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Background: We conduct a study in developing and validating four MRI-based
radiomics models to preoperatively predict the risk classification of gastrointestinal
stromal tumors (GISTs).

Methods: Forty-one patients (low-risk = 17, intermediate-risk = 13, high-risk = 11)
underwent MRI before surgery between September 2013 and March 2019 in this
retrospective study. The Kruskal–Wallis test with Bonferonni correction and variance
threshold was used to select appropriate features, and the Random Forest model (three
classification model) was used to select features among the high-risk, intermediate-risk,
and low-risk of GISTs. The predictive performance of the models built by the Random
Forest was estimated by a 5-fold cross validation (5FCV). Their performance was
estimated using the receiver operating characteristic (ROC) curve, summarized as the
area under the ROC curve (AUC). Area under the curve (AUC), accuracy, sensitivity, and
specificity for risk classification were reported. Linear discriminant analysis (LDA) was used
to assess the discriminative ability of these radiomics models.

Results: The high-risk, intermediate-risk, and low-risk of GISTs were well classified by
radiomics models, the micro-average of ROC curves was 0.85, 0.81, 0.87 and 0.94 for
T1WI, T2WI, ADC and combined three MR sequences. And ROC curves achieved
excellent AUCs for T1WI (0.85, 0.75 and 0.82), T2WI (0.69, 0.78 and 0.78), ADC (0.85,
0.77 and 0.80) and combined three MR sequences (0.96, 0.92, 0.81) for the diagnosis of
high-risk, intermediate-risk, and low-risk of GISTs, respectively. In addition, LDA
demonstrated the different risk of GISTs were correctly classified by radiomics analysis
(61.0% for T1WI, 70.7% for T2WI, 83.3% for ADC, and 78.9% for the combined three MR
sequences).

Conclusions: Radiomics models based on a single sequence and combined three MR
sequences can be a noninvasive method to evaluate the risk classification of GISTs, which
may help the treatment of GISTs patients in the future.
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INTRODUCTION

Gastrointestinal stromal tumors (GISTs) is a rare sarcoma of soft
tissue that can occur anywhere in the gastrointestinal tract,
affecting 6–20 people per million per year in Western and
Asian countries (1, 2). GISTs originates from the interstitial cells
(ICC) of Cajal or common precursor cells (3). Surgical resection is
the gold standard for the treatment of gastrointestinal stromal
tumors, but as the risk of tumors increases, the risk of
postoperative recurrence also increases (4, 5). At present, the
recognized standard for risk classification of GISTs is the
National Institutes of Health (revised in 2008), which can be
classified as high-risk, intermediate-risk, low-risk and very low-
risk, according to tumor size, mitotic index, and primary tumor
site (6). Studies have shown that NIH classification has important
prognostic value (5). The survival rate of high-risk GISTs patients
is significantly worse than that of intermediate-risk or low/very
low-risk GISTs patients (7). However, pathological evaluation of
these surgical specimens is applied postoperatively because it is
difficult to calculate the mitotic count before surgery. Therefore, it
is still difficult to classify the risk of GISTs before operation.
However, for high-risk GISTs patients, previous studies have
shown that preoperative targeted drug therapy, such as Imatinib,
can shrink the tumor and limit the scope of surgical resection, and
improve the prognosis of patients with GISTs (8, 9). Therefore,
accurate preoperative assessment the risk of GISTs has high
clinical value, which can provide important clues for predicting
the prognosis of the disease and the use of adjuvant chemotherapy.

