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Abstract

MAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:ethods for data analysis in the biomedical, life, and social (BLS) sciences are developing

at a rapid pace. At the same time, there is increasing concern that education in quantitative

methods is failing to adequately prepare students for contemporary research. These trends

have led to calls for educational reform to undergraduate and graduate quantitative research

method curricula. We argue that such reform should be based on data-driven insights into

within- and cross-disciplinary use of analytic methods. Our survey of peer-reviewed litera-

ture analyzed approximately 1.3 million openly available research articles to monitor the

cross-disciplinary mentions of analytic methods in the past decade. We applied data-driven

text mining analyses to the “Methods” and “Results” sections of a large subset of this corpus

to identify trends in analytic method mentions shared across disciplines, as well as those

unique to each discipline. We found that the t test, analysis of variance (ANOVA), linear

regression, chi-squared test, and other classical statistical methods have been and remain

the most mentioned analytic methods in biomedical, life science, and social science

research articles. However, mentions of these methods have declined as a percentage of

the published literature between 2009 and 2020. On the other hand, multivariate statistical

and machine learning approaches, such as artificial neural networks (ANNs), have seen a

significant increase in the total share of scientific publications. We also found unique group-

ings of analytic methods associated with each BLS science discipline, such as the use of

structural equation modeling (SEM) in psychology, survival models in oncology, and mani-

fold learning in ecology. We discuss the implications of these findings for education in statis-

tics and research methods, as well as within- and cross-disciplinary collaboration.

Introduction

The methodological landscape of the biomedical, life, and social (BLS) sciences is becoming

increasingly complex. This increasing complexity is driven by the advent of open-source
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science [1], the availability of large, complex datasets [2–4], and increasing computational

resources [5–7]. The classic statistical tools (e.g., t test, analysis of variance (ANOVA), and lin-

ear regression) taught in introductory statistics courses are, at times, perceived insufficient to

prepare researchers for the age of big data, machine learning, and open-source software. Con-

cerned that BLS sciences educational training is struggling to keep up with these trends, many

researchers and statisticians have advocated for educational reform to introductory research

methods and statistics courses [8–13]. We argue that a crucial step in this direction is a more

complete understanding of actual trends in analytic method usage across BLS sciences. Such

an understanding will offer valuable insights into the necessary methodological skills and

knowledge needed to train early career scientists for future success in their disciplines and

their interdisciplinary collaborations.

Increasingly, analytic methods developed in one discipline find fruitful application in

another. For example, deep learning, a machine learning technique developed by the artificial

intelligence community, has successfully been used by biologists to predict three-dimensional

protein structure [14]. The explosive adoption of neural networks across biology and multiple

other fields illustrates the need for educational training to note these trends and keep pace

with the demand for expertise in these emerging advanced analytic approaches.

In this study, we conducted a systematic charting of analytic method usage across BLS disci-

plines over time. We applied natural language processing tools to a large corpus of open-access

peer-reviewed literature. Our study aimed to map out the methodological landscape of the

BLS disciplines and identify changing trends over the past decade (2009 to 2020). Here, we use

the term “aAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:nalytic methods” to broadly denote any quantitative or qualitative method for data

analysis, including any algorithms, statistics, or models used to describe, summarize, or inter-

pret a sample of data. This definition is meant to exclude those elements of research methodol-

ogy involved in data collection or experimental or study design. “Study” is also broadly

defined as a peer-reviewed quantitative- or qualitative-based assessment of measured data

points, including experimental, observational, or meta-analytic research. We retraced trends

in analytic methods across (1) time; and (2) research disciplines. From a temporal perspective,

we identified analytic methods that have increased or decreased in prominence across BLS dis-

ciplines over the past decade (2009 to 2020). From a cross-disciplinary perspective, we identi-

fied analytic methods that are uniquely prominent within each BLS discipline and the

similarity or dissimilarity of BLS disciplines, in terms of their usage of analytic methods.

Our survey found that analytic methods commonly taught in introductory research meth-

ods and statistics courses (e.g., t test, ANOVA) remain the most commonly mentioned meth-

ods in BLS research articles over the past decade. However, these methods have largely

declined in prominence, or remained stable, over the past decade. On the other hand, multi-

variate statistics and machine learning methods have exhibited a consistent, sometimes expo-

nential, increase in mentions from 2009 to 2020. Further, we found that analytic methods are

not equally distributed across BLS disciplines, but tend to cluster into certain disciplines over

others.

Results

Preprocessing and analysis summary

The primary goal of this study is to describe and understand usage shifts in analytic methods

across BLS disciplines over time. We analyzed approximately 1.3 million articles published in

a decade of research to accomplish this goal. We extracted mentions/adoptions of analytic

methods from “Methods and materials” and “Results” sections of a large corpus of peer-

reviewed articles (PubMed Central Open Access Subset, PMC OAS [15]). We used a named
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entity recognition (NER) algorithm trained specifically for this purpose. We refer to these

extracted mentions from the text as analytic method entities—unique strings of alphanumeric

characters that refer to a distinct method for data analysis. The extracted entities then under-

went a sequence of preprocessing steps including removal of unwanted characters and lemma-

tization (i.e., removing inflectional endings). The preprocessing workflow included a manual

entity disambiguation step that classified entities referring to equivalent analytic methods to

the same category—e.g., “Cox regression” and “Cox PH regression” were both classified as

“Cox proportional hazards regression.” The final number of unique analytic method entities

after these preprocessing steps was N = 250. In addition to pre-preprocessing of analytic

method entities, articles were classified into a set of 15 research disciplines (Fig 1) using a

supervised machine learning framework pooling information from article titles, abstracts, and

journal names. The 15 disciplines were chosen by the authors from a survey of the corpus to

balance breadth and specificity of the BLS literature. The disciplines and their abbreviations

are as follows: animal/insect/plant biology (ANIMAL), biochemistry and molecular biology

(BIOCHEM), clinical research (CLINIC), computer science and informatics (CS), ecology and

evolutionary science (ECO), oncology (ONCO), environmental science (ENVIRON),

Fig 1. Preprocessing pipeline. (1) Retrieval and parsing of full-text “Methods and materials” and “Results” sections, (2) article classification into BLS

disciplines, (3) NER of analytic method entities, (4) entity string preprocessing, and (5) a manual entity disambiguation step whereby analytic method entities

are disambiguated into equivalent analytic methods (e.g., independent sample t test, and Cox proportional hazards regression). BAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1 � 6:Pleaseverifythatallentriesarecorrect:LS, biomedical, life, and social;

NER, named entity recognition.

https://doi.org/10.1371/journal.pbio.3001313.g001
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psychology (PSYCH), population and behavioral genetics (POPGENE), neuroscience

(NEURO), chemistry and material science (CHEM), engineering and biotechnology (ENG),

human physiology (PHYSIO), immunology (IMMUN), and epidemiology and public health

(EPIDEM). The preprocessing pipeline is illustrated in Fig 1. Details of the preprocessing pipe-

line are included in the “Methods and materials” section.

