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Introduction

The prevalence of diabetes in the world has increased 
dramatically in recent years.1 This is a serious social 
problem because diabetes is a complex disease, 
involving many organs and systems, and the risk of 
death for people with diabetes is at least double 
compared to their age-matched healthy peers.2 
Besides, patients with diabetes mellitus seem to be 
prone to develop more severe symptoms of COVID-
19 and appear to have an increased mortality rate.3,4

In animal models, diabetes is most commonly 
chemically induced following alloxan or streptozo-
tocin (STZ) administration. These substances can 

be used to induce both type 1 and type 2 diabetes 
mellitus; however, they are generally used to 
induce type 1 diabetes because they do not directly 
lead to insulin resistance. Both alloxan and STZ 
are toxic glucose analogues that are transferred 
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into pancreatic β-cells by a GLUT2 glucose trans-
porter.5 Although alloxan and STZ induce diabetes 
through different mechanisms, they both lead to 
the destruction of β-cells. Alloxan induces produc-
tion of reactive oxygen species (ROS) and, through 
glutathione reduction, of hydroxyl radicals. The 
radicals are responsible for the death of β-cells, 
whose antioxidant defense is less effective com-
pared to that of other tissues.6 Although alloxan 
destroys β-cells, alloxan-induced hyperglycemia is 
a non-persistent and reversible condition, wherein 
the blood glucose levels normalize over time.1

Instead, STZ-induced diabetes is a more persis-
tent model that can be used for both short-term and 
prolonged experimental studies. After its absorp-
tion by β-cells, STZ is cleaved into glucose and 
methyl nitrosourea components.3 Due to its alkylat-
ing properties, the latter component leads to DNA 
fragmentation and death of the β-cells, and, ulti-
mately, to an insulin-dependent diabetes-like dis-
ease. STZ is a glucosamine-nitrosourea drug that 
was isolated from Streptomycetes achromogenes7,8 
and shows similar properties to alloxan. Both STZ 
and alloxan are hydrophilic substances and can  
be considered as toxic beta-glucose analogues.7 
Interestingly, STZ has antibiotic activity and is also 
used as an alkylating agent in a cancer chemother-
apy.9 Like alloxan, STZ is transferred through the 
cell membrane by GLUT2 transporters.9 Of note, 
GLUT2 are also expressed in the kidneys and liver; 
therefore, STZ is also harmful for these organs. The 
pivotal mechanism underlying STZ-induced β-cell 
death is DNA alkylation.10 Furthermore, STZ may 
produce low amounts of ROS, most notably super-
oxide and hydroxyl radicals. Although STZ-
associated formation of ROS is usually considered 
insignificant, these oxygen radicals may contribute 
to the death of β-cells and the development of dia-
betes mellitus.

Considering that STZ-induced diabetes is 
mediated by DNA degradation in combination 
with relatively low oxidative stress, the potential 
of the thymic peptide thymulin and the antioxi-
dant enzyme peroxiredoxin 6 (PRDX6) as anti-
diabetic drugs was assessed in the present study. 
The immunomodulatory and anti-inflammatory 
effect of thymulin was previously shown in mice 
with septic-type inflammation11,12 and in mice 
with experimental autoimmune encephalomyeli-
tis.13,14 Furthermore, our previous study showed 
beneficial effects of PRDX6 in RIN-m5F β-cells 

in vitro15 and of thymulin in mice with diabetes 
induced by alloxan administration in vivo.16,17 In 
addition, a significant stimulatory effect of 
PRDX6 on the insulin-producing activity of pan-
creatic β-cells was demonstrated, and, most 
importantly, the effect of PRDX6 was detected 
during culturing the cells under both normal and 
diabetes-modeling conditions.15 This phenome-
non highlights the important role of the antioxi-
dant protein for the mammalian insulin status. 
The present work aimed at evaluating the effi-
ciency of thymulin and PRDX6 in mice with 
STZ-induced type 1 diabetes. The effects of thy-
mulin and PRDX6 on the development of immune 
imbalance in diabetic mice were analyzed by 
measuring the blood cytokine profile, the activity 
of the signaling cascades: nuclear factor-κB (NF-
κB) and c-Jun N-terminal kinase (JNK), as well 
as the expression of heat shock protein (Hsp)90α. 
In addition, the effect of thymulin and PRDX6 on 
the physiological status of diabetic mice was 
evaluated by measuring the blood glucose con-
centration, cell counts in thymus, spleen and pan-
creas, and body weight.

