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Quantitative real-time imaging of glutathione
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Glutathione plays many important roles in biological processes; however, the dynamic

changes of glutathione concentrations in living cells remain largely unknown. Here, we report

a reversible reaction-based fluorescent probe—designated as RealThiol (RT)—that can

quantitatively monitor the real-time glutathione dynamics in living cells. Using RT, we observe

enhanced antioxidant capability of activated neurons and dynamic glutathione changes during

ferroptosis. RT is thus a versatile tool that can be used for both confocal microscopy and flow

cytometry based high-throughput quantification of glutathione levels in single cells. We

envision that this new glutathione probe will enable opportunities to study glutathione

dynamics and transportation and expand our understanding of the physiological and

pathological roles of glutathione in living cells.
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G
lutathione (GSH) is the most abundant non-protein thiol
in eukaryotic cells. Together with its oxidized partner
(GSSG), GSH maintains cellular redox homeostasis1,

regulates protein functions through S-glutathionylation2,
contributes to iron-sulfur cluster maturation3, and acts as a
signalling molecule to directly activate gene expression4,5. These
important functions are dynamically regulated by the intracellular
concentration and distribution of GSH6. Currently, the
concentration of intracellular GSH is derived from either cell
lysates or GSH-S-transferase (GST) dependent probes7,8. These
approaches, however, cannot provide information about the
real-time dynamics of GSH concentration changes9. Redox-
sensitive fluorescent proteins (roFPs) have been widely used to
study GSH-related redox biology10,11. However, roFPs only
measure the changes in redox potential (EGSH) in cells, which
can be due to shifts in the [GSH]:[GSSG] ratio, changes in total
GSH concentration, or a combination of both scenarios. Many
intracellular biochemical reactions, especially enzymes that use
GSH as their substrate, rely on the local GSH concentration
instead of EGSH (ref. 12). Besides, roFPs under physiological
conditions are only sensitive to oxidative stress but not to any
‘reductive stress’ because they completely transition to a fully
reduced state once in the cytosol. Herein, we developed a
fluorescent probe—designated as RealThiol (RT)—that can
quantitatively monitor the real-time GSH dynamics in living cells.

Small-molecule fluorescent probes have gained increasing
attention since the emergence of calcium and zinc probes13,14.
We reported the first reversible reaction-based small-molecule
fluorescent GSH probe (ThiolQuant Green) that can perform
single-point quantification of GSH levels in living cells15. The
major obstacles to developing probes that can monitor GSH
dynamics include the reaction reversibility and kinetics of the
sensing reaction, as well as the high abundance of GSH
(1–10 mM) inside cells. We thus designed RT (Fig. 1a) taking

into account of all these challenges16. The reaction between RT
and GSH is based on a Michael addition reaction that is
inherently reversible, has an appropriate dissociation equilibrium
constant Kd in the mM range and rapid reaction kinetics, and
provides ratiometric readouts, thus allowing GSH quantification
independent of the probe concentration. In the RT structure, the
cyano group at the a position of the Michael acceptor enables fast
reaction kinetics, the four-membered azetidine ring improves
quantum yield and photostability17, and the two carboxylic acid
groups ensure aqueous solubility and reduce probe binding to
hydrophobic cellular structures. To enhance the cell permeability
of RT, we converted the carboxylic acid groups to acetoxymethyl
(AM) esters, which are readily hydrolysed by esterases to
regenerate RT inside cells. Using RT, we were able to monitor
the dynamic changes of GSH in living cells, which subsequently
led to the observation of enhanced antioxidant capability of
activated neurons and time-dependent changes of GSH during
the ferroptosis process.

Results
Spectroscopic and physical characterizations of RealThiol.
RT shows ratiometric fluorescence responses with a wide
dynamic range when reacting with GSH. RT and its GSH adduct
(RT-GSH) shows fluorescence maxima at 487 and 562 nm with
excitation wavelengths at 405 and 488 nm, respectively (Fig. 1b).
Plotting the fluorescence intensity ratios with excitation wave-
lengths at 405 and 488 nm (F405/F488) as a function of GSH
concentrations confers a superb linear relationship (R2¼ 0.998)
covering the physiological GSH concentration range 1–10 mM
(Fig. 1c, Supplementary Figs 1 and 2). The Kd for the reaction
between RT and GSH is 3.7 mM. Comparing to ThiolQuant
Green, RT and RT-GSH has much improved quantum yields and
photostability (Table 1 and Supplementary Fig. 3). Although

500

Balance Kd 0.8 800

600

600

400

400

3

a b

c d
5.0 Grx1-roGFP2

4.0

3.0

2.0

1.0

0.0
0 62.5 125 250 5001,000

3 4

2

2

1

1
0

0

1.4
1.2
1.0
0.8

0 5
GSH (mM)

H2O2 (µM)

R2 = 0.998

10 15

Wavelength (nm)

A
bs

or
ba

nc
e

F
40

5/
F

48
8

R
60

s/
R

0s

1.2 RealThiol

1.0

0.8

0.6

0.4

0.2

0.0
0 62.5 125 250 5001,000

H2O2 (µM)

R
60

s/
R

0s

F
luorescence (a.u.)

