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A B S T R A C T   

Background: DNA damage response (DDR) confer resistance to chemoradiotherapy in cancer cells. However, the 
role of DDR-related lncRNAs (DRLs) in uterine corpus endometrial carcinoma (UCEC) is poorly understood. In 
this study, we aimed to identify a DRL-related prognostic signature that could guide the clinical treatment of 
UCEC. 
Methods: We extracted transcriptome and clinical data of patients with UCEC from The Cancer Genome Atlas 
(TCGA) database and identified DRLs using Spearman correlation analysis. Univariate and multivariate Cox 
analyses were used to determine candidate prognostic DRLs. The samples were randomly divided into training 
and test cohorts in a 1:1 ratio. A DRL-related risk signature was constructed from the training cohort data using 
the least absolute shrinkage and selection operator (LASSO) algorithm, and validated using the test and entire 
cohorts. Subsequently, a prognostic nomogram was developed using a multivariate Cox regression analysis. The 
functional annotation, immune microenvironment, tumor mutation burden (TMB), immune checkpoint blockade 
(ICB) efficacy, and drug sensitivity were also comprehensively analyzed between different risk groups. Finally, 
the function of AC019069.1 was validated in vitro. 
Results: A novel risk signature was developed based on nine DRLs. The risk score efficiently predicted the 
prognosis of patients with UCEC. Based on the median risk score, two subgroups were identified. The DDR- 
related pathways were upregulated in the high-risk group. Additionally, high-risk patients have low immune 
activity, poor response to ICB, and weak sensitivity to chemotherapeutic agents, possibly because of the profi-
cient DDR system. Finally, we demonstrated AC019069.1 could promote cell proliferation, decrease apoptosis 
and maintain genome stability of UCEC cells. 
Conclusions: The developed DRL-related signature can predict the prognosis, immune microenvironment, 
immunotherapy, and chemoradiotherapy responsiveness of UCEC. Our study also revealed the potential value of 
DDR-targeted therapy in treating high-risk patients with UCEC.   

1. Introduction 

Uterine corpus endometrial carcinoma (UCEC) is the fourth most 

common malignancy in females worldwide, with an increasing inci-
dence and cancer-associated mortality [1]. Generally, UCEC prognosis is 
satisfactory at the early stage, with approximately 81% 5-year overall 
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survival (OS) rate. However, when diagnosed at a late stage, the 5-year 
OS rate declines to < 20% [2]. Although divergent therapeutic regimens 
have been developed to improve UCEC prognosis, the clinical manage-
ment of this complex disease remains challenging owing to its high 
degree of heterogeneity. Typically, this disease is classified as type I 
(estrogen-driven with favorable prognosis) or type II (estro-
gen-independent with unfavorable outcome) [3]; however, the prog-
nosis of patients with the same type varies greatly. Recently, molecular 
subtyping has been proposed as a precise method for guiding cancer 
management. Therefore, novel molecular classification systems incor-
porating genetic diversity should be urgently developed to accurately 
predict UCEC prognosis and therapeutic response, which are crucial for 
the optimal design of next-generation precision medicine. 

Uncontrolled cell proliferation associated with substantial DNA 
damage accumulation and genomic instability causes tumorigenesis. 
Efficient DNA damage repair (DDR) mechanisms are essential for 
maintaining genomic integrity and preventing cancer development [4]. 
However, in addition to the barrier role of DDR in tumor initiation, 
proficient DDR can also confer resistance to tumor therapy. Radio-
therapy and chemotherapy are two cornerstones of cancer management. 
Theoretically, they partially kill tumor cells by triggering DNA breaks 
[5]. Evidently, the activation of DDR could help cancer cells escape from 
such treatment. Additionally, DDR plays considerable roles in UCEC. 
Fanconi anemia complementation group D2 (FANCD2), a core compo-
nent of the Fanconi anemia repair pathway, is overexpressed in UCEC 
and predicts poor OS. FANCD2 expression knockdown in UCEC cell lines 
sensitizes UCEC cells to cisplatin and mitomycin C [6]. Furthermore, the 
inhibitors of ataxia telangiectasia-mutated (ATM) and ATR (ATM and 
Rad3-related), two critical DDR molecules, boost the sensitivity of UCEC 
cells to common DNA-damaging agents [7]. Thus, targeting the DDR 
pathways could be a promising therapy for UCEC. 

Long non-coding RNAs (lncRNAs) are > 200 nucleotide long non- 
coding transcripts that act as crucial and precise regulators of cancer 
development and progression [8,9]. Previous studies have revealed that 
lncRNAs are dysregulated and play diverse roles in the carcinogenesis, 
metastasis, and therapeutic resistance of UCEC [10]. Several 
lncRNA-related prognostic models have been developed to aid the 
clinical management of UCEC [11–13]. Nevertheless, the role of 
DDR-related lncRNAs (DRLs) in UCEC has not been comprehensively 
explored. 

In this study, we extracted transcriptome profiles and clinical data 
from The Cancer Genome Atlas (TCGA) database to identify candidate 
DRLs and construct a related prognostic signature. Through compre-
hensive bioinformatics analyses, a promising DDR-related differentially 
expressed lncRNA-based signature was constructed, which could predict 
the outcomes of patients with UCEC and provide a theoretical basis for 
selecting patients for reasonable therapies. Moreover, we tentatively 
confirmed the role of AC019069.1 in regulating the DDR in UCEC. 

