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1  |  INTRODUC TION

Melanoma is an aggressive form of skin cancer. Due to genetically 
complex development of cutaneous melanoma (CM), its therapeutic 
management remains challenging worldwide.1 Despite the various 
aggressive intervention, patients continue to have a high recurrence 

rate, which is a poor prognostic factor for CM.2 Thus, there is an 
urgent need to develop more appropriate and effective prognos-
tic biomarkers of CM. Gene expression has recently emerged as a 
promising prognostic factor for various cancers. Thus, it is worth 
looking for novel and appropriate molecular biomarkers to unveil the 
mechanistic biological processes in treatment- resistant CM.
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Abstract
Cutaneous melanoma (CM) is an aggressive cancer; given that initial and specific signs 
are lacking, diagnosis is often late and the prognosis is poor. RNA modification has 
been widely studied in tumour progression. Nevertheless, little progress has been 
made in the signature of N1- methyladenosine (m1A), 5- methylcytosine (m5C), N6- 
methyladenosine (m6A)- related regulators and the tumour microenvironment (TME) 
cell infiltration in CM. Our study identified the characteristics of m1A- , m5C-  and m6A- 
related regulators based on 468 CM samples from the public database. Using univari-
ate, multivariate and LASSO Cox regression analysis, a risk model of regulators was 
established and validated by a nomogram on independent prognostic factors. The 
gene set variation analysis (GSVA) and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) clarified the involved functional pathways. A combined single- sample gene set 
enrichment analysis (ssGSEA) and CIBERSORT approach revealed TME of regulator- 
related prognostic signature. The nine- gene signature stratified the patients into dis-
tinct risk subgroups for personalized prognostic assessment. Additionally, functional 
enrichment, immune infiltration and immunotherapy response analysis indicated that 
the high- risk group was correlated with T- cell suppression, while the low- risk group 
was more sensitive to immunotherapy. The findings presented here contribute to our 
understanding of the TME molecular heterogeneity in CM. Nine m1A- , m5C-  and m6A- 
related regulators may also be promising biomarkers for future research.
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RNA modification is a way of post- transcriptional regulation, 
which works as an additional link between transcription and transla-
tion and is crucial for the event of many diseases. Over one hundred 
styles of RNA modifications have been discovered, the most common 
one being m6A methylation.3 m5C and m1A are new RNA modifica-
tions that have attracted widespread attention in recent years.4 RNA 
modifications, involving m1A, m5C and m6A, are implicated in regu-
lating cancer cell proliferation, transformation, invasion and differ-
ent malignant behaviours. The m6A- related regulators as prognostic 
biomarkers have reported in many research studies. These regulators 
were also mentioned as playing a key role in multiple processes of 
tumorigenesis and progression.5 YTHDF1 may act as an m6A- related 
regulators in colorectal cancer to promote the malignant phenotypes 
through inhibiting the Wnt/ß- catenin pathway.6 NSUN2 is an m5C- 
regulatory gene correlates with lower survival rate in patients with 
gastrointestinal (GI) cancer by regulating RNA methylation modi-
fication via the ErbB signalling pathway.7 Similar to m6A and m5C, 
TRMT6 has been found to mediate the MYC, and also the PI3K/Akt 
signalling pathway in vitro, thereby downregulating m1A and affecting 
hepatocellular carcinoma (HCC) prognosis.8 Collectively, the underly-
ing correspondence between m1A- , m5C-  and m6A- related regulators 
and varied tumours sparked a revived interest in developing original 
prognostic biomarkers. Consequently, the signature of m1A- , m5C-  
and m6A- related regulators in CM is worth further investigations.

Immunotherapy showed superb clinical effectiveness in a mi-
nority of CM patients with long- lasting effects.9,10 Yet, the vast ma-
jority of patients have to endure the cost of frequent and serious 
immune- related adverse events, which greatly hampers the actual 
efficacy.11 It has been widely accepted that tumour microenviron-
ment (TME) plays a critical role in malignancy evolvement and im-
mune regulation. TME incorporates not solely tumour cells but also 
stromal cells (fibroblasts and macrophages), and immune cell infil-
tration (ICI), chemokines and growth factors. Alternative TME com-
ponents directly or indirectly interact with tumour cells to cause 
changes in a variety of physical behaviours, such as apoptosis resis-
tance,12 hypoxia tolerance12 and immune dysfunction.13 With the 
deepening of the understanding of the TME, several studies have 
demonstrated that TME plays a pivotal role in tumour progression, 
immune escape and immunotherapy response.14 Therefore, an ex-
tensive analysis of the TME landscape can effectively improve the 
ability to guide and predict the immunotherapy response.