700

200

0

0.6

0.4

0.2

0.0

Enhance QY
G

G

O

OO

N

N CN

RealThiol (RT)

COOH

COOH

RT

SH

S

N

N
CN

COOH

COOH

RT-GSH

RT-GSH

O

OO

Accelerate reactions
Increase solubility

Figure 1 | Characterization of reversible reaction-based glutathione probe RT. (a) The reversible Michael addition reaction between RT and GSH. The

function of each moiety in RT is highlighted (QY: quantum yield). (b) Ultraviolet–visible (unshaded) and fluorescence (shaded) spectra of RT (green) and

RT-GSH (blue), the GSH adduct. (c) Linear relationship between F405/F488 and GSH concentrations. F405 and F488 are the fluorescence intensities for RT-

GSH and RT, respectively. (d) Dynamic ranges of Grx1-roGFP2 and RT probe. Fluorescence ratio changes on treatment with different concentrations of

H2O2 in HeLa cells is measured, R60s/R0s is calculated as the ratio R value 60 s after H2O2 treatment divided by the R value before treatment. Each point is

the mean value of 48 cells analysed from 2 independent experiments. Error bars represent s.e.m.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms16087

2 NATURE COMMUNICATIONS | 8:16087 | DOI: 10.1038/ncomms16087 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


roFPs are highly sensitive to oxidative stress, their responses can
be easily saturated (Fig. 1d). In contrast, the wide dynamic range
of RT allows for monitoring of the GSH level changes within
1–10 mM in both directions in living cells (Fig. 1d).

Selectivity of RealThiol under physiological conditions. RT
preferentially reacts with GSH under physiological conditions.
Due to both the high abundance of GSH and the millimolar
Kd value, we observed F405/F488 changes only when RT reacted
with GSH but not other thiols, reactive oxygen or nitrogen species
(ROS/RNS) at their corresponding physiological concentrations
(Fig. 2a). The ratiometric readout of RT only responds to GSH
(10 mM), but not to glycine (10 mM), cysteine (100 mM) or a
series of ROS/RNS (100 mM). It should be noted that cysteine and
GSH have similar chemical reactivities towards RT (Fig. 2c).
Because intracellular cysteine level is usually below 100 mM under
the physiological conditions18,19, the interference of RT signals
from cysteine is minimal. To assess whether RT probe binds to
any proteins or reacts with free cysteine residues in some proteins
that may interfere with the final ratio readouts, we incubated RT
with cell lysate, which was dialyzed using a 3 K cut-off membrane
to remove all small molecules including GSH, and observed no
significant changes in fluorescent signal ratios even at the highest
lysate concentration shown (protein concentration is 36 mg ml� 1

based on a BCA assay), suggesting that there is no non-specific
interactions or reactions between cellular proteins and RT
which could significantly change the ratio readouts (Fig. 2a).
Furthermore, F405/F488 is insensitive to other environmental
factors, including potential non-specific interactions or reactions
with intracellular proteins (Fig. 2a), pH and viscosity (Fig. 2b). In
addition, to determine the percentage distribution of reacted RT
between GSH and protein thiols, we treated HeLa cells with RT
and lysed the cells using trichloroacetic acid to separate proteins
from small molecules (Fig. 2d). Gel permeation chromatography
(GPC) analysis showed that 10% of RT reacts with thiolated
proteins while 90% of RT reacts with GSH (Fig. 2e and
Supplementary Table 1). Therefore, we conclude that RT is able
to reliably measure the intracellular GSH levels.

Reaction kinetics of RealThiol. Unlike the currently available
GSH probes9,15, RT features fast kinetics in both forward and
reverse directions, enabling real-time monitoring of GSH
dynamics with a minute-level time resolution. To measure the
forward reaction rates, we mixed RT (10 mM) with equal volumes
of different concentrations of GSH solutions (5, 10 and 20 mM) at

pH 7.4 and monitored the formation of RT-GSH using a
fluorimeter (lex¼ 405 nm; Fig. 3a). The second-order reaction
rate constant between RT and GSH is 7.5 M� 1 s� 1, while the
same rate constant for our previously reported ThiolQuant Green
probe and GSH is 0.15 M� 1 s� 1, which is 50 times slower than
RT (Table 2). To measure the reverse reaction rates, we mixed a
pre-equilibrated mixture of RT (20 mM) and GSH (10 or 5 mM)
with an equal volume of PBS and followed the disappearance of
RT-GSH fluorescence (Fig. 3a). The first-order dissociation
reaction rate constant for RT-GSH is 20.3� 10� 3 s� 1, which is
more than 500 times faster than that for ThiolQuant Green-GSH
(35.7� 10� 6 s� 1). In addition, it should be noted that GST has
little catalytic effect on the reaction rate between RT and GSH
(Fig. 3b).

Applications of RealThiol in living cells. RT quantitatively and
reversibly responds to the fluctuations of intracellular GSH levels.
For cells treated with the AM form of RT, real-time ratiometric
images of the rapid changes of intracellular GSH concentrations
in single cells can be generated by dividing the fluorescence
intensity values for the 405 nm channel by the 488 nm channel
at each corresponding pixel (Fig. 4a, Supplementary Fig. 4,
Supplementary Table 2). On treatment with a bolus of H2O2

(500 mM) to induce oxidative stress, the ratiometric imaging of
HeLa cells revealed a decrease in the GSH level from 5.0 to
4.1 mM within 90 s (Fig. 4b,c). Subsequently, GSH ester (100 mM)
was added to replenish the intracellular GSH loss, which led to
recovery of GSH to the basal level in the next 3 min, as recorded
by RT (Fig. 4b,c). The GSH-ester concentration refers to the
concentration in the culture medium. It should be noted that
GSH ester tends to be enriched inside cells due to its hydrophobic
nature and esterase-catalyzed hydrolysis of GSH ester to GSH.
Additionally, the intracellular GSH level changes measured using
RT were confirmed by cell lysate-based liquid chromatography–
mass spectrometry (LC–MS) measurements (Fig. 4d). These
experiments demonstrate that RT reversibly reacts with GSH
inside cells and can reflect intracellular GSH dynamics.