The analytic method entities extracted from all articles were used as input to 3 analytic pipe-

lines: (1) analytic method trends to observe temporal trends in analytic method usage over the

time window of 2009 to 2020 (at an annual frequency); (2) discipline by analytic method prob-

ability analysis to understand what analytic methods are unique to each BLS discipline; and (3)

analysis of analytic method groupings to discover data-driven clusters of analytic methods that

frequently co-occur within and across BLS disciplines. To promote reproducibility and reuse,

the full code for all preprocessing and analytic processes are provided on the following web

page: https://github.com/tsb46/stats_history.

Journal, discipline, and analytic method statistics

The corpus of open-access peer-reviewed literature predominantly consisted of science general

journals, such as PLOS ONE, Scientific Reports, and Nature Communications (Fig 2A). This

observation highlights one advantage of the machine learning classification of journal articles

into scientific disciplines. The common practice of article classification by its journal publica-

tion would fail to capture the mixture of scientific disciplines contained within these science

general journals. Discipline-specific journals with high article counts included Oncotarget
(ONCO), BMJ Open (CLINIC, EPIDEM), BMC Genomics (BIOCHEM), Sensors (ENG), BMC
Public Health (EPIDEM), and Frontiers in Psychology (PSYCH). These discipline-specific jour-

nals publish peer-reviewed articles in a specific area of study and have a more focused reader-

ship. The disciplines with the highest article counts are primarily biomedical and clinical

disciplines: CLINIC (N = 333,547), EPIDEM (N = 172,949), BIOCHEM (N = 160,016), and

ONCO (N = 111,818) (Fig 2B). The top 10 journals by discipline and the article counts for

each discipline are provided in the Supporting information (S1 Data).

To provide a visual illustration of the similarity between disciplines in their overall analytic

method counts, we deployed classical multidimensional scaling (MDS). MDS is a simple mani-

fold learning technique that expresses each discipline’s total analytic method counts in a parsi-

monious two-dimensional space (Fig 2B). The distances between the disciplines in the

resulting plot reflect the dissimilarity/similarity in total analytic method counts. This approach

made apparent that 2 disciplines stood out as relative outliers in analytic method mentions:

Evolution/Ecology and Chemistry/Material Sciences. As depicted in Fig 5, these select disci-

plines revealed a unique profile of analytic method mentions. For illustration, we consider the

discipline of Ecology/Evolutionary Sciences. Compared with other BLS disciplines, distance

matrix and manifold learning methods (e.g., MDS) are more widely used in the analysis of eco-

logical data [16–18]. Such methods have been found to be uniquely suited for the analysis of

species composition and abundance data [19]. For example, distance matrices constructed

through metric/nonmetric dissimilarity metrics (e.g., Bray–Curtis dissimilarity) are used to

represent a species-by-sample/site matrix. Manifold learning methods are routinely used to

analyze the resulting distance matrices [19]. Manifold learning methods are often referred to

as “ordination” in ecology.

The most frequently mentioned analytic method entities included null hypothesis testing

(e.g., p-values and null hypothesis), confidence intervals, correlation, linear regression, logistic

regression, t tests, and ANOVAs. Other frequently mentioned analytic method entities

included bootstrap resampling techniques, meta-analysis, dimension reduction, and clustering
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techniques (e.g., principal component analysis [PCA] and hierarchical clustering), classifica-

tion performance metrics (e.g., area under the curve and receiver operating characteristic

[ROC]), survival models (e.g., cox regression), and bioinformatic algorithms (e.g., sequence

alignment and phylogenetic tree construction methods). Interestingly, content analysis—a

sometimes quantitative, sometimes qualitative coding method of documents to examine com-

munication patterns—also appears in the top 50 most frequently mentioned method entities.

Analytic method trends

A primary goal of our survey was to examine trends in analytic method mentions in research

articles over the past decade (2009 to 2020). We first manually categorized analytic methods

into larger superordinate categories of conceptually similar methods (analytic method

Fig 2. Journal, discipline and analytic method statistics. (A) A horizontal stacked bar plot displaying the number of articles for the top 20 journals in the corpus

(defined in terms of article count). The percentage of articles per domain within a journal are proportionally shaded within each bar (IJERPH). The research disciplines

with the highest article counts were primarily biomedical and clinical disciplines. (B) MDS plot displaying the similarity between research disciplines, in terms of total

analytic method counts (summed across all articles in the discipline), on a two-dimensional space. The x- and y-axis correspond to the 2 latent dimensions estimated

from the MDS solution. The distance between 2 disciplines in this two-dimensional space communicates the dissimilarity in total analytic method counts between the 2

disciplines. (C) Top 50 analytic method entities were ranked row-wise by the number of mentions across the corpus. The size of each entity string is proportional to the

logged (log10) article count. The most frequently mentioned analytic methods were null hypothesis testing, correlation, confidence intervals, and linear regression. Data

for all figures are provided in S1 Data. ANCOVA, analysis of covariance; ANIMAL, Animal/Insect/Plant Sciences; ANOVA, analysis of variance; BIOCHEM,

Biochemistry/Cellular Biology/Molecular Genetics; CHEM, Chemistry/Material Science; CLINIC, Clinical/Hospital Research; CS, Computer Science/Informatics; ECO,

Evolution/Ecology; ENG, Engineering/Biotechnology; ENVIRON, Environmental/Earth Science; EPIDEM, Public Health/Epidemiology; IJERPH, International Journal
of Environmental Research and Public Health; IMMUN, Immunology; MDS, multidimensional scaling; NEURO, Neuroscience; ONCO, Oncology; PCA, principal

component analysis; PHYSIO, Human Physiology/Surgery; POPGENE, Population Genetics; PSYCH, Psychology; ROC, receiver operating characteristic.

https://doi.org/10.1371/journal.pbio.3001313.g002
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categories—e.g., t test/ANOVA, generalized linear models [GLIMs], and survival analysis)

(N = 34). Because the total number of articles in the corpus increased significantly year over

year, the raw frequency counts for all analytic method categories exhibited a consistent

increase in total counts over the time span of the corpus. In order to track what analytic

method categories have increased or decreased in mentions relative to the total number of arti-

cles per year, we calculated the proportion of articles mentioning each category per year (2009

to 2020). We display yearly trends for 12 of the 34 analytic method categories in Fig 3. Trends

for all analytic method categories are provided in S1 and S2 Figs. A data-driven analysis of all

analytic method trends without grouping into superordinate categories is provided in S3 Fig.

