently published study
also showed that mpMRI data is more helpful than single
sequence data in radiomics analysis for prostate cancers (20).
But the potential of multiple MR sequences and a combination
with clinical variables to predict EPE have not been fully
explored yet.

Thus, this study was designed to develop and
validate a radiomics model based on mpMRI for
the preoperative prediction of EPE in patients
with PCa.

MATERIALS AND METHODS

Patients
The Institutional Review Board (IRB) approved this retrospective
study and waived the need for written informed consent. Patients
with pathologically confirmed prostate cancer who underwent
preoperative prostate mpMRI followed by RP between January
2015 to March 2019 at our institution were retrospectively
enrolled in this study. The inclusion criteria were as follows:
(1) all patients received RP and had confirmed prostate cancer;
(2) complete pathological slices were available; (3) prostate
mpMRI was performed within 4 weeks before RP. The exclusion
criteria were as follows: (1) complete pathological slices were
not available for EPE evaluation (n = 2); (2) the patients
received a biopsy within 6 months before MRI or received
prior therapies (such as radiation therapy and hormonal
therapy) before MRI (n = 14); (3) the quality of the MR
images was not satisfactory with severe motion artifacts (n
= 0). Supplementary Figure 1 shows a flowchart of patient
recruitment in this study, and 95 patients were enrolled in
this study.

The clinicopathologic data including age, total prostate-
specific antigen (t-PSA) level, free-PSA (f-PSA) level, free/total
PSA (F/T), and Gleason group for each patient were obtained
from the medical records, and PI-RADS category was assessed
by radiologists.

MR Data Acquisition
A 3.0-T MRI scanner (GE750, GE Healthcare, Milwaukee,
WI, USA) with an abdominal eight-channel surface phased
array coil was used to perform prostate mpMRI, including T2-
weighted imaging (T2WI), diffusion-weighted imaging (DWI),
and dynamic contrast-enhanced (DCE) imaging. Corresponding
apparent diffusion coefficient (ADC) maps were calculated
automatically (using b values of 0, 800 mm2/s). The detailed MR
imaging acquisition parameters applied in this study are shown
in Supplementary Table 1.

Standard of References
The final histopathologic assessment was defined as the standard
reference. One senior pathologist (Y.X., with more than 10
years of experience in prostate specimen interpretation) who was
blinded to the MRI reports reviewed all the RP pathological slices
(with a whole-mount slice thickness of 0.4 cm). The EPE status
for each lesion was recorded by the pathologist. EPE was defined
as the presence of prostate tumors extending out of the confines
of the prostate (22).

Two radiologists with different experiences in interpreting
prostate MRI (G.Z., with 5 years of experience, and H.S., with 13
years of experience) who were blinded to the pathological results
reviewed theMRI images according to PI-RADSV2 and recorded
the PI-RADS category for each lesion. One dedicated urologist
(W.Y.) coordinated the workflow to ensure the tumor depicted
by the pathologist matched the lesion analyzed by the radiologist.
Only lesions that were visible onMRI images were finally enrolled
in subsequent analysis.
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FIGURE 1 | Radiomics workflow. The radiomics workflow includes tumor segmentation, feature extraction, radiomics model, clinical model, and radiomics nomogram

construction and predictive performance validation.

Radiomics Analysis
The radiomics workflow contained four steps: (1) tumor
segmentation; (2) radiomics feature extraction; (3) radiomics
feature selection and radiomics model construction; and (4)
clinical model and combined nomogram building (Figure 1).

First, one radiologist (G.Z.) who was blinded to the pathologic
EPE status performed whole tumor segmentation manually
on MR images using Deepwise Research Platform (Deepwise
Inc., Beijing, China, http://label.deepwise.com) and a senior
radiologist (H.S.) reviewed all the lesions. Two radiologists
negotiated to reach an agreement for controversial cases. The
senior genitourinary radiologist also delineated half of the
lesions to evaluate the inter-class correlation coefficient (ICC).
Axial T2WI, DWI, ADC, and DCE images were displayed
simultaneously and segmented, respectively, and high b-value
DWI images were chosen for segmentation. For DCE images,
the radiomics features were extracted from the 50 s after the early
enhancement phase (23), to make sure that all lesions can be as
clear as possible.