Neural activity results in increased production of ROS which
have been linked to neurological disorders20–22. Therefore,
sufficient GSH supply and active glutathione peroxidase are
main defence resources of neurons under pro-oxidative
conditions23–25. Recently, neural activity mediated by NMDA-
receptors (NMDAR) has been coupled with transcriptional
activation of glutamate-cysteine ligase, a key enzyme in GSH
production, leading to a sustained GSH-based protection against
an oxidative insult26. Here we tested whether NMDAR activation
have a similar effect in neurons derived from human embryonic
stem cells (ESCs; Supplementary Figs 5–7), a valuable and well
established approach in modelling human neurological disorders
in vitro22,27. By using patch-clamp, we first showed that derived
neurons exhibited voltage-gated sodium-channel mediated action
potentials and received synaptic inputs (Fig. 5a,b). Blocking
GABAA receptors enhanced network activity and resulted in an
increase in glutamatergic excitatory inputs (Fig. 5b). Finally, we
used RT probe to monitor GSH levels in live neurons on
transiently induced oxidative stress. As expected, the GSH levels
were reduced by 100mM of hydrogen peroxide but enhancing
network activity with blockers of GABAA receptors (bicuculine)
and KCNA channels (4-AP) attenuated this effect. Furthermore,
we provide first data that the GSH level in human neurons may
be mediated by NMDAR activation since the protective effect of
enhanced network activity could be blocked with an NMDAR
antagonist APV, consistent with the previous report (Fig. 5c,d)26.

In addition, we applied flow cytometry to demonstrate that RT
can be used for high-throughput quantification of GSH levels in
single cells. HeLa cells were treated with a series of concentrations

Table 1 | Quantum yields of GSH probes.

Species Quantum yield (%) Solvent

Rhodamine 123 (reference) 97.0 PBS
RT 2.9 1% DMSO in PBS
RT-GSH 86.0 PBS
TQG 0.94 1% DMSO in PBS
TQG-GSH 0.59 PBS
TQG-CN 5.0 10% DMSO in PBS
TQG-CN-GSH 12.5 PBS
RT-NH2 17.7 10% DMSO in PBS
RT-NH2-GSH 497.0 PBS

Quantum yields of GSH probes. RT has a high quantum yield and high photostability. Coumarin-
based fluorescent probes usually suffer from low quantum yields (QYs). Substituting the N,N-
diethylamino group with an azetidine can substantially improve the QY of RT to 86.0%
(lex¼406 nm, RT-GSH) and 2.9% (lex¼479 nm, RT) compared to 0.59% (lex¼406 nm,
TQG-GSH) and 0.94% (lex¼479 nm, TQG) for TQG. The data for TQG and TQG-GSH were
obtained from ref. 15. TQG-CN and RT-NH2 have very low aqueous solubility, therefore 10%
DMSO is required for quantum yield measurements. Because quantum yields are highly
dependent on solvents, the quantum yields between TQG-CN and TQG are not comparable.
The quantum yield of RT-NH2-GSH is higher than that of the reference Rhodamine 123.
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of buthionine sulfoximine (BSO) for 72 h, a specific inhibitor for
the enzyme required in the first step of GSH synthesis (Fig. 6a).
The GSH levels of the BSO-treated cells quantified using our
RT-based flow cytometry method is well correlated to the values
measured using cell lysates with a glutathione reductase-based
biochemical assay (R2¼ 0.99, Fig. 6b).

Ferroptosis, a recently discovered iron-dependent form of
nonapoptotic cell death, has been associated with

neurodegeneration and p53-mediated tumour suppression28,29.
Ferroptosis is known to reduce the intracellular GSH level, but
the dynamics of this process remains unexplored. In accordance
with previous studies28,29, we administered a ferroptosis inducer,
erastin, to HT1080 cell culture and observed decrease in GSH
levels by flow cytometry of RT signals (Fig. 7a,b). Interestingly, we
discovered that such decreases in GSH levels during ferroptosis
do not occur immediately on erastin treatment, despite dramatic
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changes in cellular morphology (Fig. 7c). This experiment
demonstrates the convenience of using RT for high-throughput
quantification of GSH levels in single cells and the power of using
RT to monitor GSH levels during the initial phase of ferroptosis.

Discussion
Michael addition reaction has been widely applied in organic
synthesis and bioconjugation to build carbon–carbon and
carbon–heteroatom bonds based on its forward reaction.
However, the reverse reaction of Michael addition is under-
utilized. Taking advantage of the reversibility of Michael addition
reaction, we developed the first reversible reaction-based
fluorescent probe ThiolQuant Green to perform single-point
quantification of GSH in living cells15. Additionally, based on
density functional theory, we developed a computational model
to predict the Kd values and the trend of reaction kinetics of
Michael addition reactions30. Our extensive understanding of the
physical organic chemistry of Michael addition reactions leads to
the second generation RT GSH probe. Introducing an electron-
withdrawing cyano group at the a position of the Michael
acceptor of ThiolQuant Green can accelerate reaction kinetics but
simultaneously shift the Kd value into the mM range. Therefore,
we replaced the ketone in ThiolQuant Green with a less reactive
amide in RT to balance the Kd back into the mM range. The
a-cyano amide-based Michael acceptors have also been elegantly
used by the Taunton group as warheads in small-molecule
inhibitors to react with active site cysteines while being minimally
affected by the high concentration of intracellular GSH due to the
fast reaction kinetics and the mM of Kd (refs 31,32). Furthermore,
dialkylamino-coumarin is a class of dye known for their low
quantum yields. Therefore, relatively high laser power is required
for confocal imaging, which can consequently cause phototoxicity
to live cells, especially with excitation at 405 nm (ref. 33). The

Lavis group made a seminal discovery that substituting the
dialkylamino group with an azetidine group is a general method
to significantly improve quantum yields of fluorophores17.
Following Lavis’s work, we found that introducing an azetidine
group to RT can boost its quantum yield to 2.9%, which is
threefolds of that of ThiolQuant Green. The quantum yield of
RT-GSH is as high as 86%, which is 146-fold of that of
ThiolQuant Green (Table 1). Additionally, the two carboxylic
acid groups in RT are very important to achieve homogenous
probe distribution in cells. The RT prototypes without the
carboxylic acid groups, such as RT-NH2 and TQG-CN, are fairly
hydrophobic and cannot distribute in the nucleus, which is a
hallmark of protein binding for fluorescent probes (Fig. 8a,b). The
same inhomogeneous cellular distribution was also observed for
ThiolQuant Green15. Interestingly, introduction of carboxylic
acid groups to RT slows down its reaction kinetics towards GSH
comparing to RT-NH2 and TQG-CN (Table 2), presumably due
to the charge repulsion between the carboxylic acid groups and
the anionic GSH. Because inhomogeneous cellular distribution of
reacted and unreacted probes may bias the ratiometric
calculations, especially at the subcellular resolution, we opted
for RT instead of RT-NH2 to achieve high-quality quantitative
results in living cells. We are currently exploring cationic or
neutral water solubilizing groups to replace the carboxylic acids in
RT to achieve higher temporal resolution while maintaining
homogeneous cellular distribution, which will be reported in the
due course.