This study set out to identify the potential signature of m1A- , 
m5C-  and m6A- related regulators to improve prognostic evaluation 
of CM. We built a novel nine- regulator (including UNG, FMR1, MBD4, 
MBD2, NEIL1, WTAP, UHRF2, YTHDF1 and RBM15B) signature on the 
TCGA database. By integrating univariate, multivariate and LASSO 
Cox regression analyses, we established a regulator- related risk pre-
dictive model to distinguish the level of risk among patients with 
CM. The importance and originality of this study are that it further 
revealed the underlying connection between the regulator- related 
risk predictive signature and the ICI characteristics of TME. This 
novel signature could be used to evaluate the sensitivity of CM pa-
tients to immunotherapy.

2  |  MATERIAL S AND METHODS

2.1  |  Selection of m1A- , m5C-  and m6A- related 
regulators

A total of 48 m1A- , m5C-  and m6A- related regulators were col-
lected from previously published studies. According to the avail-
able data, METTL3, METTL14, RBM15, RBM15B, WTAP, KIAA1429, 
CBLL1, ZC3H13, ALKBH5, FTO, YTHDC1, YTHDC2, YTHDF1, YTHDF2, 
YTHDF3, IGF2BP1, HNRNPA2B1, HNRNPC, FMR1, LRPPRC and ELAVL 
are m6A- related regulators15,16; DNMT1, DNMT3A, DNMT3B, MBD1, 
MBD2, MBD3, MBD4, MECP2, NEIL1, NTHL1, SMUG1, TDG, UHRF1, 
UHRF2, UNG, ZBTB33, ZBTB38, ZBTB4, TET1, TET2 and TET3 are m5C- 
related regulators17; and TRMT10C, TRMT61B, TRMT6, TRMT61A, 
ALKBH3, ALKBH1, YTHDC1, YTHDF1, YTHDF2 and YTHDF3 are m1A- 
related regulators.18

2.2  |  Data Acquisition

All of the clinical patient data, mutations, copy- number variation 
(CNV) and mRNA expression data were downloaded from the TCGA 
(http://gdc.cancer.gov). Patients from the TCGA- SKCM (N = 468) 
were enrolled to form the internal training set. Furthermore, 
the GSE10 0797 data set (N = 25) was obtained from the Gene 
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) as an 
external validation set to better validate the prognostic predictive 
power of the prognostic gene signature. Eligible subjects met the fol-
lowing selection criteria: (1) complete clinical information available 
and (2) survival time more than 90 days.

2.3  |  Establishment and validation 
for the prognostic signature of m1A- , m5C-  and m6A- 
related regulators

A total of 46 regulators expressed in TCGA- SKCM were enrolled in 
the survival analysis (Figure S5). The identification of m1A- , m5C-  and 
m6A- related prognostic genes was carried out using univariate Cox 
regression analysis, and genes were considered significant with a 
cut- off of p < 0.05. The selected factors in the LASSO regression 
were analysed by multivariate analysis. The risk score was generated 
as follows:

The patients were stratified into high- risk and low- risk groups 
based on the median risk score. For the evaluation of the overall sur-
vival (OS) of high-  and low- risk groups, the Kaplan- Meier (K- M) sur-
vival analysis was performed by the R package ‘survival’. The same 
analysis was also conducted in the external validation set. Clinical 
information for the training set and the external validation set is 

risk score =
esum(each gene’s expression levels × corresponding coefficient)

esum(each gene’s mean expression levels × corresponding coefficient)
.

http://gdc.cancer.gov
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100797
http://www.ncbi.nlm.nih.gov/geo
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presented in Table 1 and Table S5, respectively. The assessment of 
risk score prognostic efficiency was conducted based on the areas 
under the curve (AUCs) of the time- dependent receiver operating 
characteristic (ROC) curve in the R package ‘TimeROC’.19

2.4  |  Independent prognostic roles of the 
regulator- related signature

The univariate and multivariate Cox regression analyses were per-
formed to test the hypothesis that the prognostic gene signature 
could be independent of other clinical parameters (including gender, 
radiotherapy, chemotherapy, N stage, T stage, M stage, stage and 
age). P < 0.05 was considered to be statistically significant.

2.5  |  Development of a nomogram

A nomogram was constructed based on the independent prognostic 
factors by the survival and the rms R package. The calibration curves 
and the concordance index (C- index), ranging from 0.5 to 1.0, were 
used to gauge the model's ability to predict prognosis. The value of 

0.5 and 1.0 represents a random chance and the optimal perfor-
mance with the prognosis model, respectively.

2.6  |  GSVA and functional annotation

The ‘GSVA’ R package was used to test the enrichment of m1A- , m5C-  
and m6A- related regulatory gene signatures in the normalized gene 
expression table. Non- parametric tests and unsupervised method 
were bound to compare the number of the pathway and biological 
process activity in the samples of an expression data set.20 Adjusted 
P with a value less than 0.05 was considered statistically significant.