Raw counts and proportions for all analytic methods without grouping into superordinate cat-

egories are provided in S1 and S2 Data, respectively.

We make a distinction between those analytic method categories that are commonly taught

in introductory research method and statistics courses—e.g., null hypothesis testing, t tests/

ANOVA, linear regression, 2-way contingency tables (e.g., chi-squared test), and interval esti-

mation (e.g., confidence intervals) [20–22]AU : Pleasenotethatreferences½20; 21; 21�hasbeenchangedto½20 � 22�inthesentenceWemakeadistinctionbetweenthose::::Pleasecheckandcorrectifnecessary:and those analytic method categories taught in

advanced statistics or computer science courses—e.g., dimension reduction and clustering

techniques (e.g., PCA, nonnegative matrix factorization (NMF), and K-means clustering),

Fig 3. Overall trends in analytic methods over the past decade. Time series of 12 analytic method categories from 2009 to 2020 (annual frequency) displayed in a

single line plot. For each analytic method category, the time series represents the proportion of articles that contained a mention of that category in their “Methods/

Materials” or “Results” section per year. As can be observed from the plot, baseline differences in the proportion of mentions across analytic method categories are

very prominent. Overall, analytic methods taught in introductory research methods and statistics courses (e.g., null hypothesis testing, t test/ANOVA, 2-way

contingency tables, linear regression, and interval estimation) have been and still are the most mentioned category of analytic methods at the end of the decade (2020).

Analysis of individual trends of each analytic method category (Fig 4) reveals that while dominant, “introductory” analytic methods have exhibited a decline in

mentions over the past decade, while “advanced” analytic methods have shown a consistent increase in mentions. Proportion of article counts by year for all analysis

methods are provided in S2 Data. ANOVA, analysis of variance; MANOVA, multivariate analysis of variance.

https://doi.org/10.1371/journal.pbio.3001313.g003
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machine learning classifiers (e.g., support vector machines and random forest classifier), and

regression subset selection methods (e.g., Lasso regression). We nominally refer to these 2

groups as “introductory” and “advanced” analytic methods, respectively. Note that we do not

intend by this distinction to mean that “introductory” methods are less sophisticated or appro-

priate for data analysis than “advanced” analytic methods. This distinction is merely meant to

distinguish between those analytic methods typically taught in introductory courses in data

analysis from more advanced undergraduate and graduate data analysis courses.

As can be observed from Fig 3, introductory statistical methods—e.g., null hypothesis, test-

ing, t tests/ANOVA, linear regression, and confidence intervals—have remained the dominant

analytic methods mentioned in BLS methodology and results sections over the past decade.

Null hypothesis testing concepts and statistics (e.g., p-values, null hypothesis, and alternative

hypothesis) are by far the most commonly mentioned analytic “methods” in the BLS sciences

—approximately 35% of articles per year mention 1 or more analytic methods in this category.

The next most prominently mentioned analytic method category are ANOVA/t tests—statis-

tics for comparing mean differences between 1 or more means collected from independent

groups or repeated observations. Interval estimation approaches (e.g., confidence interval and

credible interval) for calculating the possible values of a population parameter is the third most

prominent analytic method category.

While baseline differences in the proportion of articles that mention an analytic method

category are important to consider, of primary interest for this survey are the relative trends in

mentions across the time span of the study (2009 to 2020). To assess the statistical significance

of the linear trends (i.e., decline or increase) in analytic method categories across the study

time span, we used a logistic regression model. Specifically, for each analytic method, we mod-

eled the log odds of an article mentioning that method conditional on an article’s publication

year (2009 to 2020) and the article’s scientific discipline. To assess whether any research disci-

pline exhibits a statistically significant deviation from the overall linear trend of a given ana-

lytic method category, interactions between the linear trend and discipline were added to the

model. To account for the correlated/nonindependent structure of articles published within

journals, the logistic regression model was estimated using a generalized estimating equation

(GEE) approach. Full details of the model are provided in the Methods and materials section.

The trends in analytic method category mentions are plotted individually (blue) in Fig 4. Note

that y-axis scales are relative for each analytic method category, and caution should be taken in

comparing trends across categories. The statistical significance (p-value) of the linear trend for

each analytic method category is displayed by each title. Those disciplines that exhibit a statistically

significant interaction (p< 0.05; corrected for multiple comparisons with the Holm–Bonferroni

method)—i.e., exhibit a deviation from the overall trend—are displayed with the overall trend.

While still dominant, there has been a marked decline in the proportion of articles men-

tioning parametric mean comparison tests (t test/ANOVA) over the course of 2009 to 2020.

The same decline is observed for analysis of 2-way contingency or cross-tabulation tables, such

as the chi-squared test and FAU : PleasenotethatasperPLOSstyle; testsshouldnotbeinpossessiveform:isher exact test. Other “introductory” statistical methods and con-

cepts, such as linear regression and null hypothesis, have remained fairly constant in their pro-

portion of mentions across the past decade. Interestingly, interval estimation methods, such as

confidence intervals, have exhibited an increase in mentions over the past decade, perhaps

reflecting the increased pressure from institutions and researchers [22–24] to report confi-

dence intervals along with statistical significance tests and p-values in peer-reviewed research.

As opposed to p-values, confidence intervals have the advantage of providing information

regarding both the size and uncertainty of a point estimate.