Through a series of optimization, we developed RT that enables
quantitative real-time imaging of GSH in living cells. We
demonstrated that RT preferentially reacts with GSH under
physiological conditions and responds to both increases and
decreases in GSH levels within a minute. Furthermore, RT has a
high quantum yield and photostability. In addition, RT is capable
of monitoring GSH changes on redox perturbance, which is
essential in studying redox biology, especially fast processes, in
living cells. Not only suitable for confocal imaging studies, RT can
also be conveniently applied in flow cytometry to compare GSH
levels and potentially be multiplexed with other probes and cell
surface markers. It is worth noting that the Han group pioneered
using small-molecule fluorescent probes to monitor the reversible
redox cycles between peroxynitrite and GSH34. Unfortunately,
unlike roGFPs measuring the redox potentials of GSH/GSSH,
peroxynitrite and GSH are not a redox pair and the biological
meaning of the ratio of these two species is elusive. In fact, Han’s
probe could be potentially used as a peroxynitrite probe, similar
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Table 2 | Forward reaction rate constants between GSH
probes and GSH.

GSH
probe

Forward reaction rate constant
(M� 1 s� 1)

Reaction rate relative
to TQG

TQG 0.15 1
RT 7.5 50
TQG-CN 38.9 259
RT-NH2 29.1 194
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to the H2O2 probe Hyper, which is reversibly oxidized by H2O2

and reduced by thioredoxin35. Along similar lines, the biological
meaning of many other small-molecule-based redox probes may
also need careful interpretations36,37. During the manuscript
submission process, two other fluorescent probes were
independently reported to monitor GSH dynamics in living
cells38,39. The Urano group reported the QuicGSH probe,
elegantly taking advantage of the fast reversible reactions
between GSH and a cationic silicon-rhodamine scaffold38.
Unfortunately, due to the cationic nature of QuicGSH, it
primarily accumulates in mitochondria. As the Urano group
pointed out, using QuicGSH to monitor the global GSH dynamics
requires a bold assumption that the mitochondrial and global
GSH are at similar levels. However, it is well known that
mitochondrial and cytosolic GSH levels are decoupled during cell
death and many other biological processes40. The Yoon group
also recently reported the QG-1 probe, which is structurally
similar to our RT prototype TQG-CN (Fig. 8a) and suffers from
inhomogeneous cellular distribution39. Our RT probe uniformly
distributes inside cells. Therefore, RT is a fluorescent probe that
can monitor global GSH dynamics in living cells. We envision
that this new GSH probe will enable unprecedented opportunities
to study GSH dynamics and transportation and revolutionize our
understanding of the physiological and pathological roles of GSH
in living cells.

Methods
Materials. All the chemicals were purchased from Sigma-Aldrich or Alfa Aesar
unless otherwise specified. 3-Carbaldehyde-7-azetidinylcoumarin (1) was

purchased from Ascendex Scientific, LLC. Tetrahydrofuran was distilled over
sodium benzophenone ketyl and CH2Cl2 was distilled over phosphorus pentoxide.
All the other solvents and reagents were used as received without further
purification.

Instruments. Cary 60 UV–vis Spectrometer; Cary Eclipse Fluorescence Spectro-
photometer; BioTek Synergy H1 Plate Reader; Carl Zeiss LSM 780 Confocal
Microscope (from Optical Imaging and Vital Microscopy Core at Baylor College of
Medicine); Teledyne ISCO CombiFlash Rf 200 flash liquid chromatography;
Varian NMR (1H at 400 MHz); Bruker NMR (1H at 800 MHz); Agilent 6130 Single
Quadrupole LC–MS; BD LSR II analysers (from Cytometry and Cell Sorting Core
at Baylor College of Medicine).

Software. Fiji ImageJ41,42; FlowJo v.10.1; Prism Graphpad v.5; Zeiss Zen 2012
(blue edition) v.1.1.2.0.

Solution preparation. RT-AM stock solution was made by dissolving 3 mg of
RT-AM in 1 ml of DMSO to obtain a final concentration of 5 mM. Stock solution
can be kept at � 80 �C for up to 1 year without any decomposition (verified by
LC–MS). All testing solutions were prepared by diluting stock solution with DMSO
and PBS/imaging buffer/culture medium.

Mixing was usually done by adding analyte solution (for example, GSH
solution) into probe solution. If a surfactant is used, the surfactant should be mixed
with the probe stock solution before performing any dilutions.

Cell staining solution was made by diluting 100 mM of RT probe in DMSO with
a suitable imaging buffer for a final probe concentration of 1 mM. DMEM was used
as the imaging buffer in this contribution if not otherwise specified.