Feature extraction was performed using the python package
Pyradiomics (version 2.2.0) (24) after ROI was manually
segmented. The extraction process was performed using the
following three steps: (1) spacing standardization, (2) image
filtering, and (3) feature calculation. Thus, a total of 4,580
radiomics features (1,145 features for each sequence) were

extracted from the ROI of T2WI, DWI, ADC, and DCE
sequences for each lesion. For each MRI sequence, 14
morphology features, 16 intensity-based statistical features, 2
intensity histogram features, 23 gray level co-occurrence matrix
(GLCM) features, 14 neighboring gray level dependence matrix
(NGLDM) features, 16 gray level run length matrix (GLRLM)
features, and 16 gray level size zone matrix (GLSZM) features
were calculated on the base images; 64 intensity-based statistical
features, 8 intensity histogram features, 92 GLCM features, 56
NGLDM features, 64 GLRLM features, and 64 GLSZM features
were calculated on the Laplacian of Gaussian (LoG)-filtered
images; 128 intensity-based statistical features, 16 intensity
histogram features, 184 GLCM features, 112 NGLDM features,
128 GLRLM features, and 128 GLSZM features were calculated
on the wavelet-filtered images.

All lesions were randomly divided into the training group
(82 lesions, 35 EPE, and 47 non-EPE) and the validation
group (33 lesions, 14 EPE, and 19 non-EPE). The radiomics
signatures extracted from DWI, ADC, T2WI, and DCE were
combined to build a radiomics model. A maximum relevance
minimum redundancy (mRMR) algorithm was applied to assess
the relevance and redundancy for each feature. Finally, the 30
highest mRMR-ranked features were retained. Then the least
absolute shrinkage and selection operator (LASSO) regression
algorithm was conducted to choose the optimized subset of
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features to construct the final model, and the Rad-score for
each lesion was then calculated. The calibration curve and the
decision curve of the radiomics model were plotted to analyze
the calibration and clinical usefulness of the model. A detailed
description of the radiomics analysis process is presented in
Supplementary Data 1.

The clinicopathologic factors were first evaluated by
univariate analysis. Then, the clinical model was constructed by
incorporating the significant clinical features in univariate
analysis into a binary logistics regression model. The
radiomics model and selected clinical features were
integrated to build a combined nomogram using a logistic
regression algorithm.

Statistical Analysis
The differences in the clinicopathological variables between the
EPE positive and EPE negative groups were assessed using
Student’s t-test, Mann–Whitney U-test, chi-squared test, or
Fisher’s exact test, where appropriate. The receiver operating
characteristic (ROC) curves of the radiomics model, clinical
model and the combined nomogram in both the training and
validation groups were plotted, and the diagnostic accuracy,
sensitivity, and specificity were calculated to evaluate the
diagnostic performance of these models. The DeLong test was
used to compare the AUCs of different models. The software used
for analyses included SPSS 22.0 (IBM, Armonk, NY), MedCalc
11.4.2.0 (MedCalc, Ostend, Belgium), R 3.5.1 (Comprehensive R
Archive Network, www.r-project.org), and Python 3.6.0 (Python
Software Foundation, Beaverton, OR). A two-tailed P < 0.05 was
indicative of statistical significance.

RESULTS

Clinicopathological Data
In total, 95 patients with 115 lesions (mean age, 64.83 ± 5.39
years; age range, 43–80 years, 66 EPE-negative, and 49 EPE-
positive) were enrolled in this study. The clinicopathological data
of the lesions in the EPE positive and EPE negative groups are
summarized in Table 1. In the training group, in terms of age and
F/T, no significant difference was noted between the two groups
(P > 0.05). However, the t-PSA, f-PSA, PI-RADS category, and
Gleason group were significantly different between EPE positive
and negative groups (P < 0.05). While in the validation group,
no significant difference was noted among all clinicopathological
variables between the two groups (P > 0.05).

Radiomics Model Construction
The mean ICC value for the radiomics features was 0.801
(95% CI: 0.612–0.881). Eight radiomics features (1 Intensity
Kurtosis from ADC, and 7 texture features [3 GLRLM
features from DWI, 2 GLSZM features from ADC, 1
GLSZM feature from T2, and 1 NGLDM feature from
DWI]) were selected to build the radiomics model using
the LASSO regression analysis (Figures 2, 3). The Rad-score
can be calculated as follows: Rad-score = −0.512 × Lo
Gsigma4mm_GLRLM_ShortRunLowGrayLevelEmphasis_DWI
-0.433 × waveletHLH_GLSZM_NormalizedGrayLevelNon
Uniformity_ADC-0.345 × LoGsigma5mm_GLSZM_Low
GrayLevelZoneEmphasis_ADC-0.162 × LoGsigma3mm_NG
LDM_LowGrayLevelCountEmphasis-DWI-0.082 × LoG
sigma4mm_GLRLM_LowGrayLevelRunEmphasis_DWI +

0.093 × waveletHHL_IntensityBasedStatistical_IntensityKurto

TABLE 1 | Clinicopathological data of patients in this study.