In contrast, analytic methods covered in more advanced statistics and computer science

courses have exhibited a marked increase in the proportion of mentions from 2009 to 2020.
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Fig 4. A decade of analytic method trends (2009–2020). Time series of 12 analytic method categories from 2009 to 2020 (annual frequency). For each analytic

method category, the time series represents the proportion of articles that contained a mention of that category in their “Methods/Materials” or “Results” section per

year. The time series of each analytic method category is displayed in its own plot with different y-axis scales. Note that because each plot differs in y-axis scale,

caution should be observed when comparing trends across categories. To help readers compare y-axis scales across categories, we have provided a y-axis scale bar in

the bottom right of each figure. An illustration of the y-axis scale bar is presented at the top of the figure. The height of the bar corresponds to the distance between the

minimum possible proportion (0) and the maximum possible proportion (0.65) of all articles per year across all categories. The highlighted region of the bar (in blue)

corresponds to that categories’ range of proportion values (across years) from 0 to 0.65. Random sampling variability for each proportion estimate was visualized

using bootstrapped SEs from 100 bootstrapped samples of articles at each time point (dark shaded region: ± 1 SE, light shaded region: ± 2 SE). Overall, analytic

methods taught in introductory research methods and statistics courses (e.g., t test/ANOVA, 2-way contingency tables, and linear regression) have shown differing
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These analytic methods include dimension reduction/clustering analysis, machine learning

classifiers (e.g., random forest classifiers, support vector machines, and artificial neural net-

works [ANNs]), nonparametric tests, partial least squares/discriminant analysis (PLS/DA),

and regression subset selection methods (e.g., Lasso regression). Generalized linear models

(GLIMs) (e.g., logistic regression, probit regression, and Poisson regression) have remained

relatively constant over the past decade. However, analysis of the individual GLIM models

belonging to this category shows that logistic regression, perhaps the most common GLIM

model, has declined in mentions over the past decade (S2 Data).

As illustrated in Fig 4, not all research disciplines follow the overall trend in analytic

method mentions over the past decade. Some research disciplines exhibit a trend opposite of

that observed in the overall trend. For example, mentions of null hypothesis testing concepts

in population/behavioral genetics (POPGENE) research articles have declined in mentions

from 2009 to 2020, while the overall trend remains fairly constant during that time span.

Other research disciplines exhibit a steeper trend in mentions than that observed in the overall

trend. For example, mentions of machine learning classifier methods in engineering/biotech-

nology (ENG) research articles exhibit a much steeper exponential increase in mentions from

2009 to 2020 compared with the overall trend.

Analytic method mentions by discipline

To examine analytic methods associated with each BLS discipline, we used a contingency table

approach. Specifically, we modeled the difference in observed versus expected article counts

based on the number of article counts for each discipline and analytic method across the cor-

pus. We used the standardized Pearson chi-squared residuals as an effect size measure of the

degree to which an analytic method is more prominently associated with a given discipline rel-

ative to other disciplines. In Fig 5, we display the top 10 analytic methods per discipline as

measured by the chi-squared residual value. The raw probability for each analytic method by

discipline is provided in the Supporting information (S3 Data).

As can be observed from Fig 5, each discipline is associated with a distinct set of analytic

methods. Some analytic methods appear across more than 1 discipline—e.g., Fourier analysis

in chemistry/material sciences and engineering/biotechnology. Others are unique to a given

discipline. For example, mentions of independent component analysis (ICA) appear much

more in neuroscience research articles than those of other disciplines. ICA is a common

method for decomposing multivariate signals (typically time series) into an additive mixture

of statistically independent latent sources, which has found common use in neuroimaging

(e.g., functional magnetic resonance imaging and electroencephalography) for source separa-

tion, artifact removal and detection of brain networks [25,26]. Another example is survival

analysis methods (e.g., Cox regression and log-rank test) in oncology. Survival analysis meth-

ods, such as Cox regression or Kaplan–Meier analysis, aim to model the time to an event of

interest. For clinical trials in the discipline of oncology, survival analysis methods have been

found useful in modeling the effect of treatment on time to death [27]. Another example is the

uniquely predominant use of PLS and PLS/DA in chemistry or chemometrics. PLS, a multivar-

iate technique that predicts a set of response variables (Y) based on a set of predictor variables

rates of decline or remained stable in mentions over the past decade, with the exception of interval estimation approaches (e.g., confidence intervals). On the other

hand, advanced analytic methods (e.g., machine learning classifier, regression subset selection methods, and clustering/dimension reduction) have shown a consistent

increase in mentions over the past decade. Proportion of article counts by year for all analysis methods are provided in S2 Data. Python code for modeling trends of

analysis methods is provided at https://github.com/tsb46/stats_history/blob/master/demo.ipynb. ANOVA, analysis of variance; CCA, canonical correlation analysis;

MANOVA, multivariate analysis of variance; PLS/DA, partial least squares/discriminant analysis; SE, standard error.

https://doi.org/10.1371/journal.pbio.3001313.g004
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Fig 5. Analytic method mentions across disciplines. Top 10 standardized chi-squared residuals for each discipline from the

contingency table analysis, ranked from top to bottom. The font size of the analytic method string is sized by its (logged)

standardized chi-squared residual. The greater the chi-squared residual, the greater the difference between the observed and

expected number of analytic method entities within that discipline. Disciplines have a unique set of analytic methods frequently

mentioned in their subject matter, e.g., neural networks in computer science, ICA in neuroscience, and Manhattan plots in

population/behavioral genetics. Standardized chi-squared residuals for all analysis methods by domain are provided in S3 Data.

ANOVA, analysis of variance; ARMA, autoregressive moving average model; ICA, independent component analysis; MDS,

multidimensional scaling; ROC, receiver operating characteristic; PCA, principal component analysis.

https://doi.org/10.1371/journal.pbio.3001313.g005
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(X), is often used in chemometrics to relate properties of chemical samples (e.g., spectral prop-

erties) to their chemical composition (e.g., sample concentrations) [28].