General cell culture and imaging. The HeLa cell line used in this study was
purchased from American Type Culture Collection (ATCC) and grown in DMEM
(Gibco, 11965) media supplemented with 10% FBS and 1% 1003 Pen Strep (Gibco).
Cells were cultured under a controlled atmosphere (37 �C, 5% CO2). Glass bottom
dishes were used for cell culture due to confocal scanning requirements. Cells were
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Figure 4 | RT-based imaging and quantification of glutathione in living cells. (a) Confocal and ratiometric images of HeLa cells stained with RT

(refer to Supplementary Fig. 4 for details on generating ratiometric images). Scale bar, 20mm. (b) Quantitative analysis of GSH level fluctuations in HeLa

cells on consecutive treatment with H2O2 (500mM) and GSH ester (100mM). Each data point represents the mean value of 46 cells analysed from one

representative time-lapsed imaging experiment. Error bars represent s.e.m. (c) Representative images of dynamic changes of GSH levels in HeLa cells on

consecutive treatments with H2O2 and GSH ester. Scale bar, 20mm. (d) Lysate-based GSH levels measured using LCMS. HeLa cells were treated with H2O2

only (orange), H2O2 followed by GSH ester (moss), GSH ester only (turquoise) or PBS (pink). The cells were lysed and the amounts of GSH were quantified

using LCMS. Each data point represents the mean value of two independent experiments. Error bars represent s.d.
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treated with RT-AM (1mM with 1% DMSO in DMEM) for 10–15 min before
imaging. Confocal images were acquired with 405 nm laser/418–495 nm filter and
488 nm laser/499–615 nm filter. All the microscope settings were kept consistent in
each experiment.

For imaging, all cells were incubated in staining solution at room temperature and
then moved to a 37 �C incubator. Two channels were used. For the best performance,
typical imaging time should be o15 min; otherwise, anion transporter inhibitor, such
as probenecid, should be used to prevent probe clearance.

The Grx1-roGFP2 HeLa cells used in this study were kindly provided by Dr
Ninghui Cheng at Baylor College of Medicine. The Grx1-roGFP2 plasmid was
kindly shared by Dr Tobias Dick. Confocal images were acquired with 405 nm
laser/499–552 nm filter and 488 nm laser/499–553 nm filter.

Depending on the settings of cell imaging (including magnification, resolution,
imaging length, imaging speed, laser power and stimulation method), the number
of cells available for analysis varied from experiments. To ensure data quality and
reproducibility, at least two biological replicates with 46 cells were analysed for
each imaging experiment, and all the imaging experiments were repeated at least
twice with one set of representative data shown in each figure. Specific statistics can
be found in the corresponding figure legends.

Differentiation and culturing of neural progenitor cell. WA09 (H9) human
ESCs were maintained on matrigel-coated plates in E8 media43 (all media and

components are listed in Supplementary Tables 3 and 4). To differentiate ESCs into
neural progenitor cells (NPCs), we used a variation of the dual SMAD inhibition
protocol44–49. As depicted in our graphical abstract (Supplementary Fig. 5), ESCs
were first dissociated with Accutase and 2 million cells dispensed per well of
Aggrewell plate in neural induction medium to form aggregates. During the initial
24 h of culturing in Aggrewells we used 10 mM Y-27632 to promote cell survival.
On the following day, 3

4 of the media was changed and SMAD inhibition was
initiated by the addition of 10 mM SB-431542. Dorsomorphin was administered at
4 mM concentration from day 3. At day 5 aggregates were gently collected, sieved
through a reversible strainer and transferred into matrigel-coated plates with
neural proliferation medium. Starting from day 6 we included 10 mM cyclopamine
to promote dorsalization. Both SMAD inhibitors and cyclopamine were present in
the media until day 9. We changed media daily until rosette-shaped clusters of
neural progenitors were harvested with rosette selection reagent between days 12
and 14. After dislodging, rosettes were incubated in wells coated with 0.2% porcine
gelatin to allow the non-neural cells to differentially attach21. Floating fraction was
collected after 1 h, transferred into non-coated cell-culture flasks and incubated in
suspension overnight. On the following day, rounded and floating spheres of NPCs
were plated into matrigel-coated 6-wells and propagated until confluency. From
this point on, we used Accutase solution to make single-cell suspension for further
expansion of NPCs or terminal differentiation into neurons. All cultures were
maintained in the presence of 1% penicillin- streptomycin. B-27 supplement was
vitamin A free.
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Figure 5 | Neuron activity characterization and RT-based neuron imaging. (a) Representative traces of membrane potentials (top panels) in response to

somatic current injections (bottom panels) from a human ESC-derived neuron show action potentials, which were blocked by a voltage-gated sodium

channel blocker, TTX (0.5mM). Action potentials were detected in all 6 recorded neurons. The resting membrane potential, input resistance and membrane

capacitance were � 64.3±1.5 mV, 1.30±0.14 GO and 33.9±8.1 pF (n¼ 6), respectively. TTX was applied to three recorded neurons and blocked action

potentials in all three neurons. (b) Representative traces of membrane currents recorded at a holding potential of � 70 mV from a human ESC-derived

neuron show spontaneous EPSCs in the presence or absence of a GABAA receptor antagonist SR95531 (10 mM), which were blocked by glutamate receptor

antagonists, NBQX (10 mM) and CPP (10mM). Spontaneous EPSC frequency was increased with SR95531 treatment in all 6 recorded neurons (P¼0.0313,

n¼ 6, Wilcoxon matched-pairs signed rank test (two-sided)). NBQX and CPP were applied to 2 recorded neurons and blocked spontaneous EPSCs in both

neurons. (c) Quantification of the real-time GSH levels in neurons treated with H2O2 in d (refer to Supplementary Fig. 2 for calibration curve). Each data

point represents the mean value of 11 (grey), 16 (pink), 16 (blue) and 11 (turquoise) cells analysed from one representative time-lapsed experiment. Error

bars represent s.e.m. (d) Time-lapsed ratiometric GSH imaging of untreated control (resting condition), bicuculline/4-AP treated (activation condition) and

bicuculline/4-AP/APV treated (activation with paired inhibition of NMDAR channels) neurons on treatment with exogenous H2O2 (100mM). The neural

cell bodies are pointed out with arrows in the DIC images. Scale bar, 10mm.
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Differentiation and culturing of human neurons. Neural differentiation of NPCs
was initiated by seeding 25� 103 cells per square centimetre of matrigel-coated
wells in neural proliferation medium. From the next day media was switched to
neural differentiation medium and we kept feeding cells every 2 days. Starting from
D17 cultured cells were maintained in neurobasal media without neurotrophins.
Around D20 neurons were dissociated with Accutase and plated on matrigel-
coated glass cover slips or in 35-mm culture wells with glass bottom. We main-
tained these cells in culture for up to 2 months until assays were performed. Media
was changed once every 2–3 days and supplemented with 1 mg ml� 1 laminin
weekly to promote cell attachment. For this study, neurons have been differentiated
twice from the frozen stock of NPCs.