In recent years, with the development and application of
radiomics, hundreds of standardized and quantifiable imaging
features can be extracted from CT/MRI images to assess the
biological behavior of a tumor comprehensively, which may
potentially improve the accuracy of diagnosis, prognosis and
prediction (10). Previous studies used the subjective
manifestations of lesions on CT images (tumor size, shape, CT
density, enhancement mode, etc.), CT functional parameters,
fractal analysis and CT-based radiomics to assess the risk
classification of GISTs (11–14). Large differences between
observers shown in subjective signs of imaging in the judgment
of GISTs risk classification, due to the different experience of
imaging doctors and poor repeatability of subjective signs.
Besides, CT fractal analysis can be influenced by various
factors such as noise, window width and level, and setting of
the software (15). CT-based radiomics have obtained good
results in the risk classification of GISTs. However, compared
with MR multi-sequence imaging, it provides relatively limited
texture features. Studies have used SUVmax in PET/CT to assess
the risk of GISTs, it’s clinical application value is relatively low
due to the high price and long examination time (16). MR
imaging, as a non-ionizing radiation examination compared
Abbreviations: GISTs, Gastrointestinal stromal tumors; ROC, Receiver operating
characteristic; AUC, Area under the curve; MRI, Magnetic resonance images;
GLCM, Gray level co-occurrence matrix; GLSZM, Gray level size zone matrix;
GLRLM, Gray level run-length matrix; LDA, Linear discriminant analysis; ROI,
Region of interest.
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with CT, can provide more lesion information through multi-
sequence imaging in evaluating the biological behavior of
abdominal tumors (17). DWI can reflect the dispersion and
movement restriction of water molecules. Some studies have
shown that DWI texture features can be used as a biological
indicator to evaluate the heterogeneity and prognosis of
metastatic GISTs (18). Therefore, this study will use DWI
texture analysis to study the heterogeneity of GISTs in water
molecular dispersion. As a comparison, we will also study the
effectiveness of the risk classification of GISTs in the T1, T2
sequence and combined three MR sequences. The purpose of this
study was to establish MRI-based radiomics models for
noninvasive assessment of GISTs risk classification.
MATERIALS AND METHODS

Study Participants
The institutional review board of our hospital approved this
retrospective study and waived the requirement to obtain patient
approval or written informed consent for the review of medical
records or images.

We enrolled 47 patients with Gastrointestinal stromal tumors
(GISTs) from our center from September 2013 and March 2019.
The inclusion criteria were as follows: (1) patients who
underwent surgery for GISTs with curative intent; (2) patients
underwent MR less than 15 days before surgical resection;
(3) patients with complete clinicopathologic data. The exclusion
criteria were as follows: (1) patients received imatinib therapy or
other tyrosine kinase inhibitor as a neoadjuvant before surgery
(n=4); (2) ADC sequence image was missing (n=2). Finally, 41
patients were included in our study.

Demographic and clinicopathologic data, including age,
gender, primary tumor site, size of the tumor (maximum
diameter) and mitotic count, were derived from medical
records. The NIH modified criteria (Table 1) were used to
stratify the malignant potential of GISTs on the basis of the
clinical and postoperative histological index, as a verification of
our model. Studies have shown that according to the NIH
standards, there is no significant prognostic difference between
the very low-risk group and low-risk group (7). Therefore, we
combined the very low-risk and low-risk into one group (low-
risk group). Finally, our study includes three groups (low-risk,
intermediate-risk, and high-risk).

MRI Protocol
The MR examination was performed using a Verio 3.0T system
(Siemens, Germany) with a dedicated twelve-channel abdomen
coil. The routine protocol was composed of spin-echo T1-
weighted (repetition time msec/echo time msec, 220/2; matrix,
208 × 256; field of view, 38 cm; slice thickness, 4 mm), T2-
weighted fat-suppressed spin-echo (6647/81; matrix, 256 × 320;
field of view, 38 cm; slice thickness, 6 mm) sequences, and axial
DWI (7400/73; matrix, 220 × 292; field of view, 38 cm; slice
thickness, 6 mm) with b values of 0 and 600 sec/mm2.
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MR Radiomics Analysis
After patients’ MR images were collected, the region of interest
(ROI) were contoured manually on three MR sequences (T1WI,
T2WI, and ADC), respectively. Two experienced abdominal
radiologists, including a 10 years experienced radiologist
(depict the ROI) and a 15 years experienced radiologist (check
the ROI), outlined each layer of the lesion to form a 3D ROI and
saved in a 3D format by using ITK-snap (Version3.8.0, www.
itksnap.org, Figure 1) (19). Then, the imaging features were
extracted using AK (Artificial Intelligent Kit, GE Healthcare,
China). Finally, a total of 396 features were extracted from the
analysis of the volumes inspected. These parameters included
Histogram Parameters (Energy, Entropy, MaxIntensity,
MinIntensity, MeanValue, FrequencySize, VolumeCount, etc);
Texture features (Skewness, Kurtosis, Correlation, Cluster Shade,
Cluster Prominence); Form Factor Parameters (Sphericity,
Surface area, Compactness, Maximum 3D diameter, Spherical
disproportion) and second-order features (gray level co-
occurrence matrix, GLCM; gray level size zone matrix,
GLSZM; gray level run-length matrix, GLRLM). All these
radiomics features were further analyzed within the entire
cohort of 41 patients. Figure 2 describes the texture parameter
extraction process.