Analytic method groupings

Analytic methods in the BLS sciences are rarely used in isolation. Rather, a set of methods are

applied jointly, or in sequence, to understand a dataset. We term these frequently co-occurring

analytic methods, “method groupings.” To directly extract coherent constellations of methods

and understand how they vary across BLS disciplines, we applied a tensor decomposition

approach to an analytic method (N = 250) co-occurrence by discipline (N = 15) tensor (Fig 6;

Fig 6. Co-occurrence patterns in article mentions of analytic method across BLS disciplines. To understand what analytic methods are frequently used together in

the same study, we conducted a tensor decomposition of an analytic method co-occurrence by discipline tensor. The tensor decomposition analysis simultaneously

models the co-occurrence between analytic methods, as well as their frequency of mentions in each discipline. This figure displays the discipline and analytic method

weights from the tensor decomposition analysis. Components from the tensor decomposition are referred to as “method groupings” or groups of analytic methods that

frequently occur together in study method and results sections. The top left panel provides a visual illustration of the tensor decomposition (nonnegative CANDECOMP

decomposition) of the analytic method co-occurrence by discipline tensor. The first 2 dimensions of the tensor represent the logged sum of co-occurrences between

each pair of analytic methods. The third dimension splits out the analytic method co-occurrences by discipline (i.e., the analytic method co-occurrences of articles

within each discipline). For each component or “method grouping,” a stem plot illustrates the weights for each discipline, as well as the top 10 analytic methods, in terms

of their weights (sized by their weight). For each component, the discipline weights represent the frequency of usage of that component across each discipline. Some sets

of analytic methods are represented across all BLS disciplines (e.g., component 19), while others are concentrated within 1 or 2 disciplines (e.g., component 17).

Discipline and analysis method weights for all 20 components are provided in S4 Data. ANOVA, analysis of variance; BLS, biomedical, life, and social; MANOVA,

multivariate analysis of variance; MDS, multidimensional scaling; PCA, principal component analysis; ROC, receiver operating characteristic.

https://doi.org/10.1371/journal.pbio.3001313.g006
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top left panel). For illustration, we displayed 11 components (method groupings) of a 20 com-

ponent (i.e., 20 rank-one tensors) solution (Fig 6). Visualization of all component weights is

provided in S4 Fig. Each component is associated with separate weights for analytic methods

and disciplines, indicating the analytic methods and disciplines most associated with the com-

ponent, respectively.

The method groupings revealed by the tensor decomposition can be roughly classified into

cross-discipline and within-discipline method groupings (i.e., components). Cross-discipline

method groupings include components with a broad representation across the BLS disciplines

(relatively more even distribution of discipline weights). For example, components 2, 6, 15, 19,

and 20 had nonzero weights for the majority of BLS disciplines. Component 2 included meth-

ods broadly related to Bayesian statistics and concepts, such as credible intervals and poste-

rior/prior probability distributions (e.g., beta distribution). This component is prominent

across all research disciplines with particular prominence in computer science, ecology, and

clinical research disciplines. Component 6 included bioinformatic algorithms for DNA

sequence alignment, phylogenetic tree construction, and bootstrap resampling. This compo-

nent is more prominent in biological science disciplines, such as ecology and evolution, animal

and plant sciences, immunology, and biochemistry and molecular biology. Component 15

includes a variety of machine learning algorithms/metrics, including random forest algo-

rithms, support vector machines, ANNs, and classification accuracy metrics (e.g., ROC and

area under the curve). This component is prominent in all research disciplines with a particu-

lar prominence in chemistry and material sciences, and computer science.

We subsequently focused attention on the discipline-specific method groupings: method

groupings with almost exclusive use in 1 or a small subset of BLS disciplines. One example of a

discipline-specific method grouping was component 11, a component exclusively represented

in ecology and evolution and animal and plant disciplines. This set of methods included MDS,

ANOVA-based methods, and distance matrix analyses (e.g., Mantel test). As noted above,

manifold learning and distance matrix methods are uniquely suited to analyses of species com-

position and other types of data regularly collected in these disciplines. The appearance of

ANOVA-based methods in this seemingly unrelated group of methods may seem surprising,

but owes to the fact that variance partitioning of distance matrices is a historically common

practice in ecological disciplines [29]. Another discipline-specific method grouping is compo-

nent 16 represented most prominently by computer science and engineering and biotechnol-

ogy disciplines. The analytic method with the strongest weight for this component is ANNs.

So-called “deep learning,” ANNs with many layers of nodes, have seen an explosion of interest

in recent years due to the increase in computational power and big data sources. Consistent

with these findings, computer science, bioinformatics, and engineering/biotechnology disci-

plines have been at the forefront of methodological development in this area [30]. Another dis-

cipline-specific method grouping is component 5, consisting of latent variable models,

including structural equation modeling (SEM) and confirmatory factor analysis (a subset of

SEM). This component is most prominent in the discipline of psychology. Latent variable

methods have found particular use in the field of psychometrics, where these models have

been used to measure theoretical constructs, such as intelligence, personality, and attitudes

[31].

Discussion

The data analytic landscape of the BLS sciences is subject to change. The democratization and

commoditization of tools for quantitative analysis have grown exponentially in the 21th cen-

tury and only accelerated in pace in the past decade. This tectonic shift is due to the increased
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accessibility of computational resources, open-source software and abundance of big data in

more areas of human activity. When learning to conduct data analysis, the scientist in training

is faced with a steep hill to climb. To make this climb easier, graduate and undergraduate edu-

cation must reflect the current practices and trends in data analysis. We offer an automated

12-year survey of approximately 1.3 million open research papers to characterize the data ana-

lytic landscape of the BLS sciences. This study aimed to provide a snapshot of the ongoing

methodological shifts across a variety of scientific communities.

We find that the analytic methods commonly taught in introductory research methods and

statistics courses (e.g., t test and ANOVA) remain the most commonly mentioned methods in

“Methods” and “Results” sections of research articles. However, while dominant, these meth-

ods have largely declined in prominence, or remained stable, over the time span of the study

(2009 to 2020). On the other hand, multivariate statistics and machine learning methods have

exhibited a consistent, sometimes exponential, increase in mentions over the time span of the

study. Further, we find that certain analytic methods are not equally distributed across BLS dis-

ciplines, but have unique prominence in certain disciplines over others. We believe our results

provide valuable insights into how university curricula should be designed to meet the urgent

need for training a new generation of quantitatively literate scientists.