Immunocytochemistry. Immunolabeling of NPCs and derived neurons was
accomplished by utilization of a standard two-day protocol with: 15 min fixation in
4% PFA, 10 min permeabilization in 0.1% triton-PBS and 30 min blocking with
5% donkey serum. Following dilutions of antihuman primary antibodies in PBS
were applied overnight at 4 �C: Nestin (Millipore, MAB5326, 1:200), SOX2
(Abcam, ab97959, 1:200), Doublecortin (Cell Signaling, 4604S, 1:200), MAP2
(Millipore, MAB3418, 1:200), PSA-NCAM (Millipore, MAB5324, 1:200), PSD95
(Abcam, ab18258, 1:200) Tubulin, beta 3 (Millipore, MAB1637, 1:200). For
fluorescence staining, we incubated samples for 2 h with Alexa-488 and Alexa-594
conjugated donkey antibodies (1:200) against mouse and rabbit immunoglobulins
(Supplementary Figs 6 and 7 are representative images from two sets of immu-
nolabelled cultures of NPCs and neurons).

Quantitative RT-PCR. RNA isolation from human ESC and NPC cultures was
done with the Aurum kit (Bio-Rad). We utilized Superscript III reverse tran-
scriptase enzyme (Invitrogen) with random hexamer primers and 3 mg of RNA
from each sample to produce cDNA according to the manufacturer’s protocol. The
cDNA was then fourfold diluted and used as a template in quantitative PCR with
IQ SYBR Green Supermix (Bio-Rad) on a CFX96 instrument (Bio-Rad) using a
3-step protocol. All qRT-PCR samples were run in technical duplicates and the
DDCt method based on the reference value estimate from 3 housekeeping gene
(GAPDH, GUSB and TBP) was used to calculate relative expression level of each
gene and reaction. Fold changes are finally given as the average fold change of
replicates with the error bars which represent s.d. Plots on the Supplementary
Fig. 6d are calculated from one of two independently performed RT-PCR runs. All
used primers are listed in Supplementary Table 5.

Electrophysiology. Neurons were constantly perfused at 3 ml min� 1 with heated
(30–32 �C), gassed (95% O2, 5% CO2) artificial cerebrospinal fluid (pH 7.4,
300–305 mOsm) containing (in mM): 119 NaCl, 2.5 KCl, 1.3 MgCl2, 2.5 CaCl2, 26
NaHCO3, 1.3 NaH2PO4, 20 D-glucose and 0.5 sodium ascorbate. Recording pip-
ettes were filled with internal solution (pH 7.34, 290 mOsm) containing (in mM):
142 potassium gluconate, 10 HEPES, 1 EGTA, 2.5 MgCl2, 4 ATP-Mg, 0.3 GTP-Na
and 10 Na2-phosphocreatine. Neurons were visualized with infrared differential
interference contrast imaging and a CCD camera under a water-immersion
objective (40� , 0.8 numerical aperture). In whole-cell current clamp experiments,
hyperpolarizing or depolarizing current pulses (500 ms, from � 10 to 30 pA in
5-pA steps) were injected into neurons to determine input resistances or trigger
action potentials. In whole-cell voltage clamp experiments, excitatory postsynaptic

currents (EPSCs) were measured at the membrane potential of � 70 mV for 3 min.
Voltage-gated sodium channels were blocked by 0.5 mM tetrodotoxin (TTX)
(Tocris). GABAA receptors were blocked by 10mM SR95531 (Tocris). N-Methyl-D-
aspartic acid (NMDA) is a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) were blocked by 10 mM (RS)-CPP (Tocris) and 10 mM NBQX (Tocris),
respectively.

Data were low-pass filtered at 4 kHz and acquired at 10 kHz with an Axon
Multiclamp 700B amplifier and an Axon Digidata 1550 Data Acquisition System
under the control of Clampex 10.5 (Molecular Devices). Membrane potentials were
not corrected for liquid junction potential. Data were analysed offline using
AxoGraph X (AxoGraph Scientific). A scaled sliding template method (AxoGraph
X) was used to detect spontaneous EPSCs. Data were low-pass filtered at 2 kHz and
a 5-ms template (2 ms baseline, � 2 pA amplitude, 0.5 ms rise time, and 1 ms decay
time) was used to detect spontaneous EPSCs. The detection threshold was set to
3 times the noise s.d. Events with amplitude o5 pA were excluded. Statistical
analyses were performed with Prism 6 (Fig. 5a,b).

Neural activity tests. Matured neuronal cultures in 35-mm culture wells with
glass bottom were used to test whether prior neuronal activation and NMDAR
signalling contribute to the GSH level in human derived neurons. To this end 24 h
before RT imaging we started preconditioning neurons with culturing media which
contained either 50mM bicuculline and 250 mM 4-AP (conditioned for neuronal
network activation) or 50 mM bicuculline, 250mM 4-AP and 20mM APV (condi-
tioned for neuronal network activation with simultaneous blocking of NMDA
receptor). Neurons were than loaded with RT probe and imaging experiments were
performed as described earlier. All blockers were ordered from Sigma.