2. Materials and methods 

2.1. Data acquisition and processing 

The transcriptome profiles (count format) of 548 UCEC samples and 
35 control tissues, and the clinical data of patients with UCEC were 
obtained from The Cancer Genome Atlas (TCGA) database (https:// 
xena.ucsc.edu/), and only genes expressed in more than 50% samples 
were analyzed. The raw count data were normalized using “cpm” 
function in the R package “edgeR” and log2 (cpm+1) transformed, 
except for the analysis of differentially expressed genes (DEGs). For risk 
model construction and validation, only 521 unique tumor samples with 
complete survival data, at least 30 days of survival period were included. 
Then, they were randomly separated into the training cohort (261 cases) 
and the test cohort (260 cases) using the “caret” R package 
(seed:12345); the clinical characteristics of patients with UCEC in the 
training and test cohorts were summarized in Table S1. The training 

cohort was used for risk model construction, whereas the test and entire 
cohorts were used for validation. 

2.2. DDR-related lncRNA identification 

The DDR-related lncRNAs (DRLs) were identified from lncRNAs and 
296 DDR-related genes (DRGs) identified previously [14] (Table S2) 
using Spearman’s correlation (|r| > 0.4 and P < 0.001). Then, the 
“limma” package [15] was utilized to screen the DElncRNAs between 
tumor and normal samples. The criteria for DElncRNAs were |fold 
change| > 2 and adjusted P < 0.05. The intersecting regions of the DRLs 
and DElncRNAs were defined as differentially expressed DRLs 
(DEDRLs). 

2.3. Consensus clustering 

Tumors can be divided into diverse subtypes based on their omics 
profiles. We used consensus clustering to assess the heterogeneity of 
UCEC based on DEDRL expression data using “partitioning around 
medoids” method on the “ConsensusClusterPlus” package [16]. To 
ensure stable subtype classification, the parameter "reps" was set to 500. 

2.4. DEDRL-related prognostic model construction and validation 

First, univariate Cox regression was applied to acquire OS-related 
DEDRLs (P < 0.05); then, the genes were re-filtered through multivar-
iate Cox regression analysis according to “forward and backward” 
method to identify candidate independent prognostic DEDRLs. Subse-
quently, the least absolute shrinkage and selection operator (LASSO) 
Cox regression algorithm was used to develop an optimal risk model 
based on these prognostic candidates in the training cohort. Finally, a 
nine-DEDRL-based optimal prognostic model was established by 
selecting the optimal penalty parameter (λ). LASSO algorithm was 
conducted with the “glmnet” R package. The risk score was determined 
as 

risk score =
∑n

1
coefi × DEDRLi,

where DEDRLi and coefi denote the expression of the selected lncRNAs 
and their corresponding coefficients, respectively. And n refers to the 
number of DEDRLs considered in the constructed model. 

Based on the median risk score in each cohort, the samples were 
divided into low- and high-risk subgroups. A flowchart to explain the 
development of the prognostic model was shown in Fig. S1. 
Kaplan–Meier curves were drawn using the “survival” package to 
compare OS between the two groups. The receiver operator character-
istic (ROC) curves were drawn via the “timeROC” package to evaluate 
the 1-, 3-, 5-year predictive accuracy of the signature. 

2.5. Establishment of prognosis nomogram in combination with clinical 
characteristics 

The nomogram was established by combining the risk score and 
other clinical features (age, stage, and grade) to guide the clinical 
practice using the “rms” package. The decision curve analysis (DCA) and 
calibration curves were used to assess the net clinical benefit and pre-
dictive accuracy of the nomogram, respectively. 

2.6. Functional enrichment analysis 

To investigate potential molecular and biological differences be-
tween low- and high-risk subgroups, DEGs were identified. Then, gene 
set enrichment analysis (GSEA) was used to identify the enriched 
pathways (q-value < 0.05, FDR < 0.25) in these two subgroups based on 
the KEGG gene sets. In addition, single-sample GSEA (ssGSEA) was 
conducted to determine the relative pathway score for classical DDR- 
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related pathways, X-ray and UV Response using the “GSVA” R package. 

2.7. Immune microenvironment exploration and immunotherapy response 
prediction 

The abundance of 28 immune cell types and scores of 13 immune- 
related pathways in each sample were calculated using ssGSEA. The 
Estimation of STromal and Immune cells in Malignant Tumor tissues 
using Expression data (ESTIMATE) algorithm was conducted to acquire 
the content of stromal and immune elements by the “estimate” R 
package [17]. The immunophenoscore (IPS) is used to quantify indi-
vidual patient immunogenicity. IPSs were obtained from The Cancer 
Immunome Atlas (TCIA) database (https://tcia.at/home) [18]. The re-
sponses of patients with UCEC to immune checkpoint blockade (ICB) 
were also predicted using the Tumor Immune Dysfunction and Exclusion 
(TIDE) algorithm, where high TIDE scores represent poor therapeutic 
response [19]. 

2.8. Mutation analysis and chemotherapy response 

Simple nucleotide variation profiles of patients were acquired from 
TCGA. The top 10 mutated genes in low- and high-risk subgroups were 
presented with fall plots using the “maftools” package [20]. We also 
analyzed the differences in TMB. Microsatellite instability (MSI) is a 
specific genomic instability characterized by mutational alterations in 
simple repetitive sequences [21]. MSI scores were calculated with the R 
package “cBioPortalData.” Patients with UCEC were separated into MSI 
and microsatellite stability (MSS) groups using a cutoff value of 0.4 and 
their response to therapeutic agents were predicted using the Genomics 
of Drug Sensitivity in Cancer (GDSC) database (https://www.cancer-
rxgene.org). Therapeutic sensitivity was quantified using the 
half-maximal inhibitory concentration (IC50). The Spearman correla-
tion algorithm was used to quantify the relationship between the risk 
score and drug sensitivity. 

2.9. Tissue specimens 

Tissues were obtained from 19 patients with endometrial cancer (EC) 
who underwent surgery at Shanghai First Maternity and Infant Hospital 
between 2018 and 2022. This study was approved by the Medical Ethics 
Committee of Shanghai First Maternity and Infant Hospital (KS22356), 
and written informed consent was obtained from all participants. 