2.7  |  Pathway analysis for the differentially 
expressed genes (DEGs) of the regulator- related 
risk model

The DEGs between different risk groups were analysed with func-
tion of the Limma version 3.36.2 R package.21 DEGs with an abso-
lute log2 fold change >1 and an adjusted p < 0.05 were included in 
the subsequent analysis. KEGG database is one of the most widely 

Clinical variables
Total
(N = 342)

Risk group

P- value
High 
(n = 171) Low (n = 171)

Gender 1

Female 129 (37.7%) 64 (37.4%) 65 (38.0%)

Male 213 (62.3%) 107 (62.6%) 106 (62.0%)

Age 0.013

<60 180 (52.6%) 78 (45.6%) 102 (59.6%)

≥60 162 (47.4%) 93 (54.4%) 69 (40.4%)

Stage 0.913

High stage 154 (45.0%) 76 (44.4%) 78 (45.6%)

Low stage 188 (55.0%) 95 (55.6%) 93 (54.4%)

T 0.034

T1- T2 128 (37.4%) 54 (31.6%) 74 (43.3%)

T3- T4 214 (62.6%) 117 (68.4%) 97 (56.7%)

N 0.54

N1- N2 303 (88.6%) 151 (88.3%) 152 (88.9%)

N3- N4 39 (11.4%) 20 (11.7%) 19 (11.1%)

M 1

M0 331 (96.8%) 167 (97.7%) 164 (95.9%)

M1 11 (3.2%) 4 (2.3%) 7 (4.1%)

Radiotherapy 0.132

No 232 (67.8%) 123 (71.9%) 109 (63.7%)

Yes 110 (32.2%) 48 (28.1%) 62 (36.3%)

Chemotherapy 0.374

No 211 (61.7%) 110 (64.3%) 101 (59.1%)

Yes 131 (38.3%) 61 (35.7%) 70 (40.9%)

TA B L E  1  Different clinicopathological 
features of the regulator- related risk 
subgroups in TCGA- SKCM
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used techniques for determining the signalling pathways of DEGs. 
The calculation was completed with the clusterProfiler package in R 
software, and statistical significance was established at 0.05 level.

2.8  |  Estimation of TME immune cell infiltration

We utilized the ssGSEA algorithm to quantify the relative abundance 
of each cell infiltration in the cutaneous melanoma TME. The enrich-
ment score calculated by the ssGSEA was utilized to represent the 
relative abundance of each TME- infiltrating cell in each sample. The 
gene set for marking each TME infiltration immune cell type was 
stored in various human immune cell subtypes, including activated 
CD8 T cells, activated dendritic cells, macrophages, natural killer T 
cells and regulatory T cells.14

2.9  |  ESTIMATE algorithm

ESTIMATE is a well- established algorithmic tool in the prediction 
of tumour purity, with ESTIMATE score generated by 141 immune 
genes and 141 stromal gene expression profiles, using the ESTIMATE 
R package. Five rounds of gene filtering distinguished the different 
signatures of m1A- , m5C-  and m6A- related regulators: i) a ‘stromal 
signature’ for the stroma and ii) an ‘immune signature’ for the ICI in 
tumour tissue. Statistical significance was calculated by integrating 
the difference between the empirical cumulative distribution func-
tion, which is similar to the one used in GSEA, but instead based on 
absolute expression rather than differential expression.

2.9.1  |  Statistical analysis

All analyses were carried out by the R software (version 3.5.2). 
Distributions of OS were compared using the log- rank test. The 
C- index was used to assess the probability that a prognostic sig-
nature with a high value could reflect poor survival. P < 0.05 was 
considered statistically significant. For multiple comparisons, 
the Bonferroni corrections were applied following the analysis of 
variance, and p < 0.05/number of tests served as the significance 
threshold.

3  |  RESULTS

3.1  |  The genetic landscape and expression levels 
of m1A- , m5C-  and m6A- related regulators

Figure 1 depicts the workflow diagram of the present study. A total 
of 46 m1A- , m5C-  and m6A- related regulators were ultimately se-
lected to perform the following analysis (Table S1). The incidence 
of SNV and CNV of 46 regulators was summarized in TCGA skin 
cutaneous melanoma (SKCM). Figure 2 presents the landscape of 