Materials and methods

Animal diabetes model, and PRDX6 or 
thymulin treatments

Six- to 8-week-old male Balb/c mice (22–25 g) 
were maintained under standard laboratory condi-
tions (temperature in the range of 20°C–21°C, 10–
14-h light/dark cycles, and 65% humidity), with 
food and water provided ad lib. Food pellets, con-
taining a balanced composition of proteins, vita-
mins, and minerals were used. The mice were 
divided into four groups of seven mice in each: 
streptozotocin-treated mice (STZ), STZ mice 
treated with PRDX6, STZ mice treated with thy-
mulin, and controls (intaсt mice). All measure-
ments were carried out individually for each 
mouse, with six-nine replicates; the value showed 
is an average mean ± std. error.

Experimental protocols were approved by the 
Ethical Committee of the Institute of Cell 
Biophysics (approval #57, 30/12/2011). The exper-
iments with animals were performed in accordance 
with the Guidelines for Ethical Conduct in the Care 
and Use of Animals.

BALB/c mice were injected intraperitoneally 
with freshly made STZ (45 mg/kg body weight) in 



Novoselova et al.	 3

0.01 М citrate buffer, pH 4.3-4.6, for five consecu-
tive days. Meanwhile, mice in the control group 
were given an equal amount of citrate buffer. 
Fasting blood glucose in mice was measured for 
20 days starting on day 8 after the first STZ injec-
tion. Experiments were started 20 days after the 
STZ injection, when the blood glucose level was 
consistently greater than 12 mM, indicating the 
successful establishment of diabetes model. 
PRDX6 (20 mg/kg body weight) was administered 
intravenously on the first and eighth days of diabe-
tes development. To prepare the thymulin solution, 
Serum Thymic Factor peptide (Abcam, Cambridge, 
MA, USA) was used, to which an equimolar con-
centration of ZnCl2 was added. Thymulin was 
applied intraperitoneally at a dosage of 5 μg/mouse 
every other day in a volume of 100 μl/mouse. In 
total, animals of this group received eight injec-
tions of the thymulin solution. The dosages of 
PRDX6 and thymulin were adjusted in our early 
studies.13,18

Procedures of PRDX6 isolation and purification

Constructs encoding a human PRDX6 protein were 
obtained and expressed in E. coli cells, strain 
BL21(DE3), as described earlier.18 The obtained 
recombinant proteins, harboring His-tag, were puri-
fied by affinity chromatography on the Ni-NTA-
agarose column (Thermo Fisher Scientific, USA), 
according to the column manufacturer’s instruc-
tions. Protein isolation was performed as described 
earlier.18 The purity of the obtained proteins was at 
least 98%, based on SDS-PAGE method. PRDX6 
was diluted at a concentration of 10 mg/ml in phos-
phate buffer (1.7 mM KH2PO4, 5.2 mM Na2HPO4, 
150 mM NaCl, pH 7.4) and stored in the freezer at 
–20°C. After 2 month of storage, no reduction of 
enzymatic activity was observed. To evaluate func-
tional activity of PRDX6, its ability to reduce 
hydrogen peroxide (H2O2) and tert-butyl-hydroper-
oxide (t-BOOH) was determined by a slightly mod-
ified Kang’s method.19 The results showed that 
activity of recombinant PRDX6 was 230 nmol/min/
mg of protein (measured with H2O2) or 100 nmol/
min/mg of protein (measured with t-BOOH).