2.10. Cell culture and cell transfection 

Ishikawa, HEC-1B, and ANC3A endometrial cancer cell lines were 
purchased from American Type Culture Collection (ATCC, USA) and 
cultured in Dulbecco’s modified Eagle’s medium (DMEM)-F12 (Serv-
icebio, Wuhan, China) supplemented with 10% fetal bovine serum 
(0500, Sciencell, USA) and 1% penicillin/streptomycin (C100C5, NCM, 
Suzhou, China) at 37 ◦C with 5% CO2 supply. The cells were treated with 
20 μM etoposide (MedChemExpress, USA) for 2 h to induce DNA dam-
age and harvested (damage induction) or cultured in fresh medium for 
4 h (damage recovery). The AC019069.1-overexpression plasmid was 
purchased from Genomeditech (Shanghai, China). At 50–60% conflu-
ence, cells were transfected with Lipofectamine 2000 (Invitrogen, USA). 

2.11. RNA extraction and quantitative real-time PCR (qRT-PCR) 

The TRIzol reagent (ABclonal, Wuhan, China) was used for total RNA 
isolation. Then, 1 μg RNA was reversely transcribed into cDNA. Quan-
titative PCR was conducted using QuantStudio5 (Thermo Fisher Scien-
tific, Waltham, USA) for 40 cycles. The relative expression of interested 
genes was determined with 2− ΔΔCT algorithm with β-actin as a reference 
control. The primers used in this study are listed in Table S3. 

2.12. Western blot 

First, EC cells were transfected with empty vector or AC019069.1- 
overexpression plasmid for 48 h. Then cells were collected after treat-
ment with etoposide (20 μM) for the indicated time. A radio-
immunoprecipitation (RIPA) buffer (EpiZyme, Shanghai, China) 
containing 1% protease inhibitors (NCM; Suzhou, China) was used for 
protein lysis and extraction. Then, 15 μg proteins were separated on a 
12.5% sodium dodecyl sulfate (SDS) polyacrylamide gel and then 
transferred to a 0.45 µm polyvinylidene fluoride membrane 
(IPVH00010, Millipore, German). After being blocked in 5% non-fat 
milk for 1 h, the membranes were incubated with the following anti-
bodies at 4 ◦C overnight: phospho-Histone H2A.X (Ser139) (γH2AX; 
#9718, Cell Signaling Technology, USA), GAPDH (ab181602, Abcam, 
USA), Histone H3 (A2348, ABclonal, Wuhan, China). Histone 3 was used 
as an internal control for histone. GAPDH was used as a reference con-
trol for total protein. Next, the membranes were incubated with a sec-
ondary antibody (GB23204, Servicebio, Wuhan, China) at room 
temperature for 1 h. Finally, protein bands of interest were visualized 
using a Tanon exposure machine and further quantified using ImageJ 
software. 

2.13. Counting Kit-8 (CCK-8) assay 

CCK-8 reagent (NCM, Suzhou, China) was used to monitor cell pro-
liferation according to the manufacturer’s instructions. Briefly, 2 × 103 

cells/well were seeded in 96-well plates and cultured for 0, 24, 48, 72, or 
96 h. Then, 10 μL CCK-8 reagent was added to the medium and cultured 
at 37 ◦C for another 2 h. Finally, the absorbance at 450 nm was quan-
tified on a microplate reader. 

2.14. 5-ethynyl-20-deoxyuridine (EdU) assay 

EdU Cell Proliferation Kit was purchased from Epizyme (CX003, 
Shanghai, China). Briefly, 1 × 105 transfected cells/well were seeded 
into 12-well plates. EdU solution (final concentration: 10 μM) was added 
to the medium when the cells adhered, and another 2 h were incubated. 
After fixing and permeabilization, a click additive solution was added 
and incubated in dark for 30 min. The cells were then counterstained 
with Hoechst 33342. EdU-incorporated cells were visualized using a 
Leica fluorescence microscope (Wetzlar, Germany) and counted using 
ImageJ software. 

2.15. Apoptosis 

First, the transfected EC cells were digested and collected using 
trypsin without EDTA. The cells were then incubated with Annexin 
V–FITC and PI (40302ES50, Yeasen, Shanghai, China) for 25 min. Cell 
apoptosis rates were determined using flow cytometry. 

2.16. Immunofluorescence 

The transfected EC cells (5 ×104 cells/well) were seeded on sterile 
coverslips in 12-well plates. After the indicated treatments, cells were 
fixed, permeabilized, and blocked. Then, the cells were incubated with 
γH2AX antibody (1:500) overnight at 4 ◦C and fluorescent secondary 
antibody (1:200; ab150077, Abcam, USA) in dark for 1 h. Afterward, the 
cells were mounted with anti-fluorescence quenching mounting solution 
(containing DAPI) (Beyotime, Shanghai, China) and imaged under Leica 
confocal microscope (Wetzlar, Germany). 

2.17. Statistical analysis 

All statistical analyses were performed using R software (version 
4.1.1). For continuous variables, Student’s t-test (two groups) or one- 
way ANOVA (over two groups) was applied to assess intergroup 
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differences when the data followed a normal distribution; otherwise, the 
Wilcoxon rank-sum test (two groups) or Kruskal-Wallis H test (over two 
groups) was used. For categorical variables, χ2 test was applied to esti-
mate the differences among groups. All statistical analyses were two- 
sided and P < 0.05 indicated statistically significant. 

3. Results 

3.1. DEDRL identification in UCEC 

The research diagram is shown in Fig. 1. To preliminarily examine 
the role of DDR in UCEC, we performed GSEA and ssGSEA on the 296 
collected DRGs. The GSEA results indicated that the pre-defined DDR 
gene set was positively enriched in UCEC samples (q-value < 0.001;  
Fig. 2A). Similarly, the DDR score calculated using ssGSEA was higher in 
the UCEC samples than that in control samples (Fig. 2B), suggesting that 
DDR might participate in UCEC progression. 