alteration obtained from the preliminary analysis of the 46 regula-
tors. Missense mutation was the most frequent mutation event 
(Figure 2A). The top 20 mutated genes were identified based on the 
number of mutations in TCGA- SKCM using the ‘maftools’ R pack-
age (Figure 2B). Among 245 samples, 183 experienced mutations of 
regulators, with a frequency of 74.69%. It was found that the TET1 
exhibited the highest mutation frequency. The investigation of the 
46 regulators exhibited a prevalent CNV alteration and amplifica-
tion in copy number. Figure 2C displays the CNV alteration location 
of the 46 regulators. A total of 467 CM samples were included for 
SNV studies. For CNV analysis, there were 416 CM samples. Survival 
analysis revealed that CM with SNV had a worse prognosis than that 
without mutations (Figure 3A). In contrast, there were no significant 
differences between CNV and wild type (Figure 3C). Four of 44 
regulators were identified in 468 CM samples that had a significant 
association with different SNV patterns (Table S2). DNMT3B and 
UNG with SNV were linked to reduced mRNA expression, while in-
creases were observed for DNMT1 and HNRNPC (Figure 3B). Dose 
compensation effects were a contributing factor for the relationship 
between CNV alterations and gene expression levels.22 The next 
analysis focused on how CNV patterns attributed to expression of 
regulators. The correlation between the two in 416 CM samples 
is interesting because increased copy numbers of 45 regulators 
showed high expression, while deletions presented low expression 
(Figure S1). Only IGF2BP lacked a meaningful result (Table S2). These 
findings indicated that SNV and CNV of m1A- , m5C-  and m6A- related 
genes could affect the expression of key regulatory molecules and 
contribute to CM progression.

3.2  |  Identification of the regulatory gene 
expression relevant to clinical prognosis

To explore the clinical signature of m1A- , m5C-  and m6A- related 
regulators in CM, the K- M survival analysis was implemented to 
evaluate the relationship between clinicopathological features and 
regulators using the data from TCGA- SKCM. TNM stages 1 and 
2 were defined as low stage, whereas TNM stages 3 and 4 were 
marked as high stage. The survival analysis displayed that the high 
stage had poorer outcomes in SKCM patients (Figure 3D). The heat 
map of 46 regulators’ expression was clustered at different stages 
(Figure S2); although the majority of the regulators showed no sig-
nificant differences in the expression levels between the high stage 
and the low stage, we found a significant difference in the expres-
sion of five regulators. Figure 3E provides a box plot diagram of the 
expression of four regulators (ALKBH3, RBM15B, MBD3 and UHRF1) 
that negatively correlated with clinical TNM stages. In contrast, 
ZBTB38 positively correlated with clinical TNM stages. Hence, 
m1A- , m5C-  and m6A- related regulators were related not only to 
the clinical TNM stage but also to the prognosis of CM patients. 
Collectively, m1A- , m5C-  and m6A- related regulatory gene expres-
sion levels substantially correlated with the clinical TNM stage and 
prognosis in CM.
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3.3  |  Construction of regulator- related prognostic 
risk model

The results presented above indicated that the m1A- , m5C-  and 
m6A- related regulators could play an important role in the CM 
pathogenesis. Therefore, we moved on to investigate the prog-
nostic signature of 46 m1A- , m5C-  and m6A- related regulators in 
CM. Univariate Cox regression analysis was used to investigate 
the relationship between the 46 regulators and patient prognosis 
in TCGA- SKCM (Figure 4A); we identified a total of 12 regulators 

significantly related to the OS (Table S3). The regression coefficient 
of the 12 regulators was computed using the LASSO Cox regres-
sion analysis (Figure 4B and Figure 4C). We identified nine regula-
tors: UNG, FMR1, MBD4, MBD2, NEIL1, WTAP, UHRF2, YTHDF1 and 
RBM15B (Figure 4D). To calculate the patient's risk score, a mul-
tivariate Cox regression analysis with nine genes was conducted 
(Table S4). The distribution of the risk score, vital status and expres-
sion levels of the corresponding nine regulators in the TCGA data 
set is shown in Figure 5A and Figure 5B. Using the median risk score 
to divide patients into the high- risk and low- risk groups, the K- M 

F I G U R E  1  Workflow diagram of the present study [Colour figure can be viewed at wileyonlinelibrary.com]

GSVA KEGG ssGSEA

TCGA-SKCM Dataset
N = 468 SKCM samples

46 m1A, m5C, m6A-related regulators

LASSO regression Analysis

Univariant Cox regression Analysis

Validation
through internal

training set
(TCGA-SKCM)Multivariant Cox proportional hazards

regression model
(9-regulators' prognostic signature)

9 m1A, m5C, m6A-related regulators

TME immune cell types
TME Immune Infiltration

Characteristic

SNV profile

CNV analysis

High risk
cohort

Low risk
cohort

KM plotter

Immunotherapy
response prediction

48 m1A, m5C, m6A-related regulators
from published articles

ROC curve

Independent
prognostic factors

Clinical correlation

Noromgram

Validation through
external set

(GSE 100797)

Clinical traits

RNA-seq data

UNG, FMR1, MBD4, MBD2, NEIL1, WTAP, UHRF2, YTHDF1, RBM15B

www.wileyonlinelibrary.com


8410  |    WU et al.