Clinicopathological data Per-lesion

(n = 115)

Training group

(n = 82)

Validation group

(n = 33)

EPE negative

(n = 47)

EPE positive

(n = 35)

EPE negative

(n = 19)

EPE positive

(n = 14)

Age (year), mean ± SD 64.83 ± 5.39 64.28 ± 5.32 65.54 ± 5.56 64.16 ± 5.85 65.79 ± 4.76

t-PSA (ng/mL), mean ± SD 13.00 ± 10.54 11.14 ± 6.34 19.16 ± 15.52* 8.01 ± 3.36 10.58 ± 5.33

f-PSA (ng/mL), mean ± SD 1.59 ± 1.24 1.41 ± 9.44 2.19 ± 1.63* 1.08 ± 0.70 1.40 ± 0.81

F/T, mean ± SD 0.13 ± 0.07 0.13 ± 0.06 0.13 ± 0.06 0.14 ± 0.06 0.16 ± 0.13

PI-RADS category, n (%)

1–2 9 (7.8) 4 (8.5) 1 (2.9)* 3 (15.8) 1 (7.1)

3 4 (3.5) 2 (4.3) 1 (2.9) 1 (5.3) 0 (0.0)

4 59 (51.3) 30 (63.8) 11 (31.4) 12 (63.2) 6 (42.9)

5 43 (37.4) 11 (23.4) 22 (62.9) 3 (15.8) 7 (50.0)

Gleason group, n (%)

1 50 (43.5) 22 (46.8) 12 (34.3)* 13 (68.4) 3 (21.4)

2 29 (25.2) 14 (29.8) 6 (17.1) 2 (10.5) 7 (50.0)

3 14 (12.2) 6 (12.8) 6 (17.1) 1 (5.3) 1 (7.1)

4 9 (7.8) 1 (2.1) 6 (17.1) 2 (10.5) 0 (0.0)

5 13 (11.3) 4 (8.5) 5 (14.3) 1 (5.3) 3 (21.4)

EPE, extraprostatic extension; t-PSA, total prostate-specific antigen; f-PSA, free prostate-specific antigen; F/T, free/total PSA; PI-RADS, prostate imaging reporting and data system.

*P < 0.05. Compared by Student’s t-test, Mann–Whitney U-test, chi-squared test or Fisher’s exact test when appropriate.
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FIGURE 2 | The LASSO includes choosing the regular parameter lambda (λ) (A), determining the number of the feature (B). The optimal λ-value was 0.044237207

with transformed log (λ) of −3.5. Eight features were finally selected.

FIGURE 3 | The corresponding coefficients of the most predictive subset of features.

sis_ADC+ 0.281× LoGsigma3mm_GLRLM_HighGrayLevelRu
nEmphasis_DWI+0.459 × LoGsigma5mm_GLSZM_GrayLevel
NonUniformity_T2-0.452.

In the training group, the AUC, accuracy, sensitivity,

and specificity of the radiomics model were 0.919 (95%
CI: 0.861–0.978), 85.4, 82.9, and 89.4%, respectively. In the

validation group, the values were 0.865 (95% CI: 0.738–
0.992), 81.8, 71.4, and 89.5%, respectively (Table 2 and

Figures 4A,B). The calibration curves demonstrated good

agreement between the predictive and observation probabilities
of EPE and non-EPE lesions for the radiomics model

(Figure 4C), and the decision curve indicated the clinical
usefulness of this radiomics model in the validation group
(Figure 4D).

Clinical Model and Combined Nomogram
Building
Among the candidate clinical predictors, the t-PSA and Gleason
group showed statistical significance (P = 0.007 and 0.047,
respectively) in logistic analysis and were used to build the
clinical model (Supplementary Table 2). The AUC of the clinical
model in the training and validation group was 0.730 (95%
CI: 0.622–0.838) and 0.658 (95% CI: 0.450–0.866), respectively
(Table 2).

The radiomics model and the clinical model were combined to
build the radiomics nomogram (Supplementary Figure 2). The
AUC of the combined nomogram in the training and validation
group was 0.920 (95%CI: 0.863–0.976) and 0.857 (95%CI: 0.725–
0.989), respectively (Table 2). In the validation group, the AUC
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TABLE 2 | Diagnostic performance of different models.