“Multivariate statistics and machine learning methods” is a broad label, referring to a wide

variety of analytic methods. These methods are often taught in advanced statistics and com-

puter science courses and include PCA, regression subset selection, PLS, support vector

machines, random forest algorithms, and ANNs. While some of these methods are quite old

(e.g., PCA was first developed in the early 20th century), others are relatively new and still

developing (e.g., ANNs have only seen broad use in the past decade). This study made no

attempt to examine the potential causal factors behind the observed trends. We speculate that

they could be due to several reasons: (1) the collection of larger and more complex datasets; (2)

the recent popularity of data science as a tool in academia and industry; or (3) an increasing

realization among researchers that manuscripts containing advanced analytics are more likely

to impress reviewers and editors. However, advanced analytic methods still only represent a

minority of the mentions we observed across BLS research articles. Although on different rates

of decline or stability, the statistical methods taught in introductory courses, such as mean

comparison tests (e.g., t test/ANOVA), cross-tabulation/contingency table analysis (e.g., chi-

squared test), and null hypothesis testing, represent a much more sizable percentage of men-

tions across BLS research articles.

Projecting these trends into the future, we would expect that multivariate statistics and

machine learning methods will enjoy increasing usage relative to more traditional statistical

testing frameworks. The traditional statistical tool stack—t test, ANOVA, z-test, etc.—taught

in undergraduate and graduate statistics courses were largely developed in the first half of the

20th century [32]. Since then, advances in computation and statistical computing software

have revolutionized the analytic tools available to researchers. The application of advanced

multivariate and machine learning analysis methods requires proficiency in statistical software

and/or open-source programming languages that are largely absent from most traditional

research methods and statistics curricula. Overall, these trends suggest that introductory

research methods and statistics courses may benefit from incorporating a “data science” focus

in their curricula [8,32].

Our survey demonstrates that methods for data analysis can vary widely across BLS disci-

plines. Several explanations can be offered for the distinct usage of data analysis methods

between BLS disciplines. Perhaps the primary driver of a discipline’s adoption of research

methods is the simple observation that the subject matter lends itself to the assumptions and

goals of selected analytic methods. For example, consider the observed disproportionate use of
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SEM in the discipline of psychology (Figs 5 and 6 –component 5). Psychological research rou-

tinely relates observable behavior such as task performance or questionnaire responses to

unobserved or latent variables. The desire to explore causal structure among these latent vari-

ables has led to the systematic adoption of SEM—a technique to specify and test causal struc-

tures among latent and observable variables [33]. Similar explanations can be offered for other

method–discipline pairs, such as survival models and oncology. Other differences may arise

from historical contingency, with no necessary connection between an analysis method and

the subject matter it is applied to. For example, consider the predominant use of Fisher exact

test in immunology versus the chi-squared test in clinical research (Fig 5). Both are statistical

significance tests of the association between 2 categorical variables. The appropriate context

for each test is controversial among statisticians, but Fisher exact test is commonly recom-

mended over the chi-squared test with small sample sizes [34,35]. Despite this controversy,

our analysis indicates the Fisher exact test is generally preferred over the chi-squared test in

the field of immunology and vice versa in clinical research. Thus, one might hypothesize that

either (1) the discipline of immunology works with smaller sample sizes on average than the

discipline of clinical research; or (2) these differences arose for sociological or historical

factors.

Differences in analytic method usage have concrete implications for the direction of

research in each BLS discipline. The choice of experimental or observational design often

entails the subsequent analytic method used to analyze the data, but a reverse influence occurs

as well: The researcher’s knowledge of available analytic methods informs their experimental

or observational design. For example, ANOVA models for analysis of group means have a his-

torically close relationship with experimental design in social and life science research [36]. In

other words, the influence between the choice of data analysis method and how data is col-

lected operates in both directions. This observation underlies the potential for cross-fertiliza-

tion and mutual inspiration between BLS disciplines by the discovery of new methods for data

analysis, as well as novel ideas around data collection. While many advocates of cross-disci-

plinary collaboration have emphasized the joining together of different theoretical and subject

matter expertise [37], our findings emphasize a further methodological benefit of collabora-

tion, which affords practitioners access to novel methods of data analysis not yet widely

known in their own disciplines.

It should be noted that the corpus and methods used in this analysis are limited in many

respects. First and foremost, our study relies on mentions of an analytic method in a research

article as an indicator for the usage of that analytic method in the article. However, the men-

tion of an analytic method is not an unequivocal indication of its usage for data analysis in a

research article. Therefore, we restricted our analysis of research articles to their “Methods”

and “Results” sections, where mentions of an analytic method should be more closely associ-

ated with their usage. However, due to the infeasibility of spot-checking a large corpus

(approximately 1.3 million articles) manually, there may be cases of analytic method mentions

that did not imply their usage in our sample. Further, the entity recognition approach in our

study requires that analytic methods are explicitly reported in methodology and results sec-

tions. However, inadequate and/or inaccurate reporting of protocols and statistical analyses is

a known problem in the BLS sciences [38–40]. Thus, there are likely a number of research arti-

cles in our corpus where the full set of analytic methods employed was not captured by our

analysis. Second, the usage of analytic methods does not imply that the method was applied

appropriately or correctly. In fact, the inappropriate application of statistical methods may be

a contributor to the replication crisis in the BLS sciences [23,41,42]. Thus, the increase in

usage of multivariate and machine learning methods should not be considered prima facie evi-

dence that these methods are being used appropriately. Third, our corpus only contains open-
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access articles made available by an open-access journal or an NIH-funded author. Thus, a siz-

able collection of peer-reviewed research in the past decade is systematically missing from this

analysis. However, we assume that the type of publisher—open access or subscription based—

is not a significant determiner of the methods used within a discipline. Fourth, some scientific

disciplines may be less well represented in this survey, including experimental and theoretical

physics, anthropology, astronomy, cosmology, economics, sociology, and geology. Future

studies with a more comprehensive corpus of scientific publications will provide deeper insight

into the historical and cross-disciplinary trends in scientific data analysis. Fifth, our classifica-

tion of scientific disciplines requires that an article is assigned to one, and only one discipline.

While the majority of research articles in our corpus may fit into one scientific discipline over

others, some will be multidisciplinary, particularly for those disciplines with similar research

agendas and regular collaboration (e.g., oncology, clinical research, and immunology). We

have provided the original Python code of all preprocessing and analytic pipelines for those

who wish to improve or redesign this study’s algorithms for future use (https://github.com/

tsb46/stats_history).