Procedure for measurement on ultraviolet–visible and fluorimeter. RT stock
solution was diluted with PBS to the desired concentrations. Equal volumes
(typically 1 ml) of various GSH solutions with different concentrations were mixed
with the RT solution 10–15 min before measurement. All samples were first
measured on ultraviolet–visible for absorption and then immediately transferred to
the fluorimeter for fluorescent measurements. Two excitation wavelengths (405
and 488 nm) were used for fluorescent measurements. Photomultiplier gains were
set to 600 and 700 for 405 and 488 nm excitations, respectively. For measuring
kinetics, solutions were mixed inside the fluorimeter while data recording was on.
Calculation of Kd and Kd

0 followed the same method as in the literature15.

Procedure for measurement on plate reader. RT stock solution was diluted with
PBS to the desired concentrations. Equal volumes (typically 20–100 ml) of various
GSH solutions with different concentrations were mixed with the RT solution
10–15 min before measurement. All samples were prepared on one 96-well/384-well
plate with 3 replicates each. The plate reader was set to read absorption of all
samples first. Fluorescent signals were then recorded at lex¼ 405 nm, lem¼ 485
nm, and lex¼ 488 nm, lem¼ 565 nm with bottom read. Gain was set to 80 for both
channels.

For testing fluorescent interference by environmental factors, the RT stock
solution was directly diluted with corresponding solutions (for example, certain pH
buffer or glycerol solution) and measured using the plate reader with the same
settings stated above.
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Figure 6 | Comparison of GSH quantifications using RT probe and lysate-based measurements. (a) A BSO concentration-dependent decrease of GSH

levels measured using FACS. HeLa cells treated with a series of concentrations (0.9–500mM) of BSO for 72 h were harvested and analysed using RT.

R¼ F405 nm/F488 nm; Rmin and Rmax are the corresponding R values with 0 and saturating GSH concentrations, respectively. Each data point represents the

mean value of 17,000–28,000 cells analysed from three independent experiments. Error bars represent s.d. (b) Correlation of GSH levels in BSO-treated

HeLa cells measured using the RT-based flow cytometry method in a and a lysate-based biochemical assay. Each point in the lysate measurements

represents the mean value of a total of nine replicates from three independent experiments. Error bars represent s.d.
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Scale bar, 10mm. Despite significant morphology changes, GSH level did not change significantly over 3 min time span.
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Procedure for RT probe selectivity tests with small molecules in vitro.
Selectivity was tested in a 384-well plate. RT solution was mixed with various
compounds that could potentially interfere with signals. A panel of physiological
relevant nucleophiles and reactive oxygen/nitrogen species (ROS/RNS) were
selected. Little consumption of RT was observed in the presence of glycine, cysteine
and ROS/RNS.

Procedure for RT probe selectivity test with cell lysate in vitro. To test if RT
reacts or interacts with intracellular proteins, we obtained HeLa cell lysate by
physically scratch off the cells from a culture dish in RIPA buffer. The mixture was
then centrifuged at 15,000 g for 20 min at 4 �C and the supernatant was collected.
Protein concentration was determined by Bradford assay to be 1.1 mg ml� 1. To
eliminate small-molecule thiol (such as GSH) interference, we centrifuged the
lysate with 3 K cut-off membrane at 7,500 g for 40 min at 4 �C three times. The
volume of solution decreased from 2 ml to 250ml after each spin, and 1.75 ml of
fresh PBS was added before the next spin. After washing, the protein concentration
was measured again to be 1.1 mg ml� 1, which implies 499% recovery of all
proteins from the lysate. The resulting small-molecule free lysate was then con-
centrated twice to a concentration of 36 mg ml� 1, during which we lost o10% of
total protein. The concentrated lysate was then mixed with RT solution and
measured on a plate reader for fluorescence. No fluorescence ratio change can be
observed after mixing RT with lysate.

Procedure for RT probe selectivity test with cell lysate ex vivo. Procedure was
adopted from Hansen et al.50 with minor optimization (refer to graphic abstract on
Fig. 2d). HeLa cells were grown to 95% confluent on 10-cm dishes. Before analysis,
cells were stained with 5 mM RT for 10 min at room temperature. After staining,
cells were washed with cold PBS twice and lysed with 10% trichloroacetic acid on
ice. After sonication, cell lysate was centrifuged at 12,000 g for 15 min at 4 �C and
the resulting supernatant was directly analysed using GPC with a fluorescence
detector (GPC-FL). The precipitated protein pellet was re-dissolved by adding pH
4.5 citrate (0.4 M) buffer with 5% SDS and 1 mM EDTA (the volume is the same as
the supernatant), and heated to 45 �C for 5 min. After sonication, cell lysate was
centrifuged at 12,000 g for 15 min at room temperature and the supernatant was
analysed using GPC-FL. GPC running buffer was pH 4.5 citrate buffer (0.1 M) with
0.1% SDS and 1 mM of EDTA. Column temperature for GPC was 50 �C.
Fluorescent detector was set to detect signals with lex¼ 405 nm and lem¼ 478 nm.
The integration results revealed that 10% of RT reacts with protein thiols and 90%
of RT reacts with small-molecule thiols, presumably GSH.