Training group Validation group

AUC AUC

95% CI

Accuracy (%) Sensitivity (%) Specificity (%) AUC AUC

95% CI

Accuracy (%) Sensitivity (%) Specificity (%)

Clinical model 0.730 0.622–

0.838

67.1 85.7 53.19 0.658 0.450–

0.866

69.7 71.4 68.4

Radiomics model 0.919 0.861–

0.978

85.4 82.9 89.4 0.865 0.738–

0.992

81.8 71.4 89.5

Combined nomogram 0.920 0.863–

0.976

85.4 82.9 89.4 0.857 0.725–

0.989

81.8 71.4 89.5

CI, confidence interval; AUC, area under the curve.

FIGURE 4 | The receiver operating characteristic curves of the radiomics model to differentiate EPE and non-EPE lesions in the training (A) and validation group (B).

The calibration curve (C) of the radiomics model in the validation group showed good agreement between the predicted and actual probabilities. In the decision curve

analysis (D), when Pt was 0.15–0.97, the net benefit of the model is better than that of the treat-all or treat-none schemes.
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values of the radiomics model and radiomics nomogram were
significantly higher than that of the clinical model (P= 0.016 and
0.020, respectively). No statistical significance was noted between
the AUCs of the radiomics model and radiomics nomogram (P=

0.644) in the validation group.

DISCUSSION

In this study, we built a radiomics model based on mpMRI to
predict EPE in patients with prostate cancer. This radiomics
model showed satisfactory diagnostic performance for
differentiating EPE and showed better performance than
that of the clinical model. The combined nomogram showed
similar results to diagnose EPE compared with that using the
radiomics model alone.

The preoperative prediction of EPE is clinically important
for PCa. A randomized trial with a long-term follow up in
prostate cancer showed a pathologic EPE rate of 47% (132/283) in
localized prostate cancer, indicating that patients with pathologic
localized prostate cancer and a long life expectancy may benefit
from RP, while the presence of EPE in the radical prostatectomy
specimens was highly predictive of death from prostate cancer,
with a relative risk of 5.2 (3). Additionally, the presence of EPE
in PCa indicated a higher risk of biochemical recurrence after
radical therapy (4, 25).

As the standard approach of PCa preoperative assessment,
mpMRI has been reported by many studies to diagnose EPE.
Krishna et al. (26) assessed the ability of MRI to diagnose EPE
using PI-RADS V2, subjective evaluation of EPE, the tumor size,
length of capsular contact (LCC), and ADC measurement, with
an AUC range of 0.56–0.76; the size, LCC, and ADC entropy
improved the sensitivity but reduced the specificity compared
with subjective analysis. A Likert score conveying the degree
of suspicion at mpMRI was also demonstrated to be a strong
predictor of EPE (27, 28). A diagnostic meta-analysis showed
that the sensitivity and specificity of mpMRI to diagnose EPE
were 0.57 (95% CI: 0.49–0.64) and 0.91 (95% CI: 0.88–0.93),
respectively (11). The major limitations of subjective mpMRI
evaluation are its poor and heterogeneous sensitivity for local
PCa staging, observer dependency and heterogeneity in the
definitions of positive and negative results (12). The radiomics
model we proposed provided a quantitative and objectivemethod
for the evaluation of EPE, which showed fair good diagnostic
performance in the validation group with a sensitivity of 71.4%
and specificity of 89.5%. This model might complement the
insufficient sensitivity of subjective mpMRI evaluation.

Apart from subjective MRI evaluation, some quantitative
mpMRI parameters, nomograms or grading systems combining
MRI and clinicopathological indicators have been proposed
by previous studies. Kim et al. (29) investigated the value of
mpMRI for EPE using qualitative and quantitative parameters
(such as K-trans, K-ep, and Ve), and the AUC values were
0.944–0.957, respectively. Nevertheless, these models were not
further validated. Mehralivand et al. (30) proposed an MRI
grading system for pathologic EPE; the results indicated that the
clinical features plus MRI grading had the highest diagnostic

performance to predict pathologic EPE (AUC, 0.81 vs. 0.77,
respectively). Studies have shown that MRI can improve the
diagnostic performance of clinical-based models to predict EPE
(31, 32). A new PartinMR model incorporating the Partin table
and mp-MRI using support vector machine (SVM) analysis was
developed by Wang et al. (33) and possessed a higher AUC value
than that of the Partin table (0.891 vs. 0.730). The incremental
benefit of mpMRI over clinical information indicated that the
combination of them may be useful in decision making for PCa
patients (34). In our study, the combined nomogram was also
demonstrated to outperform the clinical model in diagnosing
EPE but was comparable with using radiomics model alone. It
was still too early to draw the conclusion that merely using
radiomics features would be sufficient to diagnose EPE because
the clinical variables analyzed in this study were not sufficient.
Thus, further studies are needed to validate this conclusion and
modify the proposed model.