F I G U R E  2  Genetic landscape of 46 m1A- , m5C-  and m6A- related regulators. (A) The overview of mutation profiling in the 46 regulators 
from the TCGA- SKCM data sets. (B) The mutation frequency of the 46 regulators in 245 samples (74.69%). The panel in the middle contains 
the specific mutation context of the top 20 regulators. Each mutation frequency on the right number; each column represented one sample; 
right bar chart presents variant- type proportion; TMB distribution on the upper histogram. (C) Genomic visualization of CNV patterns in 
the 46 regulators. TMB: tumour mutation burden. TCGA- SKCM: The Cancer Genome Atlas Skin Cutaneous Melanoma. OS: overall survival 
[Colour figure can be viewed at wileyonlinelibrary.com]
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curve displayed that the risk value could effectively predict survival 
in CM patients (Figure 5C).

3.4  |  Internal and external validation of the nine- 
regulator– related risk model

In order to examine the performance of the risk model based on nine 
regulators, we calculated the AUC at 3, 5 and 7 years (Figure 6A). All 
were greater than 0.64. To further validate the efficacy of the nine- 
regulator– related gene signatures, we also performed the above 

analysis in the GSE10 0797 data set (external validation set). Based 
on median risk values, 13 CM patients were classified as high- risk 
group and 12 as low- risk group. As the risk score increased, so did the 
number of deaths (Figure 5E). The expression pattern of prognostic 
regulators between the two groups was almost identical to that in 
the training set (Figure 5G), but there was a shift in the expression 
pattern of NEIL1 and FMR1, possibly due to the small sample size. 
The results of the K- M analysis were consistent with the training 
set, showing that the patients in the high- risk group were associ-
ated with worse OS (Figure 5F). The ROC curves suggested that the 
AUCs of the gene signature in the external validation set at 3, 5 and 

F I G U R E  3  Relationship between the expression levels of m1A- , m5C-  and m6A- related regulators and clinical features. (A) Survival 
analysis for SNV- mediated regulators in TCGA- SKCM patients. (B) Expression for four regulators with different mutation status. (p < 0.05). 
(C) The Kaplan- Meier analysis of the 46 regulators with CNV in TCGA- SKCM samples. (D) The Kaplan- Meier analysis for high-  and low- stage 
groups according to 46 regulators. Low stage (blue curve): clinical TNM 1,2 stages; high stage (red curve): clinical TNM 3,4 stages. (E) The 
statistically significant difference in the expression of five regulators at different clinical stages (p < 0.05) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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7 years were 0.604, 0.757 and 0.757, respectively (Figure 6B). The 
above results indicated that the prognostic signature of m1A- , m5C-  
and m6A- related regulators had a reliable validity. Furthermore, the 
independent prognostic value of the risk score and clinicopathologi-
cal variables were compared using univariate and multivariate Cox 
regression analyses (Table 2 and Table S4); the results indicated that 
risk score, N stage, T stage and age were independent prognostic 
factors of OS in CM (Figure 5D). To develop a clinically applicable 
way for the prediction of survival status in CM patients, a nomogram 
was established to predict the 3- year and 5- year OS probability in 
468 CM patients (Figure 6C). The calibration plot for nomogram sug-
gested its high predictive accuracy and sensitivity in CM patients 
(Figure 6D).

3.5  |  Functional enrichment analyses for the nine- 
regulator– related risk subgroups

The GSVA enrichment analysis was employed to investigate the un-
derlying biological activities among the high-  and low- risk groups. As 
shown in Figure 7A and Table S6, the high- risk group was markedly en-
riched in ‘PROTEIN DNA COMPLEX DISASSEMBLY’, ‘CHROMATIN 
DISASSEMBLY’ and ‘NuRD COMPLEX’ terms. The GSVA- KEGG path-
ways involved in the high- risk group had a link to immune cell metabo-
lism, as clearly exhibited in Figure 7B such as ‘RNA POLYMERASE’, 
‘AMINOACYL tRNA BIOSYNTHESIS’, ‘CITRATE CYCLE TCA CYCLE’ 
and ‘OXIDATIVE PHOSPHORYLATION’. We analysed the DEGs 
between the high-  and low- risk groups (Figure S3). KEGG pathway 

analysis was performed to determine the signalling pathways related 
to DEGs. It identified 39 types of KEGG pathways (P adjusted <0.05), 
especially immune full activation, including cytokine- cytokine recep-
tor interaction, T- cell receptor signalling pathway, Th1 and Th2 cell 
differentiation and cell adhesion molecules (Figure 7C; Figure S4).