Our data-driven survey of peer-reviewed articles reveals that the analytic landscape of the

BLS sciences has been transformed over the past decade. A comparable rate of change will be

required in education of budding scientists in statistics and research methodology. Equally

important is the observed analytic diversity of BLS sciences of the past 10 years. The diverse

analytic tool sets across BLS disciplines promises large payoffs for cross-disciplinary collabora-

tion. In this vein, the recent advent of big data and open-source science is at least as much an

opportunity for adequately training the next generation of researchers, as a challenge.

Methods and materials

Peer-reviewed literature corpus

Two sources of peer-reviewed literature were used for this analysis: the PMC OAS

(N = 3,300,810 articles at time of study) and the PubMed Central Author Manuscript (PMC

AM) collection (N = 702,198 articles). The PMC OAS provides access to full texts from a total

of 14,722 open access peer-reviewed journals (at time of study). The PMC AM collection pro-

vides access to full texts of manuscripts made available in PMC by authors in compliance with

the NIH Public Access Policy. Both sources form part of PMC’s open access collection [15]

(https://www.ncbi.nlm.nih.gov/pmc/tools/textmining/). Bulk downloads of the full OAS and

AM collection articles were conducted using the PMC FTP service. Overall, a total of approxi-

mately 4 million articles were downloaded and screened for our analysis.

Article parsing and method section identification

Both OAS and AM text corpora are openly available in a structured and standardized form to

the public on PMC’s web page. Both corpora were downloaded in XML format. Each XML

article file is organized into article metadata and article text separated into article sections (e.g.,

Introduction, Methods and Materials, Results, etc.). As the primary interest of this study was

exploring usage patterns of analytic methods in this pool of articles, we retrieved sections of

the XML articles that correspond to the methodology (e.g., “Methods and materials” section)

and results section of the article. Given that methodology and results sections have no stan-

dardized title, we pulled any sections of text from each XML article that contained in any of

the following sequence of strings: “method,” “material,” “measure,” “analysis,” “statistical,”

“model,” “algorithm,” and “result.” As we were interested in original studies, XML articles not

containing any of these section search strings were excluded from analysis, such as literature
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reviews, book reviews, commentaries, etc. Of the total XML articles in the peer-reviewed litera-

ture corpus, Ntext = 2,292,668 articles with the above section search strings were retrieved.

Named entity recognition of analytic method entities

In the resulting corpus of methodology and results section texts, it would be infeasible to man-

ually tag each analytic method phrase in every section text. Thus, we opted for an automated

recognition method for the purpose of detecting analytic method phrases. We used a com-

bined phrase matching/rule-based and machine learning approach. First, we developed a large

list of phrases (Nphrase = 1,129) corresponding to commonly used analytic methods across BLS

disciplines. These were used as a rule-based matching approach to detect analytic method

phrases in the section texts. To generalize detection of analytic method phrases outside our

manually created list, we selected 20,000 random method and results section texts with tagged

phrases from our rule-based approach and fed them as training examples to a statistical NER

algorithm. The objective of the NER algorithm is to utilize the rule-based training samples as

context “clues” for detecting analytic method phrases more generally (i.e., those outside the

original phrase list). To perform NER on our full corpus, we used the convolutional neural net-

work (CNN) algorithm provided by the open-source spaCy python package [38], with stan-

dard parameters for training (100 iterations, 0.2 dropout, and mini-batch training). The

trained NER model was applied to the entire corpus of methodology and results section texts

to generate the final list of detected analytic method phrases or entities. Of the total corpus of

2,292,668 methodology section texts, at least 1 analytic method entity was detected in over half

of the texts (Ntext = 1,438,077). In the main text, we refer to the detected analytic method

phrases from the trained NER model as analytic method entities, or simply, analytic methods.

The total number of unique method entities (before pre-preprocessing) discovered from the

NER algorithm was Nentity = 15,016.

Analytic method entity preprocessing

The NER algorithm yielded a unique list of analytic method entities, which was represented as

a distinct sequence of characters. Different entities can refer to the same analytic method, for

example, one could refer to a t test as “t-tests,” “t test,” “ttest,” etc. To attempt to correct for

small spelling differences such as these, each analytic method entity string underwent a

sequence of preprocessing steps for harmonization: (1) lowercase characters; (2) removal of

non-alphanumeric or non-Greek characters (e.g., hyphenations, quotes, and commas); (3)

lemmatization of words of the tokenized (i.e., separated into words) entity strings; and (4) con-

verting entity strings that occur rarely (N< 5) to more commonly used spellings (within a

max difference of 2 characters) using the SymSpell algorithm implemented in https://github.

com/wolfgarbe/symspell. As another measure of quality control, only preprocessed entities

with a minimum of 10 occurrences were included in the final method entity vocabulary. The

final quality control step was a manual entity disambiguation procedure. Most analytic meth-

ods can be referred to by different names. For example, an independent sample t test may be

referred to as an “independent t-test,” “two-sample t-test,” “Student’s two-sample t-test,” and

so forth. Cox proportional hazards regression may be referred to as “Cox regression,” “Cox

PH regression,” “proportional hazards regression,” and so forth. To ensure that differences in

analytic method counts across the corpus do not reflect different naming conventions, the

authors conducted a thorough review of all preprocessed entity strings and categorized those

strings into similar categories. In addition, “junk” entity strings that were mistakenly identified

as analytic methods by the NER algorithm were thrown out in this stage. The final method
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entity vocabulary count after preprocessing was Nentity = 250. After preprocessing, the final

pool of articles was Ntext = 1,364,517.

Article classification into research disciplines

A primary objective of this study is to understand cross-disciplinary usage in analytic methods.

This objective requires that the articles in the corpus are first classified into separable disci-

plines (e.g., biochemistry, epidemiology, psychology, etc.). A simple approach would be to

manually classify each journal (or publication) in our corpus into a discipline, such that each

article belonging to that journal would be classified with that discipline. While a much more

manageable task than manually classifying each article, this approach runs into 2 problems: (1)

not all articles in a domain-specific journal (e.g., PLOS Biology, Medicine, and EMBO Journal)
can be easily classified into 1 BLS discipline; and (2) domain general journals (e.g., PLOS ONE,

Nature Communications, and Science) cannot be classified into a single BLS discipline. Thus,

we chose to use a machine learning text classification approach to classify each single article

into a set of prespecified BLS disciplines. This approach allowed for more flexible classification

at the level of each journal article—allowing for different article classifications within the same

journal.