Recently, several studies have reported the application of
radiomics in the aggressiveness assessment and prognosis
prediction of PCa, as well as in the field of EPE diagnosis.
Compared with traditional radiologic interpretation, radiomics
could provide more information about the tumor that might
be correlated with the intratumor heterogeneity (13). Ma et al.
(21) constructed a radiomics signature by a LASSO regression
algorithm based on T2WI to predict EPE preoperatively, yielding
AUCs of 0.902 and 0.883 in the training and validation cohort,
respectively. Compared with the radiologists’ interpretations
(AUC: 0.600–0.697), the radiomics signature was more sensitive
but obtained comparable specificity. Stanzione et al. (35) assessed
the possibility of machine learning algorithms to predict EPE
using texture analysis (TA), features extracted fromT2WI, and
ADC maps that turned out to be a feasible tool with an
AUC value of 0.88. These two studies and ours supported
the value of machine learning in the diagnosis of EPE, and
the diagnostic performance of these models and ours seems
comparable. Nevertheless, only radiomics features based on
T2WI were selected in Ma et al.’s (21) study, and only T2WI
and ADC maps were analyzed in Stanzione et al.’s (35) study.
Because mpMRI sequences are recommended by PI-RADS for
prostate lesion identification, we combined radiomics features
frommpMRI sequences to build the radiomics model. Compared
with Ma et al.’s (21) study (17 features), our model only used
eight features and showed fair good diagnostic performance.
Interestingly, only features from T2WI, ADC, and DWI images
were used in our model, which indicated that these images might
be more helpful than DCE in the assessment of EPE. And most of
the selected features were texture features from DWI and ADC
sequences. It could be hypothesized that MRI images especially
functional images could provide more useful information for the
training of radiomics model, and texture features rather than
intensity-based statistical features or morphology features could
be more helpful in the diagnosis of EPE.

There are several limitations to our study. First, it was a
single-center study with a relatively small sample size, without
external validation; thus, a larger sample-sized multicenter
study is needed for validation in future clinical applications.
Second, only images from one scanning machine were used,

Frontiers in Oncology | www.frontiersin.org 7 June 2020 | Volume 10 | Article 940

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Radiomics to Predict Extraprostatic Extension

and how the heterogeneity of different scanners would affect the
reproducibility of the radiomics model has not been analyzed.
And whether radiomics models based on single MRI sequences
would be comparable with the model based on mpMRI has not
been analyzed. Finally, some subjective morphologic features of
EPE in mpMRI were not included in the nomogram to explore
its potential added value. Future studies are ongoing to make the
radiomics model a more reliable one.

In conclusion, the radiomics model based on mpMRI could
different EPE and non-EPE lesions with satisfactory diagnostic
performance, which might be a feasible tool to preoperative
predicting EPE and assist in the decision making for the
individual treatment of PCa.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Materials, further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Institutional Review Board of PekingUnionMedical
College Hospital. Written informed consent for participation
was not required for this study in accordance with the national
legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

Guarantor of the article: ZJ and HS. Conception and design: HS,
JL, and XL. Collection and assembly of data: GZ, HS, LM, XL,
WY, and YX. Data analysis and interpretation: LX, GZ, and LZ.
Manuscript writing and final approval of manuscript: All authors.

FUNDING

This study has received funding by the National Natural Science
Foundation of China (Grant Nos. 91859119 and 81901742), the
Non-profit Central Research Institute Fund of Chinese Academy
of Medical Sciences (2019XK320028), the Natural Science
Foundation of Beijing Municipality (Grant No. 7192176), the
Central University Basic Scientific Research Business Expenses
Special Funds (Grant No. 3332018022), the National Public
Welfare Basic Scientific Research Project of Chinese Academy of
Medical Sciences (Grant Nos. 2019PT320008 and 2018PT32003).
All the funding supported equally in the design of the study
and collection, analysis, and interpretation of data and in writing
the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2020.00940/full#supplementary-material

REFERENCES

1. Siegel RL,Miller KD, Jemal A. Cancer statistics, 2018.CACancer J Clin. (2018)

68:7–30. doi: 10.3322/caac.21442

2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics

in China, 2015. CA Cancer J Clin. (2016) 66:115–32. doi: 10.3322/caac.