Considering the regulatory roles of lncRNAs, we screened DRLs in the 
TCGA-UCEC project. In total, 6174 lncRNAs were identified in tumor 
samples and in control samples. Consequently, 751 DRLs were identified 
using the Spearman’s correlation algorithm. We identified 1670 
DElncRNAs between tumor and control samples, including 964 down-
regulated and 706 upregulated lncRNAs. Finally, 204 DEDRLs were 
identified by intersecting the DRLs and DElncRNAs (Fig. 2C). 

3.2. UCEC subtype classification based on the DEDRLs 

To explore the heterogeneity of UCEC based on DEDRLs, a consensus 
clustering algorithm was applied to the TCGA-UCEC tumor samples. The 

optimal cluster parameter was chosen as K= 2 (Fig. 2D and S2). The 
tumor samples were separated into two subgroups based on the clus-
tering results. The PCA plot revealed significantly distinct DEDRL 
expression patterns between the two clusters (Fig. 2E). Moreover, clus-
ter2 had a significantly shorter OS than cluster1 (Fig. 2F). 

To further investigate the potential mechanisms underlying the 
prognostic heterogeneity, we comprehensively analyzed the immune 
microenvironments of these two clusters. First, we found most immune 
cell types showed less infiltrated in cluster2 (Fig. S3A). In addition, the 
stromal, immune, and estimated scores in cluster2 were significantly 
lower than those in cluster1 (Fig. S3B). Most 13 immune-related path-
ways were enriched in cluster1 (Fig. S3C). These findings indicate that 
the reduced immune activity of cluster2 may favor tumor progression. 
Furthermore, most of the 35 validated checkpoints were downregulated 
in cluster2 group (Fig. S3D), which might suggest weak ICB sensitivity. 
The IPS and TIDE (Fig. 3E, F) analyses revealed a poorer ICB response in 
cluster2 group. Altogether, DEDRLs may aid in novel UCEC subtype 
stratification and prediction of immunotherapy efficacy. 

3.3. Development and validation of a DEDRL prognostic model 

Furthermore, we determined the prognostic value of DEDRLs. 
Totally, twelve candidate prognostic DEDRLs were screened (Fig. 2G). 
The correlation between these 12 lncRNAs and their corresponding 
DRGs was visualized using a heat map (Fig. 2H). Then, the LASSO al-
gorithm was employed to prevent overfitting by choosing “lambda.min” 
as the optimal penalty parameter in the training cohort (Fig. 3A, B). 
Finally, a nine-DEDRL-based signature was constructed, and their rela-
tive expression levels were studied using a volcano plot (Fig. 3C). Each 

Fig. 1. Workflow and result summary of this study. Step1. The identification of differentially expressed DNA damage repair-related lncRNAs (DEDRLs) in uterine 
corpus endometrial carcinoma (UCEC). Step2. The construction and validation of a DEDRL-related prognostic model based on LASSO algorithm. Step3. The 
comprehensive comparisons of molecular characteristics, immune microenvironment, tumor mutation burden (TMB), immune checkpoint blockade (ICB) efficacy, 
and drug sensitivity between the low- and high-risk groups. Step4. In vitro experiments were conducted to reveal the function of AC019069.1 in UCEC. 
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Fig. 2. A screen of candidate prognostic DNA damage repair (DDR)-related lncRNAs in uterine corpus endometrial carcinoma (UCEC). (A) The gene set enrichment 
analysis (GSEA) showing the positive enrichment of DDR in tumor samples. NES, normalized enrichment score. (B) The relative DDR scores calculated using single 
sample GSEA (ssGSEA) algorithm between normal and tumor samples. (C) Venn diagram to identify differentially expressed DDR-related lncRNAs (DEDRLs) in UCEC. 
(D) The consensus score matrix for K = 2. (E) Principal component analysis (PCA) based on the expression levels of DEDRLs. (F) Kaplan–Meier analysis for the two 
clusters in UCEC. (G) Forest plots showing the prognostic value of 12 candidate DEDRLs. (H) The correlation between 12 candidate prognostic DEDRLs and the 
corresponding DDR genes in the TCGA-UCEC cohort. Spearman correlation analysis was applied. The color of each table cell represents the degree of relationship. 
*p < 0.05, * *p < 0.01, and * **p < 0.001. 
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Fig. 3. Identification of a prognosis model based on a nine-DEDRL signature. (A, B) LASSO Cox regression with minimum lambda as the optimal parameter 
identifying the prognostic DEDRLs. (C) Volcano plot depicting the expression levels of the nine signature lncRNAs between the normal and tumor groups. Red denotes 
upregulated genes while blue denotes downregulated genes. (D-F) Kaplan–Meier analysis of risk score for training (D), test (E), entire (F) TCGA-UCEC cohorts. (G-I) 
The time-dependent receiver operating characteristic (ROC) analyzes assessing the prognostic predictive ability of the risk signature in the training (G), test (H), and 
entire (I) cohorts. (J-L) Distribution of risk score, overall survival status of each UCEC patient, and the expression heatmap of the nine prognostic lncRNAs in the (J) 
training, (K) test, and entire (L) cohorts. 
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patient with UCEC was assigned a risk score utilizing the following 
equation: 

risk score = (AC019069.1 × 0.242)+ (AC092969.1 × 0.324)+ (LEF1 − AS1

× ( − 0.160) )+ (SCARNA × ( − 0.275) )+ (FAM181A − AS1

× ( − 0.207) )+ (AC023300.2

× ( − 0.018) )+ (LCMT1 − AS2 × 0.463)+ (AC130371.2

× ( − 0.019) )+ (TRPM2 − AS × ( − 0.036) )

Subsequently, the UCEC samples were divided into low- and high- 
risk groups based on the median risk score. In the training cohort, the 
KM curves revealed that the high-risk group had a shorter OS than the 
low-risk group (P < 0.0001; Fig. 3D). The area under the curve (AUC) 
values for the 1-, 3-, and 5-year survival rates were 0.67, 0.77, and 0.80, 
respectively (Fig. 3G). The efficacy of the risk model was further 
confirmed in the test (Fig. 3E, H) and entire (Fig. 3F, I) UCEC cohorts. 
The cutoff values in these two validation cohorts were the corresponding 
median risk scores. The distribution of survival period and status for 
each individual and the expression patterns of the nine lncRNAs in the 
three cohorts are shown in Fig. 3J-L. Together, these data suggest that 
our nine-lncRNA signature can accurately predict the prognosis of pa-
tients with UCEC. 