Blood plasma and splenocyte samples

Plasma samples was obtained from blood collected 
during decapitation of the animals. Blood was left 
for 3–5 h at 4°С and then centrifuged at 200 × g; 

the supernatants were used for cytokine assays. 
Lymphocytes from mice spleens were isolated in 
Dulbecco’s modified Eagle’s medium (DMEM; 
Sigma, USA) containing 10 mM 4-(2-hydroxyethyl)-
1-piperazineethanesulphonic acid solution, 100 µg/
mL streptomycin, and 10% fetal bovine serum. 
Erythrocytes were lysed, using Tris-buffered 
ammonium chloride (0.01 M Tris-HCl, with 0.15 
M NaCl and 0.83% NH4Cl at 9:1, pH 7.2). After 
being washed with RPMI 1640 medium, the sam-
ples were stored at a concentration of 1 × 108 cells/
mL in RPMI 1640 medium in freezer at −20°C 
until use.

Cytokine assay

Concentrations of cytokines in blood plasma were 
determined using enzyme-linked immunosorbent 
assay (ELISA) kits for mouse TNF-α, interleukin 
(IL)-5, IL-17, and interferon-γ (IFN-γ) (Peprotech, 
USA). Binding, visualizing and absorbance meas-
uring were performed as reported earlier.16

Western blot analysis

Splenic cells (108 cells per sample) were lysed, and 
the total protein measurement using the Bradford 
solution (Sigma, USA), the PAGE electrophoresis 
using protein molecular weight (MW) marker 
(Thermo Scientific, USA), the protein transfer 
from the gel onto a nitrocellulose membrane (GE 
Healthcare, Amersham, UK), and the blockade 
with 5% w/v nonfat dry milk in TBS/Tween 20 
were performed as reported earlier.14 After block-
ing, membranes were incubated for 2 h with anti-
bodies against the following murine proteins: 
anti-phospho-NF-κB p65 (at Ser 536) antibody 
(cat. number 3031, Cell Signaling Technology, 
Danvers, MA, USA), rabbit phospho-stress-acti-
vated protein kinase/JNK (SAPK/JNK) antibody 
(Cell Signaling Technology), and rabbit polyclonal 
antibody to HSP90a (Enzo Life Sciences, USA) 
and washed. Then, the nitrocellulose membranes 
were incubated with a secondary anti-rabbit bioti-
nylated antibody (Jackson ImmunoResearch, West 
Grove, PA, USA) for 1 h, followed by incubation 
with peroxidase-conjugated streptavidin for 1 h. As 
a protein loading control, glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH) was used, and the 
detection was performed using a rabbit monoclo-
nal antibody against a synthetic peptide corre-
sponding to C-terminal residues of human GAPDH 
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(Cell Signaling Technology). To develop blots, the 
ECL Plus chemiluminescent cocktail (Amersham/
GE) was used according to the manufacturer’s pro-
tocol. The developed blots were photographed 
using a TFX-35 WL transilluminator (Vilber 
Lourmat, France), and the protein bands were 
assessed densitometrically using Image Studio 
Software ver. 5.2.5 (Li-COR, USA). The provided 
values are means from three independent experi-
ments performed (three mice). The obtained data 
were normalized to the corresponding loading con-
trol (GAPDH) and expressed in relative units.

Histology and immunohistochemistry

Histology and immunohistochemistry assays were 
performed as reported.16

Statistical analysis

Statistical estimations were obtained using the 
Statistica/Win 6.0 software (Tulsa, OK, USA). To 
determine a sample size, a following well-estab-
lished formula was used, considering power of 
80%, and a confidence level of 95%:
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where Zα/2 is the critical value of the normal distri-
bution at α/2 (e.g. for a confidence level of 95%, 
α is 0.05), Zβ is the critical value of the normal 
distribution at β (e.g. for a power of 80%, β is 0.2), 
σ2 is the population variance determined in our 
pilot studies on BALB/c mice, and d is the differ-
ence that should be detected. We calculated a suf-
ficient sample size of 6 for the above mentioned 
power and confidence level values.