3.6  |  Immune infiltration characteristics of TME 
within nine- regulator– related risk subgroups

The ssGSEA was conducted to investigate the ICI pattern related to the 
risk score based on transcriptome profiling data for 468 SKCM patients 
from the TCGA database. The low- risk group was remarkably enriched 
in innate ICI, which mainly included natural killer cells, macrophages, ac-
tivated dendritic cells (aDCs), B cells and T cells (Figure 8A). Previously, 
the low- risk group identified matched survival advantage in TCGA- 
SKCM (Figure 5C). The results of the GSVA showed that the high- risk 
group was significantly associated with stromal activation. It has been 
reported that T- cell suppression could activate the TME stroma.23 
Coincidentally, ssGSEA showed a significant decrease in T- cell activity 
in the high- risk group (Figure 8B). Therefore, we speculated that stromal 
activation in the high- risk group inhibited the antitumour effect of im-
mune cells. Based on the above analyses, we were surprised to find that 
the two groups had radically distinct TME cell infiltration characteriza-
tion. Based on the three scores generated by the ESTIMATE algorithm, 
we analysed the relationship between scores and high- /low- risk groups. 
As shown in Figure 8C, we could see that high-  and low- risk groups 
had a significant effect on immune, stromal and ESTIMATE scores (all 

F I G U R E  4  Construction of m1A- , m5C-  and m6A- related regulatory gene prognostic signature in TCGA- SKCM training set. (A) Forest 
plot of the univariate Cox regression analysis for the 46 regulators. Identification of 12 significant regulators. (*p < 0.05, **p < 0.01 and 
***p < 0.001). (B, C) LASSO coefficient profiles of the 12 regulators. Cross- validation for tuning parameter selection in the LASSO model. 
(D) Forest plot for the nine regulators with prognostic value in the multivariate Cox regression model [Colour figure can be viewed at 
wileyonlinelibrary.com]
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p < 0.001). The highest ESTIMATE score was found in the high- risk 
group (p = 4.1e- 08). The low- risk group had the highest immune and 
stromal scores, whereas the high- risk group had the lowest. We then 
used a deconvolution algorithm, the CIBERSORT method, for determin-
ing the immune cell type in CM, to compare the component differences 
in immune cells between the high-  and low- risk groups. We found that 
there were significant differences in the compositions of TME cell types 
between the high-  and low- risk groups (Figure 8D). Therefore, we con-
cluded that the immune- related biological processes and pathways as-
sociated with the risk score might result from the observed significant 
differences in the various immune cell types.

3.7  |  Assessment of immunotherapy response in 
nine- regulator– related risk subgroups

A relationship between polymorphisms of human leucocyte antigen 
(HLA) and the tumour proliferation and immune escape has been 
studied in the literature.24 Pioneering investigations revealed that 

immunotherapy targeting immune checkpoints (ICPs) offered great 
hope for the clinical treatment of human cancers. Given that the 
HLA was differentially expressed between high-  and low- risk groups 
(Figure 8E), it was necessary to analyse the correlation between the 
expression levels of several well- known immune checkpoint molecules 
(ICMs) in distinct risk subgroups. In the high- risk group, ICMs were lowly 
expressed, suggesting that the low- risk group could be more suitable 
for immunotherapy. CTLA- 4 and PD- 1 as well- known ICBs improved 
OS in especially CM patients with metastatic or advanced disease.25,26 
Potential response to immunotherapy in patients from the different 
risk subgroups was modelled on TIDE instructions, and T- cell dysfunc-
tion and rejection were used to predict the performance of ICBs in the 
two subgroups. We found that the low- risk group (23.923%, 50/209) 
was significantly more eligible for immunotherapy compared with the 
high- risk group (17.703%, 37/209) (Figure 8F). SubMap is an unsuper-
vised clustering method that can match subclasses in two independ-
ent gene expression data sets.27 Herein, an inspection of the SubMap 
analysis data in Figure 8G revealed that the low- risk group was more 
likely to respond to anti- PD- 1 therapy (p < 0.05).

F I G U R E  5  Prognostic signature of the nine m1A- , m5C-  and m6A- related regulators in internal and external data set. (A) The distributions 
of prognostic signature- based risk scores. (B) The heat map of the expression of the nine regulators in different risk subgroups. (C) The K- M 
analysis showed that patients in the low- risk group presented better OS than the high- risk group. This analysis was based on the survival 
information of samples in the training set. The red line represents the high- risk cluster, whereas the blue line indicates the low- risk cluster. 
(D) Forrest plot of the independent prognostic factors in CM. (E) The distributions of risk score and survival status in the external validation 
set (GSE10 0797). (F) K- M prognosis curve of the validation set. (G) The heat map of regulators’ expression clustered at the risk subgroups in 
25 CM patients [Colour figure can be viewed at wileyonlinelibrary.com]
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4  |  DISCUSSION

CM is a potentially deadly form of skin cancer, and its pathogenesis 
remains controversial.25 As a consequence of the molecular hetero-
geneity, single prognostic factors sometimes fail in risk stratifica-
tion and clinical outcome estimations. The development of effective 
genetic signatures that integrate multiple prognostic indicators 

to facilitate the prediction of survival in CM patients is urgently 
needed. This study constructed and validated a novel prognostic 
model for CM based on m1A- , m5C-  and m6A- related regulators by 
using the TCGA database.