3.4. Relationship between the nine-DEDRL signature and the 
clinicopathological features 

We then evaluated whether the risk scores varied among subgroups 
with different clinicopathological features. We found that high UCEC 
grade implied high risk scores (Fig. 4A). The same trend was observed 
for stage (Fig. 4B). In addition, the older (age > 60 years) subgroup also 
had high risk scores (P < 0.0001; Fig. 4C), and we also graphed a his-
togram to reveal the change trend of risk scores along with the age of 
individuals (Fig. S4). We compared the differences between the two 
DEDRL-based heterogeneous clusters. Cluster1 had lower risk scores 
compared to cluster2 (P < 0.0001; Fig. 4D). A Sankey diagram was 
drawn to depict the relationships among cluster, risk score, and patient 
survival status. As shown, a high proportion of patients in the cluster1 
belonged to the low-risk group, and a low proportion of patients in the 
low-risk group died during the follow-up period (Fig. 4E). The differ-
ences in clinicopathological features between the low- and high-risk 
groups are displayed using a heatmap, which further showed the rela-
tive expression levels of nine signature genes between the low- and high- 
risk groups, and revealed that the low-risk group contained more low- 
stage, low-grade, young and cluster1 cases (Fig. 4F). In summary, 
these results suggest that our nine-DEDRL signature is closely correlated 
with the classical clinicopathological characteristics. 

3.5. Development of a prognosis nomogram 

To investigate whether the nine-DEDRL signature could indepen-
dently affect UCEC prognosis, univariate and multivariate Cox regres-
sion analyses were performed by combining the risk scores with other 
traditional clinical features. The risk score was identified as an inde-
pendent prognostic factor for UCEC (Fig. 5A, B). A nomogram incor-
porating risk score and other traditional clinical characteristics was then 
constructed to guide clinical practice. The prognostic nomogram pre-
dicted the survival probability of patients by adding the scores for the 
relevant factors. Specifically, the total score for a given patient was 181 
(indicated by red dots and line segments), and the probabilities of 1- 
year, 3-year and 5-year survival for score 181 were 0.98, 0.911, and 
0.873, respectively (Fig. 5C). The AUC values for 1-, 3-, and 5-year 
survival for the nomogram model were 0.79, 0.78, and 0.81, respec-
tively, overwhelming any of the other indicators (Fig. 5D-F). The 
nomogram model has the highest net benefit for 1-, 3-, and 5-year OS, as 
revealed by DCA analysis (Fig. S5A). Meanwhile, the calibration curves 

for 1-, 3-, and 5-year OS were exactly coincident with the 45◦ line 
(Fig. S5B), implying an excellent performance. Therefore, the prognostic 
nomogram may potentially assist in clinical practice. 

3.6. Functional enrichment of the nine-DEDRL signature 

To further explore the potential mechanisms underlying the prog-
nostic heterogeneity in these two risk groups, we performed GSEA 
analysis of the DEGs between these two risk subgroups in TCGA-UCEC. 
First, 1629 DEGs were identified, including 941 downregulated and 688 
upregulated genes. The top five pathways enriched in the high- (Fig. 6A) 
and low-risk (Fig. 6B) groups, revealed by GSEA, were identified. As 
shown, the cell cycle and DNA replication were activated in the high-risk 
group, indicating abnormal proliferation. 

The signature we screened was DRG-related lncRNAs. Therefore, we 
further assessed the differences in the activation of eight main DDR- 
related pathways and five radiation-related pathways between the 
low- and high-risk groups using ssGSEA. Almost all pathways had higher 
scores in the high-risk group (Fig. 6C). 

3.7. Immunity analysis of UCEC samples stratified by the risk signature 

We further investigated the relationship between DDR-related 
signature and UCEC immune microenvironment. As shown, most 
immune-related pathways were less enriched in the high-risk group 
(Fig. 6D). Then, we determined the landscape of 28 immune cell in-
filtrations using ssGSEA. Most immune cells were highly abundant in the 
low-risk group (Fig. 6E). The stromal, immune, and ESTIMATE scores 
were significantly low in the high-risk group (P < 0.05; Fig. 6F), indi-
cating weak immunity and high tumor purity. Taken together, the poor 
prognosis in the high-risk group may partly originate from impaired 
immune function. 

Additionally, we compared the levels of the different checkpoints 
between the two risk subgroups. Most immune checkpoint genes were 
expressed at low levels in the high-risk group (Fig. 7A). Further analysis 
revealed that the expression of two most well-known checkpoints, PD1 
and CTLA4, were significantly negatively correlated with the risk score 
(Fig. 7B, E). We also demonstrated that low PD1 (Fig. 7C) or CTLA 4 
(Fig. 7F) expression predicted short OS in patients with UCEC. When 
combining the risk score with PD1 or CTLA4 expression, patients in the 
high-risk and low-PD1 or high-risk and low-CTLA4 subgroups had the 
worst prognoses (Fig. 7D, G). Moreover, both IPS (Fig. 7H) and TIDE 
(Fig. 7I) algorithms suggested that individuals in the high-risk group 
exhibited poor therapeutic responses to ICB. 