One-way analysis of variance (ANOVA), fol-
lowed by Tukey's post-hoc tests, was performed to 
determine the significance of differences. Values 
of P ⩽ 0.05 were considered significant.

Results

Thymulin and PRDX6 improve the physiological 
status of mice with streptozotocin-induced 
diabetes

As blood glucose measurements indicated, admin-
istration of STZ caused sustained hyperglycemia 
that remained throughout the observation period 

(Figure 1). Both PRDX6 and thymulin signifi-
cantly reduced the severity of hyperglycemia, 
although not to normal levels. Body weight meas-
urements at the end of the observation period 
showed that the diabetes led to a statistically sig-
nificant decrease in the body weight, and only thy-
mulin, but not PRDX6, partially compensated the 
weight loss (Figure 1).

Then, cell counts were measured in two organs 
of the immune system (thymus and spleen) as well 
as in the pancreas, and normalized to the mass of 
the corresponding organ. The relative cell counts 
showed a significant loss in the thymus and pan-
creas, but not in the spleen (Figure 2). PRDX6 
administration significantly increased the cell 
count in the pancreas, while thymulin partially 
restored the cell count in the thymus.

To elucidate the effects of PRDX6 and thymulin 
on pancreas morphology in mice with diabetes, 

Figure 1.  Effects of thymulin and PRDX6 on fasting blood 
glucose levels (a) and body masses (b) in diabetic mice. Four 
groups were used: streptozotocin-treated mice (STZ), STZ 
mice treated with PRDX6, STZ mice treated with thymulin, 
and controls (intact mice). Each group consisted of seven 
mice; the value showed is an average mean ± std. error (a). 
Body weights were measured on 21st days after the first STZ 
injection, and average means ± std. errors are shown as a 
percent of the body weight at first day (b).
*Significantly different from the control group, P < 0.05.
#Significantly different from the STZ group, P < 0.05.
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immunostaining for insulin was performed. The 
results demonstrated a reduction in the islet density 
in diabetic mice. The remained β-cells were 
severely disorganized (Figure 3), demonstrating 
the expected damage of pancreatic β-cells in 
advanced diabetes. Injections of PRDX6 or thymu-
lin somewhat restored the islet density in diabetic 
mice, but these effects were not significant. 
However, both thymulin and PRDX6 increased the 
insulin-positive regions in the pancreas sections.

Thymulin and PRDX6 reduce the inflammatory 
response and ameliorate the immune status of 
mice with diabetes mellitus

To evaluate the effect of thymulin and PRDX6 on 
the immune status of mice with induced diabetes, 
we measured the concentrations of several pro-
inflammatory cytokines in blood plasma using 
ELISA. Diabetic mice demonstrated a significant 
cytokine response, with increase in IL-1β, IL-5, 
IFN-γ, and TNF-α levels (Figure 4). Administration 
of thymulin reduced the levels of all cytokines ana-
lyzed to normal levels, whereas PRDX6 led to sig-
nificantly decreased levels only of TNF-α.

In mice with STZ-induced diabetes, a signifi-
cant activation of the NF-κB signaling cascade was 
observed in splenocytes, as determined by RelA 
(p65) protein phosphorylation (Figure 5). Thymulin 
significantly inhibited the activation of NF-κB, 
while PRDX6 was even more effective, lowering 
the activity of the NF-κB cascade to background 
values. Different patterns were observed when 
analyzing the activation of JNK pathway. In mice 
with diabetes mellitus, JNK cascade was also sig-
nificantly activated, and only thymulin, but not 
PRDX6, normalized JNK activity in the spleen 
cells of mice with diabetes.