We summarized the mutation frequency and CNV alteration 
in TCGA- SKCM samples. Furthermore, SNV and CNV of regula-
tors could affect the expression of crucial regulatory molecules in 
CM patients. Mounting evidence suggests that RNA modification– 
related regulators, involving m1A, m5C and m6A, could serve as 
biomarkers in several malignancies.28 Specifically, Chen et al. 
demonstrated that WTAP as m6A- related regulator could mediate 
cell cycle regulation. Silencing the expression of WTAP could af-
fect the expression of ETS1 in HCC. ETS1 was recognized as the 
downstream molecular target.29 Several studies have reported 
that MBD4, RBM15B, YTHDF1 and NEIL1 were associated with OS 
and clinical features in the various tumours, including uveal mela-
noma (UM),30 melanoma31 and head and neck squamous cell car-
cinoma.32 MBD4 could act as a purposeful biomarker and a latent 
target in UM patients. RBM15B was shown to bind CDK11- cyclin 
L to inhibit the cell cycle and suppress the UM invasion and me-
tastasis.30 YTHDF1 was shown to interact with genes related to 
p53 signalling, such as CDK2, CDK1, RRM2, CCNB1 and CHEK1, 
resulting in the development of melanoma.33 Because CNV alter-
ations could affect gene expression levels via dose compensation 
effects, we analysed the correlation between those related regu-
latory gene mRNA expression levels and CNV patterns (Figure S1). 

F I G U R E  6  Validation of the prognostic signature of the nine m1A- , m5C-  and m6A- related regulators. (A) AUC of the ROC analysis showed 
the predicted efficacy of the risk model in the internal training set. (B) The ROC curve for the external validation set. (C) The nomogram of 
the risk model for predicting the OS probability of CM patients. The whole points projected on the bottom scales indicate the likelihood 
of 3-  and 5- year OS. (D) The calibration plot for the nomogram predicting 3- year and 5- year OS. The y- axis indicates the actual survival, as 
measured by the K- M analysis, while the x- axis shows the nomogram- predicted survival [Colour figure can be viewed at wileyonlinelibrary.
com]
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TA B L E  2  Univeriate Cox analysis of prognostic factors for 
overall survival in TCGA- SKCM patient

Prognostic variables

Univariate analyses

Coef HR

95% CI

P- valuelow high

Risk score 0.58 1.8 1.4 2.3 0.00

Gender 0.01 1.0 0.7 1.4 0.94

Radiotherapy 0.01 1.0 0.7 1.4 0.98

Chemotherapy 0.13 1.1 0.8 1.5 0.41

T 0.66 1.9 1.4 2.7 0.00

N 1.16 3.1 1.9 5.0 0.00

M 0.66 1.9 0.9 4.4 0.11

Stage −0.54 0.6 0.4 0.8 0.00

Age 0.02 1.0 1.0 1.0 0.00

Note:: Coef the coefficient of table- regarded features correlated with 
survival; HR: hazard ratio; 95% CI: 95% confidence interval.
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Distinct associations were found between mRNA expression levels 
and CNV patterns in 468 CM samples. For the 46 regulatory genes, 
increased copy numbers for 45 genes were correlated with higher 
mRNA expression, while deletions led to decreasing mRNA expres-
sion. Collectively, m1A- , m5C-  and m6A- related regulatory gene ex-
pression levels substantially correlated with the clinical TNM stage 
and prognosis in CM.

A novel prognostic signature of m1A- , m5C-  and m6A- related 
regulators identified could precisely distinguish the OS of CM pa-
tients. The classification ability of risk model was verified respec-
tively on TCGA- SKCM training set and GSE00797 data set. It is now 
well established from previous studies that the expression level, 
genetic mutation and molecular subtype of m6A- related regulators 
had non- negligible impacts on the development and progression of 
CM.22,24,28 A risk model on m6A- related regulators suggested that 
degradation- enhancing molecular subtype was related to favour-
able prognosis in CM.34 Another research demonstrated that m6A- 
related regulators could regulate m6A- related lncRNAs to affect CM 
prognosis.35 Therefore, comprehensive analysis of m1A- , m5C-  and 
m6A- related regulatory gene signatures is important to understand 
the complex heterogeneity in CM.