Quantification of GSH using FACS. HeLa cells were cultured in 10% FBS DMEM
containing different concentrations of BSO (0.9, 1.9, 3.9, 7.8, 15.6, 31.3, 62.5, 125,
250 and 500mM) for 72 h and harvested for analysis. Cells were then suspended in
fresh medium containing 1 mM of RT probe as single-cell suspensions. To mini-
mize the potential clearance of RT from cells, we strictly kept the staining time
between 9 and 10 min for each sample. Cells were then analysed with a FACS
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analyser. PE and pacific-blue channels were selected to measure the fluorescence
intensities of unreacted and reacted RT, respectively. A cell-only control was used
to adjust the PMT for each channel. Live and dead cell discrimination was based on
forward (FSC-A) and side scattering (SSC-A), and doublets were excluded based on
FSC-A and FSC-H. Single cells were further gated based on SSC-A and SSC-H.
Fluorescent signals from both channels that were over 4 s.d.’s were excluded from
the final data set used for analysis. In each group, 410,000 cells were initially
analysed using FACS. Three replicates were performed for each FACS experiment
and B17,000–28,000 cells were eventually included in statistical analysis
(Fig. 6a,b). R¼ F405 nm/F488 nm; Rmin and Rmax are defined as the corresponding R
values with 0 and saturating GSH concentrations, respectively. However, Rmin and
Rmax are not measurable parameters on FACS because we cannot manipulate the
intracellular GSH level to zero or saturating conditions. Rmin and Rmax were
obtained by fitting the R values and the lysate-based GSH concentrations CGSH

using equation: (R�Rmin)/(Rmax�R)¼ k�CGSH, in which k is a constant.
The linear fitting afforded Rmin¼ 1.65, and Rmax¼ 2.98.

For generating calibration curve of HT1080 cells, exact same conditions were
used as described above. And fitting afforded Rmin¼ 1.60, and Rmax¼ 6.01.

HT1080 cells were treated with 10 mM of erastin for 0, 6 and 24 h before
harvesting. Cells were stained and analysed with a FACS analyser as stated above.
In each group, 30,000 cells were initially analysed using FACS and B21,000–
24,000 cells were eventually included in statistical analysis. Two replicates were
performed for each FACS experiment with one set of representative data shown
(Fig. 7b).

Quantification of GSH using Ellman’s assay. Cells were harvested and lysed with
0.1% Triton-X and 0.6% sulfosalicylic acid in 0.1 M potassium phosphate buffer
with 5 mM EDTA at pH 7.5 to afford protein free lysate. Typically, 106 cells will be
lysed to 1 ml of solution. In a 96-well microtiter plate, 20 ml of cell lysate was
prepared in each well. Freshly made solutions of equal volume 5,50-dithio-bis(2-
nitrobenzoic acid) and glutathione reductase with concentrations of 0.33 g l� 1 and
1.67 units per ml, respectively, were mixed with lysate to a final volume of 140 ml.
The mixture was incubated at room temperature for 1 min. Then, 60 ml of b-
NADPH (0.67 g l� 1) was added and the mixture was immediately measured for
absorbance at 412 nm every 30 s for 2 min. The slope of the absorbance changes
was proportional to the GSH concentration. A standard curve with known GSH
concentrations was used to calibrate all the results. A more detailed protocol can be
found in the literature15. Based on the amount of GSH in the lysate, we calculated
the GSH concentration assuming an averaged HeLa/HT1080 cell volume of
4,000 mm3 (refs 15,51,52).

Quantification of GSH using LCMS. Cells were incubated with 100 mM of
N-methyl maleimide (NMM) in PBS for 15 min at room temperature to derivatize
all the small-molecule thiols. Then, the cells were harvested and lysed with 0.1%
Triton-X and 0.6% sulfosalicylic acid in 0.1 M potassium phosphate buffer with
5 mM EDTA at pH 7.5 to afford a protein free lysate. Typically, a million cells were
lysed in 1 ml of lysis buffer. The samples were diluted by 100 times and measured
using LCMS in the selective ion mode. Two ions were monitored: GSH-NMM
(m/z: 419.1, Mþ 1) and Cys-NMM (m/z: 233.0, Mþ 1). A standard curve with
known concentrations of GSH-NMM and Cys-NMM were used to calibrate all
the results.

To confirm the GSH levels changes measured using RT in Fig. 4c, HeLa cells
were seeded into 6-well plates 24 h before experiment. For treatments, similar to
our imaging conditions, cells were treated with 500mM H2O2 for 10 min; 500 mM
H2O2 for 10 min followed by 100 mM GSH ethyl ester for 10 min; and 100 mM GSH
ethyl ester for 10 min. After treatments, cells were washed three times with PBS,
and incubated with 1 mM NMM for 5–10 min. Wash with PBS one more time and
add 500 ml of lysis buffer (0.1% Triton-X and 0.6% sulfosalicylic acid in 0.1 M
potassium phosphate buffer with 5 mM EDTA at pH 7.5) on ice. Collect the cell
lysate and centrifuge at 13,200g at 4 �C for 15 min, and the supernatants were used
for LC–MS analysis after diluting with water to proper concentrations. Based on
the amount of GSH in the lysate, we calculated the GSH concentration assuming an
averaged HeLa cell volume of 4,000 mm3 (refs 15,51,52).

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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Corrigendum: Quantitative real-time imaging
of glutathione
Xiqian Jiang, Jianwei Chen, Aleksandar Bajić, Chengwei Zhang, Xianzhou Song, Shaina L. Carroll,

Zhao-Lin Cai, Meiling Tang, Mingshan Xue, Ninghui Cheng, Christian P. Schaaf, Feng Li, Kevin R. MacKenzie,

Allan Chris M. Ferreon, Fan Xia, Meng C. Wang, Mirjana Maletić-Savatić & Jin Wang

Nature Communications 8:16087 doi: 10.1038/ncomms16087 (2017); Published 13 Jul 2017; Updated 3 Oct 2017.

Previous work by Cho and Choi describing the development of a cyanoacrylamide-based fluorescence sensor for reversible detection of
thiols in homogenous solutions was inadvertently omitted from the reference list of this Article. This work should have been cited in
the first paragraph of the discussion, following the rationale behind the development of the Michael acceptor, as follows: ‘A fluorescent
sensor based on the cyanoacrylamide Michael acceptor has previously been shown to reversibly react with thiols in homogenous
solutions but without any cellular applications, possibly due to the low quantum yield and poor aqueous solubility (Cho et al., 2012)’.

Cho, A. Y. & Choi, K. A coumarin-based fluorescence sensor for the reversible detection of thiols. Chem. Lett. 41, 1611–1612 (2012).
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