It is known that the cellular response to type 1 
diabetes involve heat shock proteins, for example, 
Hsp90α protein, for which signaling proteins are 
clients.20 Next, we evaluated the expression of 
Hsp90α (Figure 5). In mice with STZ-induced dia-
betes, a sharp increase in Hsp90α protein expres-
sion was observed. PRDX6 completely normalized 
the levels of Hsp90α in spleen cells, whereas thy-
mulin was less effective and only caused some 
decrease of Hsp90α content in the cells of the dia-
betic mice.

Discussion

Clinical application of STZ has recently revealed 
mechanisms of its action.5 Due to glucose-like 
structure, it may enter β-cells similarly to glucose 
or alloxan. However, unlike alloxan, STZ is rela-
tively stable9 and the main mechanism of strepto-
zotocin-induced β-cell death is alkylation of 
DNA.10,21

NF-κB activation is a key event in the pathophys-
iology of autoimmune diabetes.22,23 Excessive acti-
vation of NF-κB lead to undesirable consequences. 

Figure 2.  Effects of thymulin and PRDX6 on relative cell 
count in murine organs. The groups are indicated in Figure 1; 
the relative cell count is a cell count/organ mass ratio (average 
mean ± std. error) on 21st day, expressed as a percent of that 
in the control group.
*Significantly different from the control group, P < 0.05.
♯Significantly different from the STZ group, P < 0.05.
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Therefore, one of the goals in diabetes may be 
reducing the excessive activation of NF-κB signal-
ing.22 Our results demonstrated that administration 
of thymulin and PRDX6 decreased the activation of 
NF-κB and TNF-α level in the plasma. Interestingly, 
the anti-angiogenic effect of tetrandrine on blood 
vessels in STZ-induced diabetic rats was also asso-
ciated with lowered levels of TNF-α and NF-κB.24 
Furthermore, our recent study showed a role of thy-
mulin in developing a fast response against oxida-
tive stress in a damage-associated molecular pattern 
(DAMP)-like manner, restraining the inflammatory 
reaction.25

Administration of STZ causes a sharp increase 
in the expression of JNK, which is considered a 
crucial factor in the STZ-induced β-cells death.26 
The JNK pathway is also involved in pathogenesis 
of diabetes.27 Here, we demonstrated that thymulin 
reduced JNK activation. It was previously shown 
that similar effects are caused by JNK inhibitors, 
including PARP inhibitors.26

Type 1 diabetes is a heterogeneous disease, both 
in the phenotype and in the response to therapies.28 
Reliable biomarkers of β-cell dysfunction may 
improve predictions of responses to therapies  
and overall disease prognosis.29 Hsp90 may be 

Figure 3.  Effects of PRDX6 and thymulin on the pancreas structure in diabetic mice. Representative images of islet 
immunostaining with insulin: the pancreas of control mice (a), diabetic mice (b), diabetic mice treated with PRDX6 (c), diabetic mice 
treated with thymulin (d). Panel (e) shows H&E staining of the control pancreas.
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considered one of the markers of β-cell stress in 
type 1 diabetes.30 The authors showed that β-cells 
from pre-diabetic mice had four times higher 
Hsp90 content than in control mice. Here, we eval-
uated extra-islet cells; however, we also observed a 
four-fold increase in Hsp90 in the spleenocytes 
from mice with STZ-induced diabetes. It may be 
assumed that Hsp90 is a universal type 1 diabetes 
marker. PRDX6 completely prevented the increase 
in Hsp90 expression in spleen cells, whereas thy-
mulin only slightly reduced Hsp90 levels.