3.8. UCEC mutations and chemotherapeutic sensitivity in the DEDRL 
signature 

First, an overview of the top 10 most frequently mutated genes in 
these two UCEC risk groups was depicted using Oncoplots (Fig. 8A, B). 
TP53 (56%) and PTEN (85%) had the highest mutation frequencies in 
the high- and low-risk groups. We also compared the mutation land-
scapes of the five main DDR-related pathways between the two groups 
(Fig. S6A–E). Compared to the low-risk group, the high-risk group had 
lower frequencies of homologous recombination (HR) (27.00% vs. 
35.94%, P = 0.033) and mismatch repair (MMR) (23.21% vs. 31.25%, 
P = 0.045) mutations (Fig. S6F). In addition, we assessed the MSI status 
of the patients with UCEC. A higher proportion of patients with MSI was 
observed in the low-risk group (34.8% vs. 30.2%; Fig. 8C). The MMR- 
related genes were consistently upregulated in the high-risk group 
(Fig. S7). In the TCGA-UCEC cohort, the MSI group showed better 
clinical outcomes (Fig. 8D). Patients with MSI tended to have low risk 
scores (Fig. 8E). When the tumor samples were separated into four 
subgroups based on the risk score and microsatellite status, individuals 
in the high-risk and MSS groups showed the shortest OS (Fig. 8F). TMB is 
another important parameter that can be used to predict 
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Fig. 4. Relationship between the risk score and different clinicopathological features in the TCGA-UCEC cohort. (A-D) The risk scores in different subgroups stratified 
by grade (A), stage (B), age (C), and cluster (D). (E) The Sankey diagram depicting the connection among clusters, risk subgroups and survival status. A high 
proportion of patients in the cluster1 belonged to the low-risk group, and a low proportion of patients in the low-risk group died during the follow-up period. (F) 
Heatmap showing the correlation between different clinical features and the risk subgroups. 
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immunotherapeutic responses. The KM curve revealed that high TMB 
protected against UCEC prognosis (Fig. 8G). We also found that the TMB 
levels and risk scores were negatively correlated (P < 0.001; Fig. 8H). As 
expected, the high-risk and low-TMB patients showed the worst out-
comes (Fig. 8I). Based on the molecular characteristics, immune activity, 

and mutation heterogeneity of the high-risk group, we reasonably 
assumed that participants in the high-risk group were prone to acquiring 
drug resistance. Thus, we comprehensively compared the estimated 
IC50 of 198 chemotherapeutic agents or inhibitors in GDSC database 
between the two risk groups. Among these, the IC50 of 26 drugs were 

Fig. 5. Construction of a prognostic nomogram for the entire TCGA-UCEC cohort. (A) Univariate Cox regression analysis for the risk score and clinical features. (B) 
Multivariate Cox regression analysis for the risk score and clinical features. (C) Prognostic nomogram model containing grade, stage, age and risk score. (D-F) Time- 
dependent ROC analyzes comparing the prognostic accuracy of the risk score and other clinical prognostic features at 1- (D), 3- (E), and 5-year (F) survival time, 
respectively. 
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significantly different and positively correlated with the risk score 
(Fig. 8J), indicating that the high-risk UCEC subgroup was potentially 
insensitive to chemotherapy. Additionally, considering the differences 
in the mutations of NHEJ- (though not statistically significant), MMR-, 
HR-related genes between the low-risk and high-risk groups, we further 
analyzed whether the mutations of these genes would affect the sensi-
tivity of these 26 drugs. As shown in Fig. S8-14, the mutation of these 
genes could potentially affect the sensitivity to some of the drugs. In 
most cases, the wild-type of a gene had a higher IC50 than the mutant 
type did, representing a potential drug resistance. 

3.9. AC019069.1 overexpression promoted proliferation and inhibited 
apoptosis in EC cell lines 

To further assess the model robustness, we measured the transcrip-
tional levels of nine signature lncRNAs in 19 paired clinical UCEC 
specimens. The results showed that AC019069.1, SCARNA9, and 
TRPM2-AS were upregulated in tumor specimens, whereas LCMT1-AS2, 
AC130371.2 were downregulated in tumor samples, which was consis-
tent with the findings from TCGA. However, the validation results for 
AC092969.1, and LEF1-AS1 were contrary to the TCGA data. FAM181A- 
AS1 and AC023300.2 expression levels did not differ between tumor and 
normal tissues in our paired samples (Fig. 9A and S15). Among the three 
verified overexpressed genes, only AC019069.1 indicated a worse 