Statistical Analysis
Continuous variables are summarized with medians and ranges;
categorical variables are described with frequencies and
percentages. The patients’ clinical characteristics among the
three groups were analyzed with the chi-square test.

Using the Kruskal–Wallis test, differences among the three
groups’ radiomics features were measured in the T1WI, T2WI,
and ADC sequences; p values were adjusted using Bonferonni
correction and p values less than 0.017 (0.05/3) were considered
statistically significant. And then, the variance threshold
algorithm was used to remove those radiomics features with
low variances. Hence, the appropriate feature sizes were selected
by feature selection methods (Kruskal–Wallis test and variance
threshold). Using these selected radiological characteristics, the
Random Forest model is used for analysis (three classification
model) to determine whether the selected characteristics can
distinguish different risk classification. The predictive
3

performance of the models built by the Random Forest was
estimated by a 5-fold cross validation (5FCV). Their
performance was estimated using the receiver operating
characteristic (ROC) curve, summarized as the area under the
ROC curve (AUC). The cohort was randomly split into five
subsamples: one formed the test dataset for verifying the
effectiveness of the model, and the others formed the training
dataset to determine risk classification of GISTs for the model.
The cross-validation process was repeated five times, with each
of the five subsamples used as the validation data once. For
selecting the best features, their performance was estimated using
the receiver operating characteristic (ROC) curve, summarized
as the area under the ROC curve (AUC). Ranked by AUC, the 30
most important features of all features were used to train the
classifier. In addition, the AUC, accuracy, specificity and
sensitivity at the best cut-off point, and 95% confidence
interval are also demonstrated. Since the results of our study
are multi-category indicators, we use micro-averaging of ROC to
make statistics on each example in the data set regardless of
category, to evaluate the effectiveness of the model. At the same
time, LDA (multiclassification model) and LOOCV (Leave-one-
out cross- validation) was performed to evaluate and verify the
discrimination ability of the single and combined sequences
models on the basis of the selected radiomics features by
above method.

Statistical analyses for the present study were performed with
R (version 3.5.1). A two-sided p value < 0.05 indicated
statistical significance.
RESULTS

Patient Characteristics
Forty-one patients were comprised of men (19 cases) and women
(22 cases), gastric (32 cases) and non-gastric (9 cases), the low-
risk (17 cases, 66.4 years, range 49-84 years), the intermediate-
risk (13 cases, 71.2 years, range 59-85years), and the high-risk
(11 cases, 65.0 years, range 47-87 years). A statistical difference in
tumor size and mitotic number among the three groups
(P <0.001, P =0.002) was found, but no statistical differences
were found in age (P = 0.249), gender (P = 0.360), primary tumor
site (P = 0.252) among the three groups. The clinicopathologic
characteristics of gender, age, primary tumor site, risk
classification, and mitotic count of the three groups were
summarized in Table 2.

Selection of Extracted Radiomics Features
and Performance of Risk Classification
In the MR images of three sequences (T1WI, T2WI, and ADC),
the thirty most important parameters based on contribution to
classification in Random Forest for each sequence are shown in
Supplement . Radiomics features such as Grey Level
Nonuniformity, Run Length Nonuniformity, Volume were
significantly different among the three GISTs risks groups on
three sequences. By using ROC curves after 5FCV selecting
features, the effectiveness of these selected features for the risk
TABLE 1 | NIH 2008 criteria for defining risk stratification of GISTs recurrence
after surgery.