21338

3. Bill-Axelson A, Holmberg L, Garmo H, Taari K, Busch C, Nordling S,

et al. Radical prostatectomy or watchful waiting in prostate cancer - 29-

year follow-up. N Engl J Med. (2018) 379:2319–29. doi: 10.1056/NEJMoa18

07801

4. Jeong BC, Chalfin HJ, Lee SB, Feng ZY, Epstein JI, Trock BJ, et al.

The relationship between the extent of extraprostatic extension

and survival following radical prostatectomy. Eur Urol. (2015)

67:342–6. doi: 10.1016/j.eururo.2014.06.015

5. Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M,

et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening,

diagnosis, and local treatment with curative intent. Eur Urol. (2017) 71:618–

29. doi: 10.1016/j.eururo.2016.08.003

6. Ohori M, Kattan MW, Koh H, Maru N, Slawin KM, Shariat S,

et al. Predicting the presence and side of extracapsular extension: a

nomogram for staging prostate cancer. J Urol. (2004) 171:1844–9; discussion

9. doi: 10.1097/01.ju.0000121693.05077.3d

7. Eifler JB, Feng Z, Lin BM, Partin MT, Humphreys EB, Han M, et al. An

updated prostate cancer staging nomogram (Partin tables) based on cases

from 2006 to 2011. BJU Int. (2013) 111:22–9. doi: 10.1111/j.1464-410X.2012.

11324.x

8. Cooperberg MR, Pasta DJ, Elkin EP, Litwin MS, Latini DM, Du Chane J,

et al. The University of California, San Francisco Cancer of the Prostate

Risk Assessment score: a straightforward and reliable preoperative predictor

of disease recurrence after radical prostatectomy. J Urol. (2005) 173:1938–

42. doi: 10.1097/01.ju.0000158155.33890.e7

9. Turkbey B, Brown AM, Sankineni S, Wood BJ, Pinto PA, Choyke PL.

Multiparametric prostate magnetic resonance imaging in the evaluation of

prostate cancer. CA Cancer J Clin. (2016) 66:326–36. doi: 10.3322/caac.

21333

10. Ueno Y, Tamada T, Bist V, Reinhold C, Miyake H, Tanaka U, et al.

Multiparametric magnetic resonance imaging: current role in prostate

cancer management. Int J Urol. (2016) 23:550–7. doi: 10.1111/iju.

13119

11. de Rooij M, Hamoen EH, Witjes JA, Barentsz JO, Rovers MM. Accuracy of

magnetic resonance imaging for local staging of prostate cancer: a diagnostic

meta-analysis. Eur Urol. (2016) 70:233–45. doi: 10.1016/j.eururo.2015.

07.029

12. Heidenreich A. Consensus criteria for the use of magnetic resonance

imaging in the diagnosis and staging of prostate cancer: not ready

for routine use. Eur Urol. (2011) 59:495–7. doi: 10.1016/j.eururo.2011.

01.013

13. Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann

P, Cavalho S, et al. Decoding tumour phenotype by noninvasive

imaging using a quantitative radiomics approach. Nat Commun. (2014)

5:4006. doi: 10.1038/ncomms5644

14. Gillies RJ, Kinahan PE, Hricak, H. Radiomics: images are more than pictures,

they are data. Radiology. (2016) 278:563–77. doi: 10.1148/radiol.20151

51169

15. Vignati A, Mazzetti S, Giannini V, Russo F, Bollito E, Porpiglia F, et al.

Texture features on T2-weighted magnetic resonance imaging: new potential

biomarkers for prostate cancer aggressiveness. PhysMed Biol. (2015) 60:2685–

701. doi: 10.1088/0031-9155/60/7/2685

16. Wibmer A, Hricak H, Gondo T, Matsumoto K, Veeraraghavan H, Fehr D,

et al. Haralick texture analysis of prostate MRI: utility for differentiating

non-cancerous prostate from prostate cancer and differentiating prostate

cancers with different Gleason scores. Eur Radiol. (2015) 25:2840–

50. doi: 10.1007/s00330-015-3701-8

Frontiers in Oncology | www.frontiersin.org 8 June 2020 | Volume 10 | Article 940