Pancreatic β-cells are known to be constitutively 
vulnerable to damages. This vulnerability is pri-
marily due to reduced levels of antioxidant 
enzymes.31,32 It was shown that glutathione peroxi-
dase activity and resistance to peroxide exposure 
are about 20 times higher in the liver and kidney 
than in the pancreas.33 Our results demonstrated 
the protective effects of the antioxidant PRDX6. 
Indeed, PRDX6 reduced the severity of pancreatic 
cell loss, reduced hyperglycemia, normalized 
plasma TNF-α levels, NF-κB cascade activity, and 
Hsp90 levels in diabetic mice. We previously 
showed that NF-κB is involved in the protection of 
β-cells in mice with alloxan-induced diabetes.16 In 
addition, cells with PRDX6 deficiency display 

increased susceptibility to the harmful effects of 
cytokines and oxidative stress.34 We believe that 
the main function of PRDX6 is to reduce the level 
of oxidative stress. Peroxides, formed intracellu-
larly due to oxidative stress in diabetes, released 
into the extracellular space through aquaporins and 
then neutralized by the PRDX6 as long as there 
were enough reducing agents in the extracellular 
fluid.18

We previously showed that at least 30% of exog-
enous PRDX6 remained in the blood circulation 
360 min after intravenous injection.35

Another approach to a therapy of immune sys-
tem-mediated diseases, such as diabetes, may 
include immunomodulators, as immune cells 
directly participate in beta-cells elimination, even 
in chemically induced diabetes. Thymulin was ear-
lier shown to produce beneficial effects in experi-
mental autoimmune encephalomyelitis (EAE),13 
reducing a cytokine response and signal cascades 
activation in immune cells. Thymulin attenuated 
some of consequences of diabetes; it normalized 
the physiological status of mice, reduced hypergly-
cemia and weight loss, normalized cytokines 
plasma levels. However, the most striking effect of 
thymulin was the normalization of JNK signaling. 

Figure 4.  Effects of PRDX6 and thymulin on plasma cytokine concentrations in diabetic mice. The groups are indicated in Figure 1; 
each value is an average mean ± std. error for three mice; six replicate measurements were performed for each individual mouse.
*Significantly different from the control group, P < 0.05.
♯Significantly different from the STZ group, P < 0.05.



8	 International Journal of Immunopathology and Pharmacology ﻿

These results are consistent with data that thymulin 
is an important modulator in inflammations of vari-
ous etiology, such as septic-type inflammations10 or 
autoimmune diseases,13,14 and with the findings on 
the possible role of thymulin in response to oxida-
tive damage.25 The study have some limitations. 
The chemically-induced diabetes in animals as a 
model of type I diabetes mellitus have certain dif-
ferences as compared to type I diabetes in humans. 
Moreover, STZ-induced diabetes is related not only 
to oxidative stress, but also to DNA fragmentation.

The results suggest both thymulin and PRDX6 
improved the physiological status, inhibited inflam-
mation, and ameliorated the immune response of 
STZ-induced diabetic mice. The results indicate 
that thymulin and PRDX6 may be promising thera-
peutic agents against type 1 diabetes mellitus, and 
may serve as a supporting treatment in the therapy 

of COVID-19 in patients with diabetes. Diabetes, 
older age and other comorbidities are reported as 
significant predictors of morbidity and mortality in 
COVID-19 patients.36,37 To date, there is a lack of 
sufficient evidences that diabetes is a risk factor in 
patients with COVID-19. However, we believe that 
future studies of PRDX6 and thymulin should be 
performed to develop new drugs for treatment of 
patients with COVID-19 complicated by diabetes 
mellitus.

Conclusion

This study demonstrated that streptozotocin-
induced type 1 diabetes led to multifactorial distur-
bances in physiological and immune status in mice, 
such as hyperglycemia, the weight loss, the cytokine 
storm, the activation of NF-κB and JNK signaling 
cascades, and the rise in HSP90 stress protein 
expression. The PRDX6 antioxidant protein or thy-
mulin administration reduced the pathophysiologi-
cal and immunopathological consequences in the 
mouse model of type 1 diabetes to varying degrees. 
The main difference between the protective effects 
of PRDX6 and thymulin was the involvement in 
different signaling pathways. Thus, PRDX6 pre-
vented excessive activation of NF-κB, and thymu-
lin regulated the activity of the JNK pathway.
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