Risk category Tumor size
(cm)

Mitotic index
(per 50 HPF)

Primary
tumor site

Very low risk ≤ 2.0 ≤ 5.0 Any
Low risk 2.1–5.0 ≤ 5.0 Any
Intermediate risk ≤ 5.0 6–10 Gastric

5.1–10.0 ≤ 5.0 Gastric
High risk > 10.0 Any Any

Any > 10 Any
> 5.0 > 5 Any
≤ 5.0 > 5 Non-gastric

5.1–10.0 ≤ 5 Non-gastric
NIH, National Institutes of Health.
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classification of GISTs was tested. As a result, we obtained a
micro-average of 0.85 on T1WI. Besides, AUC of 0.85 (95% CI:
0.91, 0.98), 0.75 (95% CI: 0.78, 0.89), and 0.82 (95% CI: 0.87,
0.90) for the diagnosis of high-risk, intermediate-risk, and low-
Frontiers in Oncology | www.frontiersin.org 4
risk, respectively. With T2WI images, we obtained a micro-
average of 0.81. As for AUC of 0.69 (95% CI: 0.88, 0.94), 0.78
(95% CI: 0.74, 0.81), and 0.78 (95% CI: 0.83, 0.96) for the
diagnosis of high-risk, intermediate-risk, and low-risk,
A

B

C

FIGURE 1 | ROI of three patients with different risk classification of GISTs. (A) Three MR sequences (T1WI, T2WI, and ADC) show a low-risk of GISTs in a 68-year-
old woman. (B) Three MR sequences show a intermediate-risk of GISTs in a 78-year-old man. (C) Three MR sequences show a high-risk of GISTs in a 50-year-old
man. The red circle represents the ROI.
May 2021 | Volume 11 | Article 631927
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respectively. For ADC MR images, we obtained a micro-average
of 0.87 and AUC of 0.85 (95% CI: 0.79, 0.90),0.77 (95% CI: 0.86,
0.94), and 0.80 (95% CI: 0.85, 0.92) for the diagnosis of high-risk,
intermediate-risk, and low-risk, respectively. In combined three
MR sequences, micro-average of showed a slight increase to 0.94
compared with any MR sequence alone for differentiating risks of
GISTs. Shown in Tables 3, 4 and Figure 3.

LDA was then used to assess the discriminative ability of these
selected radiomics features, while LOOCV was used to correct
the result. (Figure 4). For T1WI sequence, 61.0% of the three
originally grouped cases (three GISTs risk groups) were correctly
classified, while 58.5% of these three grouped cases
abovementioned were correctly classified after cross-validation.
For T2WI sequence, 70.7% of the originally grouped cases were
correctly classified and 58.5% of the cross-validated grouped
cases were correctly classified. As for ADC sequence, 83.3% of
Frontiers in Oncology | www.frontiersin.org 5
the originally grouped cases were correctly classified and 66.2%
of the cross-validated grouped cases were correctly classified.
When combining three MR sequences,78.9% of the three
originally grouped cases (three GISTs risk groups) were
correctly classified, while 65.0% of these three grouped cases
abovementioned were correctly classified after cross-validated.
DISCUSSION

In this study, we evaluated the diagnostic value of radiomic features
extracted from MR images in identifying the risk of GISTs (low-
risk, intermediate-risk, and high-risk). Previous studies have
mostly used imaging findings, such as necrotic cysts, to assess
the risk of GISTs, but the precise staging of stromal tumor
aggressiveness has great differences between observers and
FIGURE 2 | (A) MR images segmentation. The ITK-SNAP software was used to manually outline and segment the tumor region by slices, and then 3D-VOI
reconstruction was performed to extract the texture parameters. (B) Texture features extraction. According to the segmentation image, a total of 396 texture
parameters of different risk of GISTs were extracted from each set of images. (C) Texture features selection. After the parameters were normalized and
dimensionality reduced, the characteristic parameters were selected by Kruskal–Wallis test and variance threshold. (D, E) Model establishment. Using random forest
to build multi-sequence MRI model and its diagnostic efficacy was evaluated by ROC and LDA analysis.
TABLE 2 | Baseline characteristics of patients.