https://www.frontiersin.org/articles/10.3389/fonc.2020.00940/full#supplementary-material
https://doi.org/10.3322/caac.21442
https://doi.org/10.3322/caac.21338
https://doi.org/10.1056/NEJMoa1807801
https://doi.org/10.1016/j.eururo.2014.06.015
https://doi.org/10.1016/j.eururo.2016.08.003
https://doi.org/10.1097/01.ju.0000121693.05077.3d
https://doi.org/10.1111/j.1464-410X.2012.11324.x
https://doi.org/10.1097/01.ju.0000158155.33890.e7
https://doi.org/10.3322/caac.21333
https://doi.org/10.1111/iju.13119
https://doi.org/10.1016/j.eururo.2015.07.029
https://doi.org/10.1016/j.eururo.2011.01.013
https://doi.org/10.1038/ncomms5644
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1088/0031-9155/60/7/2685
https://doi.org/10.1007/s00330-015-3701-8
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Radiomics to Predict Extraprostatic Extension

17. Gnep K, Fargeas A, Gutierrez-Carvajal RE, Commandeur F, Mathieu

R, Ospina JD, et al. Haralick textural features on T2 -weighted MRI

are associated with biochemical recurrence following radiotherapy for

peripheral zone prostate cancer. J Magn Reson Imaging. (2017) 45:103–

17. doi: 10.1002/jmri.25335

18. Nketiah G, Elschot M, Kim E, Teruel JR, Scheenen TW, Bathen

TF, et al. T2-weighted MRI-derived textural features reflect prostate

cancer aggressiveness: preliminary results. Eur Radiol. (2017) 27:3050–

9. doi: 10.1007/s00330-016-4663-1

19. Qi Y, Zhang S, Wei J, Zhang G, Lei J, Yan W, et al.

Multiparametric MRI-based radiomics for prostate cancer

screening with PSA in 4-10 ng/mL to reduce unnecessary biopsies.

J Magn Reson Imaging. (2019) 51:1890–9. doi: 10.1002/jmri.

27008

20. Zhang GM, Han YQ, Wei JW, Qi YF, Gu DS, Lei J, et al. Radiomics

based on MRI as a biomarker to guide therapy by predicting upgrading of

prostate cancer from biopsy to radical prostatectomy. J Magn Reson Imaging.

(2020). doi: 10.1002/jmri.27138. [Epub ahead of print].

21. Ma S, Xie H, Wang H, Han C, Yang J, Lin Z, et al. MRI-based

radiomics signature for the preoperative prediction of extracapsular

extension of prostate cancer. J Magn Reson Imaging. (2019) 50:1914–

25. doi: 10.1002/jmri.26777

22. Magi-Galluzzi C, Evans AJ, Delahunt B, Epstein JI, Griffiths DF,

van der Kwast TH, et al. International Society of Urological

Pathology (ISUP) consensus conference on handling and

staging of radical prostatectomy specimens. Working group 3:

extraprostatic extension, lymphovascular invasion and locally advanced

disease. Mod Pathol. (2011) 24:26–38. doi: 10.1038/modpathol.

2010.158

23. Nie K, Shi L, Chen Q, Hu X, Jabbour SK, Yue N, et al. Rectal

cancer: assessment of neoadjuvant chemoradiation outcome based on

radiomics of multiparametric MRI. Clin Cancer Res. (2016) 22:5256–

64. doi: 10.1158/1078-0432.CCR-15-2997

24. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan

V, et al. Computational radiomics system to decode the radiographic

phenotype. Cancer Res. (2017) 77:e104–e7. doi: 10.1158/0008-5472.CAN-

17-0339

25. Kapoor J, Namdarian B, Pedersen J, Hovens C, Moon D, Peters J,

et al. Extraprostatic extension into periprostatic fat is a more important

determinant of prostate cancer recurrence than an invasive phenotype. J Urol.

(2013) 190:2061–6. doi: 10.1016/j.juro.2013.06.050

26. Krishna S, Lim CS, McInnes MDF, Flood TA, Shabana WM, Lim RS,

et al. Evaluation of MRI for diagnosis of extraprostatic extension in

prostate cancer. J Magn Reson Imaging. (2018) 47:176–85. doi: 10.1002/jmri.