Fig. 6. Functional enrichment and immune characteristics of DEDRL-related signature in UCEC. (A) GSEA analysis of KEGG pathways in high-risk group. (B) GSEA 
analysis of KEGG pathways in low-risk group. (C) The relative activities of 8 DDR-related pathways and 5 radiation-related pathways calculated by ssGSEA algorithm 
between low- and high-risk groups. HR, homologous recombination; NHEJ, non-homologous end joining; MMR, mismatch repair; NER, nucleotide excision repair; 
BER, base excision repair. (D) The boxplot for comparison of 13 immune-related pathways between low- and high-risk groups. CCR, cytokine–cytokine receptor. (E) 
The abundance of 28 immune cells using ssGSEA algorithm between low- and high-risk groups. (F) The stroma, immune, and ESTIMATE scores between low- and 
high-risk groups. *p < 0.05, * *p < 0.01, * **p < 0.001, ns, not significant. 
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Fig. 7. Comparison of immune checkpoint blockade (ICB) efficacy between low- and high-risk groups. (A) The expression of 35 validated immune checkpoints in 
these two risk groups. (B, E) The correlation between PD1 (B) or CTLA (E) expression and risk score. (C, F) Kaplan-Meier analyses for PD1 (C) and CTLA4 (F) in UCEC 
patients. (D, G) Kaplan-Meier analyses in UCEC patients stratified by the expression of PD-1 (D) or CTLA-4 (G) and risk signature. (H) The IPS scores between low- 
and high-risk groups. (I) The TIDE scores between low- and high-risk groups. 
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Fig. 8. Mutation profiles and drug sensitivity analyzes based on the DEDRL signature. (A, B) Oncoplots depicting the top ten genes with the highest mutation 
frequency in high-risk group (A) and low-risk group (B), respectively. (C) Comparison of the proportion of microsatellite status between the low- and the high-risk 
groups. MSS, microsatellite stability, MSI, microsatellite instability. (D) Kaplan-Meier analyses for microsatellite status in UCEC patients. (E) Comparison of risk 
scores between MSS and MSI subgroups. (F) Kaplan-Meier analysis in UCEC patients stratified by microsatellite status and risk signature. (G) Kaplan-Meier analyses 
for tumor mutation burden (TMB) in UCEC patients. (H) The correlation between TMB level and risk score in UCEC patients. (I) Kaplan-Meier analysis in UCEC 
patients stratified by TMB and risk signature. (J) The correlation analysis for the IC50 of 26 chemicals in GDSC database and risk score. Spearman correlation analysis 
was applied. 
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Fig. 9. Functions of AC019069.1 in UCEC. (A) The RNA expression levels of AC019069.1 in 19 paired clinical UCEC samples. (B) qRT-PCR results revealed 
AC019069.1 was successfully overexpressed in all three EC cell lines. (C) CCK-8 assay revealed AC019069.1-overexpression EC cells proliferated faster. (D) Edu assay 
revealed AC019069.1-overexpression EC cells proliferated faster. (E) Flow cytometry revealed AC019069.1-overexpression EC cells had lower apoptosis rates. 
*p < 0.05, * *p < 0.01, * **p < 0.001, * ** *p < 0.0001. 
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prognosis; therefore, we further explored its potential function. 
To assess the potential function of AC019069.1 in UCEC, we con-

ducted a series of in vitro experiments. Firstly, AC019069.1 was 
demonstrated to be successfully overexpressed in three EC cell lines 
(Fig. 9B). Additionally, CCK-8 and EdU assays revealed that AC019069.1 
accelerated the growth of Ishikawa, HEC1B, and ANC3A cells (Fig. 9C, 
D). Moreover, AC019069.1-overexpressing EC cells exhibited signifi-
cantly low apoptosis rates (Fig. 9E). 

3.10. AC019069.1 protected EC cells from etoposide-induced DNA 
damage stimuli 

As previously mentioned, the high-risk group exhibited proficient 
DDR ability; therefore, we wondered whether AC019069.1 was involved 
in DDR. In the TCGA-UCEC dataset, AC019069.1 was correlated with 
most of the DDR regulators (Fig. 10A). Moreover, all five classical DDR 
pathways had higher activities in the high-AC019069.1 group 
(Fig. 10B). To further explore its involvement in EC, we treated EC cell 
lines with etoposide to induce DNA damage. We first determined that 
etoposide at 20 μM could induce significant DNA damage in all three EC 
cell lines (Fig. S16A), while significant damage recovery could be 
observed at 4 h after drug withdrawal (Fig. S16B). DNA damage stimuli 
elicited the upregulation of AC019069.1, indicating that AC019069.1 
was responsive to DNA damage (Fig. 10C). In addition, we monitored 
DDR in UCEC by detecting the γ-H2AX changes. The immunofluores-
cence assay revealed that AC019069.1 overexpression did not alter 
baseline genome stability, whereas AC019069.1-overexpressing EC cells 
exhibited decreased levels of DNA damage after etoposide treatment 
compared to controls (Fig. 10D). Western blot analysis also verified the 
role of AC019069.1 in maintaining genome stability, as AC019069.1 
overexpression protected EC cells from etoposide-induced DNA damage 
stimuli and conferred quick recovery from DNA damage (Fig. 10E, F). 

4. Discussion 

DDR counteracted tumorigenesis by maintaining genomic integrity. 
However, cancer cells could also use this system to develop resistance to 
radiotherapy and many chemotherapeutic drugs [22]. Till date, target-
ing DDR pathways remains a promising strategy for sensitizing cancer 
therapies, especially in DDR-proficient tumors. In this study, we found 
that DDR was significantly enriched in UCEC. A previous study has 
successfully established a nine DDR mRNA-based classifier for predict-
ing UCEC prognosis [23]. Considering that lncRNAs are pivotal in UCEC 
progression, linking DDR signaling with lncRNA regulators may provide 
novel insights into the improvement of clinical management of UCEC. 

Compelling evidence reveals the intrinsic heterogeneity of UCEC. In 
this study, 204 DEDRLs were identified. Based on the expression profile 
of these lncRNAs, two distinctive UCEC clusters were identified. 
Comprehensive analyses indicated that the prognosis, TME, and 
immunoreactivity of these subtypes were significantly different. In 
summary, our results provide consensus that precise molecular classi-
fication has practical and clinical significance. 

However, poor accessibility of transcriptome profiles to patients in 
clinical practice may limit the application of DEDRLs. Therefore, a 
concise but optimal 9-DEDRL based risk signature was identified using 
Cox and LASSO regression. The risk score exhibited promising value in 
predicting prognosis and guiding precise individual therapies for UCEC. 
And we successfully constructed a nomogram by integrating risk score, 
age, grade, and stage to guide clinical practice. In fact, age, stage, and 
grade are all important factors affecting DDR. Age could affect DDR 
efficiency, and DDR efficiency also contributes to the occurrence and 
progression of age-related diseases, such as cancer[24]. Lantuejoul et al. 
reported that during lung carcinogenesis, the expression of DDR-related 
proteins significantly correlated with tumor stage and grade [25], which 
highlights the impact of tumor grade and stage on DDR. Additionally, 
the risk signature was closely associated with immune cell infiltration, 

ICB efficacy, TMB, MSI, and chemosensitivity. We further analyzed the 
mechanisms underlying the different characteristics of the low- and 
high-risk groups. GSEA indicated that two important cancer hallmarks, 
cell cycle [26] and DNA replication [27], were enriched in the high-risk 
group. These molecular features may confer aggressive phenotypes to 
cancer cells, resulting in poor clinical outcomes. More importantly, 
GSEA revealed that the high-risk group had a high activity of pathways 
related to DDR, X-ray, and UV responses. These results indicate potential 
chemoradiotherapy resistance in the high-risk group owing to a profi-
cient DDR system. Consistently, we found that subjects in the high-risk 
group were less sensitive to common drugs or inhibitors in the GDSC 
database. 