Low-risk
(17) Median (Range or %)

Intermediate-risk
(13) Median (Range or %)

High-risk
(11) Median (Range or %)

P Value

Age 66.4(49-84) 71.2(59-85) 65.0(47-87) 0.249
Gender
Female
Male

11(64.7)
6(35.3)

7(53.8)
6(46.2)

4(36.4)
7(63.6)

0.360

Tumor
size(mm)

35.5(22-50) 66.3(33-100) 98.7(25-206) <0.001*

Location
Gastric
Non-Gastric

13(76.5)
4(23.5)

12(92.3)
1(7.7)

7(63.6)
4(36.4)

0.252

Mitotic index (per 50 HPF)
≤5
>5

17(100)
0

12(92.3)
1(7.7)

6(54.5)
5(45.5)

0.002*
May 2021 | Volume 11 | Article
P value is derived from the univariable association analyses between each characteristic and potential malignancy. Analysis of Variance was applied in continuous variables. The chi-square
test was applied in categorical variables GISTs. HPF, high-power field. *P value < 0.05.
631927

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Mao et al. Risk Classification of GISTs by Radiomics
limited accuracy (20–22).We found that some radiomics features
were significantly different among the three risk classifications of
GISTs. Based on these radiomics features, the ROC curve yielded
decent AUC. This result indicated that our MR-based radiomics
method yielded excellent performance in distinguishing low-risk,
intermediate-risk and high-risk GISTs. Considering that all three
Frontiers in Oncology | www.frontiersin.org 6
sequences in our study are routinely used in our center, our results
have good clinical application prospects.

We found several interesting points of significantly different
radiomics features among the three levels of risk of GISTs. For
example, among T1WI, T2WI and ADC sequences, Grey Level
Nonuniformity, Volume, Run Length Nonuniformity, and
Frequency Size have significant specificity among the three
levels of risk of GISTs. These findings abovementioned might
indicate greater textural heterogeneity on high risk GISTs,
which were consistent with previous studies (23, 24). Ren et al.
aimed to predict the malignant potential assessment of GISTs
patients through CT texture features before surgery and found
that high malignant potential GISTs demonstrated obviously
higher heterogeneity than low malignant potential GISTs
TABLE 4 | Classification performance of four models for GIST risk level.

Radiomics Models Micro-average

T1 sequence 0.85
T2 sequence 0.81
ADC sequence 0.87
Combined three MR sequences 0.94
TABLE 3 | ROC of three single sequences for distinguishing different risk of GISTs.

Status AUC ACC Sensitivity Specificity 95% confidence interval of AUC

Lower bound Upper bound

T1WI High 0.85 0.91 0.89 0.91 0.91 0.98
Intermediate 0.75 0.71 0.82 0.79 0.78 0.89
Low 0.82 0.86 0.96 0.85 0.87 0.90

T2WI High 0.69 0.92 0.77 0.99 0.88 0.94
Intermediate 0.78 0.95 0.81 0.98 0.74 0.81
Low 0.78 0.82 0.93 0.95 0.83 0.96

ADC High 0.85 0.82 0.73 0.81 0.79 0.90
Intermediate 0.77 0.90 0.92 0.85 0.86 0.94
Low 0.80 0.76 0.89 0.82 0.85 0.92
May 2021 | Volume 11
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FIGURE 3 | ROC curves based on radiomics features extracted from three MRI sequences and combined three MRI sequences for classification of three risks of
GISTs. (A) micro-average of 0.85 on T1WI. AUC of 0.88, 0.74, and 0.81 for the diagnosis of high-risk, intermediate-risk, and low-risk, respectively; (B) micro-average
of 0.81 on T2WI. AUC of 0.69, 0.78, and 0.78 for the diagnosis of high-risk, intermediate-risk, and low-risk, respectively; (C) micro-average of 0.87 on ADC. AUC of
0.85, 0.77, and 0.80 for the diagnosis of high-risk, intermediate-risk, and low-risk, respectively; (D) micro-average of 0.94 in combined three MR sequences and
AUC of 0.96, 0.92, and 0.81 for the diagnosis of high-risk, intermediate-risk, and low-risk, respectively.
| Article 631927
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demonstrated (23). Furthermore, Yang et al. constructed a
nomogram based on MR radiomics features such as
RunLengthNonUniformity, ShortRunHighGrayLevelEmphasis,
and OriginalFirstorderMinimum. The calculated scores
demonstrated that high malignant potential GISTs was
significantly more heterogeneous than low malignant potential
(24). In addition, among the features we selected, the parameters
reflecting the shape of the lesion, such as volume and maximum
3D diameter on MRI has value for guiding GISTs risk
classification, which is consistent with tumor size as an
important factor in assessing the malignant potential and
prognosis of GISTs (see Table 1).