25729

27. Costa DN, Lotan Y, Rofsky NM, Roehrborn C, Liu A, Hornberger

B, et al. Assessment of prospectively assigned likert scores for

targeted magnetic resonance imaging-transrectal ultrasound fusion

biopsies in patients with suspected prostate cancer. J Urol. (2016)

195:80–7. doi: 10.1016/j.juro.2015.07.080

28. Costa DN, Passoni NM, Leyendecker JR, de Leon AD, Lotan Y, Roehrborn

CG, et al. Diagnostic utility of a likert scale versus qualitative descriptors and

length of capsular contact for determining extraprostatic tumor extension

at multiparametric prostate MRI. AJR Am J Roentgenol. (2018) 210:1066–

72. doi: 10.2214/AJR.17.18849

29. Kim W, Kim CK, Park JJ, Kim M, Kim JH. Evaluation of

extracapsular extension in prostate cancer using qualitative and

quantitative multiparametric MRI. J Magn Reson Imaging. (2017)

45:1760–70. doi: 10.1002/jmri.25515

30. Mehralivand S, Shih JH, Harmon S, Smith C, Bloom J, Czarniecki M, et al.

A grading system for the assessment of risk of extraprostatic extension

of prostate cancer at multiparametric MRI. Radiology. (2019) 290:709–

19. doi: 10.1148/radiol.2018181278

31. Morlacco A, Sharma V, Viers BR, Rangel LJ, Carlson RE, Froemming AT,

et al. The incremental role of magnetic resonance imaging for prostate

cancer staging before radical prostatectomy. Eur Urol. (2017) 71:701–

4. doi: 10.1016/j.eururo.2016.08.015

32. Rayn KN, Bloom JB, Gold SA, Hale GR, Baiocco JA, Mehralivand

S, et al. Added value of multiparametric magnetic resonance

imaging to clinical nomograms for predicting adverse pathology in

prostate cancer. J Urol. (2018) 200:1041–7. doi: 10.1016/j.juro.2018.

05.094

33. Wang J, Wu CJ, Bao ML, Zhang J, Shi HB, Zhang YD. Using support

vector machine analysis to assess PartinMR: a new prediction model for

organ-confined prostate cancer. J Magn Reson Imaging. (2018) 48:499–

506. doi: 10.1002/jmri.25961

34. Tay KJ, Gupta RT, Brown AF, Silverman RK, Polascik TJ. Defining the

incremental utility of prostate multiparametric magnetic resonance imaging

at standard and specialized read in predicting extracapsular extension

of prostate cancer. Eur Urol. (2016) 70:211–3. doi: 10.1016/j.eururo.2015.

10.041

35. Stanzione A, Cuocolo R, Cocozza S, Romeo V, Persico F, Fusco F, et al.

Detection of extraprostatic extension of cancer on biparametric MRI

combining texture analysis and machine learning: preliminary results. Acad

Radiol. (2019) 26:1338–44. doi: 10.1016/j.acra.2018.12.025

Conflict of Interest: LZ, LM, and XL were employed by the company Deepwise

AI Lab, Deepwise Inc.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Xu, Zhang, Zhao, Mao, Li, Yan, Xiao, Lei, Sun and Jin. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Oncology | www.frontiersin.org 9 June 2020 | Volume 10 | Article 940

https://doi.org/10.1002/jmri.25335
https://doi.org/10.1007/s00330-016-4663-1
https://doi.org/10.1002/jmri.27008
https://doi.org/10.1002/jmri.27138
https://doi.org/10.1002/jmri.26777
https://doi.org/10.1038/modpathol.2010.158
https://doi.org/10.1158/1078-0432.CCR-15-2997
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1016/j.juro.2013.06.050
https://doi.org/10.1002/jmri.25729
https://doi.org/10.1016/j.juro.2015.07.080
https://doi.org/10.2214/AJR.17.18849
https://doi.org/10.1002/jmri.25515
https://doi.org/10.1148/radiol.2018181278
https://doi.org/10.1016/j.eururo.2016.08.015
https://doi.org/10.1016/j.juro.2018.05.094
https://doi.org/10.1002/jmri.25961
https://doi.org/10.1016/j.eururo.2015.10.041
https://doi.org/10.1016/j.acra.2018.12.025
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

	Radiomics Based on Multiparametric Magnetic Resonance Imaging to Predict Extraprostatic Extension of Prostate Cancer
	Introduction
	Materials and Methods
	Patients
	MR Data Acquisition
	Standard of References
	Radiomics Analysis
	Statistical Analysis

	Results
	Clinicopathological Data
	Radiomics Model Construction
	Clinical Model and Combined Nomogram Building

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