TME plays a vital role in the therapeutic resistance in CM pa-
tients.14 In particular, the specific mechanism of interaction between 
TME and immune cell infiltration (ICI) significantly influences CM 
prognosis.36,37 In this study, the high- risk group with survival disad-
vantage was rich in immune full activation pathway, which might be 
resulted from T- cell suppression. Previous studies revealed that the 
different m6A modification patterns could activate stromal and me-
diate therapeutic resistance to ICBs.22,38 On the basis of these find-
ings, Hu et al. comprehensively summarized the ICI in TCGA- SKCM 
and verified the correlation between high ICI and better prognosis.39 
Subsequently, the results of CIBERSORT and ESTIMATE algorithms 
in accordance with the reviewing literatures revealed low- risk group 
had higher ICI and stromal score. Likewise, the infiltration level of B 
cells, CD8+ T cells, TIL and HLA was significantly higher in the low- 
risk group; however, some specific immune cell types and ICBs, in-
cluding CD4+ memory T cells, CD4+ T activated cells, macrophage 
(M1) and CTLA- 4, were lower. The regulator- related low- risk group 
was more suitable for immunotherapy and displayed relatively bet-
ter immunogenicity. It is somewhat surprising that low- risk group 
was sensitive to anti- PD- 1 but anti- CTLA- 4 immunotherapy. In a 
previous study, a four- gene tumour immune- relevant (TIR) signature 

F I G U R E  7  Functional enrichment analyses of the different risk subgroups. (A, B) GO and KEGG term analysis for the different risk 
subgroups in the TCGA- SKCM data set. (C) KEGG pathway analysis indicated that DEGs of the two risk subgroups were significantly 
enriched in cytokine- cytokine receptor interaction. DEGs: differentially expressed genes [Colour figure can be viewed at wileyonlinelibrary.
com]
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was identified. The TIR signature could predict the response to ip-
ilimumab and the survival. Notably, the predictive power of the TIR 
signature was higher than that of other biomarkers. The expression 
levels of four genes were positively associated with the infiltration 
levels of CD8+ T cells and CD4+ T cells. They also found significant 
correlations of these four genes with the mRNA levels of CTLA- 4 
and PD- L1. Therefore, the increased T- lymphocyte infiltration is 
likely a major cause of resistance to anti- CTLA- 4 immunotherapy.40 
These results corroborate the findings of the previous work in the 
immune- related41 and tumour mutation burden (TMB)– related gene 
signature of CM.42 Indeed, the m1A- , m5C-  and m6A- related prog-
nostic signature as an attractive determinant of immunogenicity may 
contribute to deeply explore the potential mechanism of immune- 
resistant CM.

Collectively, our study summarized the signature of m1A- , m5C-  
and m6A- related regulators in CM and evaluated the associations with 
OS. Furthermore, the most clinically relevant finding is the establish-
ment of regulator- related risk prediction model, which could be an al-
ternative classifier for more accurate and efficient immunotherapy in 

patients with CM. Additionally, the potential relevance of nine m1A- , 
m5C-  and m6A- related regulatory gene signature to the ICI provides 
support for novel ICP discovery. Despite these promising results, lim-
itations remain. Investigation of the specific molecular subtypes of 
m1A- , m5C-  and m6A- related regulators is required. The samples in 
our study are only derived from the two data sets. The predictive 
ability of the risk model may be limited because of the limited cor-
responding sample data. More samples are required to validate the 
generalization of this risk model. Further studies should take these 
factors into account. Besides, further work is required to shed light 
on the specific immune regulation mechanism of nine prognostic 
genes in CM.
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F I G U R E  8  Predicted evaluation of TME characteristics and immunotherapy response. (A, B) Box plot for the TME cells in distinct risk 
groups derived from CM patients based on the ssGSEA. (C) Immune, stromal and ESTIMATE scores within the low-  and high- risk groups. 
The Wilcoxon signed- rank test was used to compare the two subgroups. (D) The ICI composition of TME in the two subgroups. (E) The 
expression levels of well- known ICPs in the distinct risk subgroups. (F) TIDE estimated the relationship between the response to ICBs 
treatment and risk subgroups. The low- risk group showed a better response than the high- risk group (23.923% > 17.703%). (G) SubMap 
analysis indicated that the low- risk group was more likely to respond to anti- PD- 1 immunotherapy. (*p < 0.05, **p < 0.01, ***p < 0.001 and 
****p < 0.0001); ICI: immune cell infiltration; ICPs: immune checkpoints; ICBs: immune checkpoint inhibitors [Colour figure can be viewed at 
wileyonlinelibrary.com]
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