We found that the ADC sequence outperformed T1WI and
T2WI sequences in evaluating the risk classification of GISTs.
In ADC sequence, the AUC of high-risk group was 0.85,
which indicated that the ADC sequence had high efficiency for
high-risk group identification. To date, some studies have
evaluated the discriminative ability of different MRI sequences
on the basis of radiomics, among which some studies have
mentioned to the favorable predictive value of ADC in
radiomics analyses on discriminating benign and malignant
tumors (25, 26). The radiomics model based on ADC sequence
has a positive application in the classification of meningioma,
cholangiocarcinoma and glioma (27–30).

In our study, we have proven that our combined three MR
sequences radiomics model has excellent performance in
diagnosing different risk classifications of GISTs correctly
Frontiers in Oncology | www.frontiersin.org 7
(micro-average=0.94), especially in identifying high-risk GISTs
(AUC=0.96). Wang et al. (31)used CT images to establish a
predictive model to distinguish the high and low malignant
potential of GISTs and the AUC of the model was 0.882. The
results show that the feature extraction of multi sequence MR
images can provide more texture information of lesions, which is
helpful to improve the ability of the model to evaluate the risk of
GISTs (32–34). In addition, our study also employed an
uncommon statistical method (LDA) to assess the diagnostic
ability of radiomics models as a supplement to ROC curve, which
provides a new perspective for evaluating radiomics data.

However, our study had several limitations although the
results were encouraging. First, compared with a large number
of extracted radiological features, the sample size of our study is
relatively small. Therefore, we use Random Forest to avoid
overfitting in the model derivation process (35), and in the
future can improve by increasing the sample size. Therefore,
large-scale, prospective and multi-center studies are needed to
validate our results. Second, due to the large slice thickness and
interslice gap in MR imaging, it is easy to cause the partial
volume effect of small tumors. Therefore, tumors size less than
2 cm were excluded from our study. In future, we consider
reducing the thickness of the slice to facilitate the inclusion of
small tumors with a maximum diameter of 1.0-2.0 cm. Third, we
did not consider gene mutations in this study, such as KIT and
PDGFRA mutations (36, 37), which are essential for diagnosing
some difficult cases, predicting the therapeutic effect of targeted
A B

DC

FIGURE 4 | Discriminant function analysis based on radiomics features extracted from three MRI sequences for the GISTs risk classification. (A) T1WI, 61.0% of the
three originally grouped cases (three GISTs risk classification) were correctly classified; (B) T2WI, 70.7% of the three originally grouped cases (three GISTs risk
classification) were correctly classified; (C) ADC, 83.3% of the three originally grouped cases (three GISTs risk classification) were correctly classified; (D) combined
three MR sequences, 78.9% of the three originally grouped cases (three GISTs risk classification) were correctly classified.
May 2021 | Volume 11 | Article 631927
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drugs and guiding medical decision-making. Therefore, we will
consider genome characteristics to build a more comprehensive
radiogenomics model in the future.
CONCLUSION

In conclusion, our research proposes that radiomics models
based on a single sequence and combination of multiple
sequences can help classify the risk of GISTs. As a noninvasive
and reproducible method, radiomic analysis may become a
potential biomarker for GISTs. If finally put into practice, it
may completely change the diagnosis and clinical treatment of
GISTs, although it still has a long way to go.
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