The human body has powerful immune surveillance capabilities to 
eliminate cancer cells [28]. However, to overcome this barrier, tumor 
cells have evolved a series of mechanisms based on the tumor micro-
environment, a tumorigenic primary niche suitable for tumor progres-
sion [29]. In this study, we found low infiltration of most immune cell 
types and weak activity of most immune-related pathways in the 
DDR-proficient high-risk group, representing a “cold immunity” status. 
In addition, most checkpoint molecules, including PD1 (although not 
statistically significant) and CTLA4, were also downregulated in the 
high-risk group, indicating that individuals in this group may hardly 
benefit from ICB therapy, and results from IPS and TIDE analyses 
confirmed this assumption. Surprisingly, several studies have revealed 
that DDR-targeted therapies have efficient antitumor capabilities [22, 
30]. Briefly, targeting DDR elicits a DNA damage-induced immune 
response to eradicate cancer cells. Considering the potential resistance 
to chemoradiotherapy and immunotherapy, DDR inhibitors may be used 
to improve the outcomes of patients classified as high-risk groups. 

Previous studies have suggested that TMB is a promising predictor of 
ICB-based strategies [31,32]. Somatic mutations in cancer cell DNA can 
produce neoantigens that can be traced and targeted by immune 
guardians [33,34]. Thus, the TMB level of a tumor is likely to be posi-
tively correlated with the neoantigen load. In our study, a significant 
negative relationship was found between TMB and the risk score. In 
concordance with previous reports [35], we found that high TMB tended 
to predict good prognosis in the TCGA-UCEC project. Another argument 
supporting the selection of high-risk groups for treatment with DDR 
inhibitors is that such therapies may promote tumor antigenicity by 
disrupting genomic stability and increasing mutability. In addition, MSI 
secondary to DNA mismatch repair deficiency (MMR-D) has recently 
been identified as a valuable biomarker of sensitivity to immunotherapy 
[36]. The MSI/MMR-D endometrial carcinomas subtype reportedly ex-
hibits good patient survival and immune activity [37]. In TCGA-UCEC 
dataset, we found that patients with MSI had a longer OS than those 
with MSS. Moreover, MMR-related genes were mutated less frequently 
and exhibited high expression levels in the high-risk group. This finding 
is consistent with the low proportion of patients with MSI in the 
high-risk group. 

Additionally, we confirmed that AC019069.1 might act as an onco-
gene in EC in vitro. The proliferation rate and apoptotic tendency of 
AC019069.1-overexpressing cells were high and low, respectively, rep-
resenting an aggressive phenotype. Till date, no studies have revealed 
the biological functions of AC019069.1. DNA double strand breaks 
(DSBs) belong to one of the most lethal types of damage [38] and 
γ-H2AX is a sensitive marker for this process [39]. Etoposide is 
commonly used as a DSB inducer [40,41], and in mammalian cells, DSBs 
are usually repaired by HR and NHEJ pathways [42]. In the TCGA-UCEC 
dataset, the relative activities of HR and NHEJ were significantly 
different between low-AC019069.1 and high-AC019069.1 groups. 
Consistently, in this study, AC019069.1 overexpression could contribute 
to the resistance of EC cells to etoposide-induced DNA damage, which 
might be a possible mechanism underlying its carcinogenic effect. 

Nevertheless, some limitations exist in our study. First, although we 
verified the expression levels of signature lncRNAs in our samples but 
did not further validate the prognostic value of the risk score because of 
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Fig. 10. AC019069.1 overexpression stabilized EC cell genome. (A) The volcano plot depicting the correlation between AC019069.1 and DDR genes. (B) The ssGSEA 
scores of five classical DDR pathways between low- and high-AC019069.1 TCGA-UCEC subgroups. (C) The RNA levels of AC019069.1 in EC cell lines after etoposide 
(20 μM) treatment for 24 h. (D) Immunofluorescence results suggested that AC019069.1-overexpressing EC cells were resistant to etoposide induced DNA damage. 
The EC cells were treated with DMSO or etoposide (20 μM) for 2 h. (E) Western blot analysis suggested that AC019069.1-overexpressing EC cells showed decreased 
DNA damage and recovered more quickly. The EC cells were treated with etoposide (20 μM) for 2 h to induce DNA damage or allowed to recover for 4 h. (F) The 
statistical analysis of western blot results. *p < 0.05, * *p < 0.01, * **p < 0.001, ns, not significant. 
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the lack of patient follow-up data. Second, the specific mechanism of 
AC019069.1-regulated DDR in UCEC has not been elucidated. Third, the 
biological functions of the remaining eight signature lncRNAs in UCEC 
remain unclear and require further verification. 

5. Conclusion 

In summary, we successfully constructed a nine DRL-based robust 
risk signature that showed potential value for predicting UCEC prog-
nosis. Additionally, comprehensive bioinformatics analyses revealed 
that the high-risk patients with UCEC were DDR-proficient, immune 
surveillance impaired, and potentially drug-resistant, and thus had 
worse clinical outcomes. Our findings shed new light on precise UCEC 
management. 
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