We chose a set of 15 BLS discipline categories for article classification: Biochemistry/Cellu-

lar Biology/Genetics (BIOCHEM), Clinical/Hospital Research (CLINIC), Computer Science/

Informatics (CS), Chemistry/Material Sciences (CHEM), Environmental/Earth Science

(ENVIRON), Evolution/Ecology (ECO), Immunology (IMMUN), Oncology (ONCO), Psy-

chology (PSYCH), Neuroscience (NEURO), Public Health/Epidemiology (EPIDEM), Engi-

neering/Biotechnology (ENG), Human Physiology/Surgery (PHYSIO), and Population

Genetics (POPGENE). Importantly, we make no claim that this categorization represents the

most optimal division of BLS disciplines—a potentially infinite number of categorizations

could be more/less useful in certain contexts and overlap in research topics between the cate-

gories of any division will be prevalent. Rather, this categorization provides a useful/pragmatic

division of BLS disciplines given the distribution of publications in our corpus. To classify arti-

cles in the corpus into the 15 BLS disciplines, we input a bag-of-words feature set (1-gram,

2-gram, and 3-gram tokens), generated from the article abstract, title, and journal title, to a

multinomial naive Bayes (MNB) classification algorithm. We utilized a version of the MNB

algorithm that corrects for an unequal number of instances across categories [43], as was pres-

ent in our corpus. To reduce the number of features input to the MNB algorithm and improve

prediction accuracy, we applied a chi-squared feature selection approach. Specifically, we

chose the top 15,000 features from the bag-of-words feature set, after ranking the full set of fea-

tures based on their chi-squared statistic value with the 15 discipline categories. The chi-

squared statistic is a measure of dependence between 2 categorical variables, and in our case,

provides an indication of the degree to which a text token (e.g., 1-gram, 2-gram, or 3-gram) is

associated with differences in scientific disciplines. The final MNB model for training involved

15,000 features, 15 discipline categories to be distinguished, and 1,470 training samples. We

assessed the model accuracy using a repeated K-fold cross-validation approach (NFolds = 10,

NRepeats = 10). The final MNB model achieved an accuracy of 74.9%. The accuracy achieved

for each individual discipline are as follows: ANIMAL—71.2%, BIOCHEM—72.2%, CHEM—

88.4%, CLINIC—77.6%, CS—79.2%, ECO—75.3%, ENG—67.4%, ENVIRON—67.8%, EPI-

DEM—65.6%, IMMUN—64.0%, NEURO—87.1%, ONCO—84.5%, PHYSIO—69.6%, POP-

GENE—60.0%, and PSYCH—69.2%. We found that the MNB approach performed better

than other classification approaches (e.g., random forest decision tree classification, support

vector machines, and logistic regression) on our dataset, in terms of classification accuracy.

PLOS BIOLOGY Trends in analytics across biological and social sciences

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001313 July 29, 2021 17 / 23

https://doi.org/10.1371/journal.pbio.3001313


Discipline similarity analysis

To examine the similarity of analytic method mentions between disciplines, we used an MDS

approach. First, we summed the counts of all analytic method entities (N = 250) per discipline.

We then computed the Euclidean distance between all pairs of z-score normalized count vec-

tors (1 vector per discipline). The distances were then projected to a two-dimensional space

using a classical MDS algorithm.

Analytic method trend analysis

In order to understand temporal changes in analytic method mentions across BLS sciences, we

first manually categorized analytic methods into larger superordinate categories of conceptu-

ally similar methods (analytic method categories—e.g., t test/ANOVA, GLIMs, and survival

analysis) (N = 34). We then computed annual counts of analytic method categories starting at

the beginning of 2009 to the end of 2020 (N = 12 time points). We chose an annual time reso-

lution for the following reasons: (1) some journals in our corpus are published at a limited

time frequency (e.g., annually or biannually); and (2) it was reasoned that large-scale trends in

analytic method usage within a discipline occur at a low frequency (i.e., over years, as opposed

to months). We took a model-based approach to test the statistical significance of the linear

trend of each analytic method category. Specifically, we modeled the log odds of an article

mentioning an analytic method category across the 12-year time span using a logit model. The

statistical significance of a (yearly) linear trend term was assessed at a p< 0.05 (corrected for

multiple comparisons with the Holm–Bonferroni method). In addition, sum-coded (devia-

tion-coded) variables were included for the discipline the article belonged to (N = 15 − 1, pre-

dicted from the classifier mentioned above), where clinical research was used as the omitted

reference level. To examine whether any discipline’s linear trend for a given analytic method

category deviated from the overall trend, we assessed the statistical significance of the interac-

tion between each discipline-coded effect variable and the linear trend term. The coefficient of

each discipline-by-linear trend interaction represents the degree to which that discipline sig-

nificantly deviates from the overall linear trend. Our corpus contains a prominent multilevel

structure with articles nested within journals, such that we would expect analytic method

counts between articles within the same journal to be more similar than across journals. To

account for this nested dependence structure in the corpus, we estimated the logit model using

Generalized estimating equations (GEE). The GEE estimated model estimates a population-

averaged linear trend correcting the standard errors for the nested dependence structure, as

opposed to a within-journal effect (i.e., mixed-effects model).

The logit models for each analytic method category were used primarily to estimate the sta-

tistical significance of the linear trends and possible discipline–trend interactions. For the

main text, time series for each analytic method are presented visually in line plots (Figs 3 and

4). The annual article count in our corpus increased at approximately a linear frequency from

2009 to 2020: 2009: 34,666; 2010: 45,915; 2011: 55,611; 2012: 70,008; 2013: 93,461; 2014:

109,828; 2015: 122,138; 2016: 134,136; 2017: 146,029; 2018: 159,920; 2019: 181,419; and 2020:

211,386. To account for this increase in article frequency, we normalized the raw frequency

counts of each analytic method category by the total article counts per year—i.e., we computed

the proportion of counts of each method category to the total article counts per year. Thus, all

analytic method category trends are displayed as proportions of the total number of articles

per year. To provide an estimate of uncertainty of the proportion of mentions for a given ana-

lytic method category and year, we obtained an estimate of the sampling variation by con-

structing 100 bootstrapped samples of all articles within a year and recalculated the proportion

by total article count for that method category. Standard errors were estimated from the
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standard deviation across the 100 bootstrapped proportions and displayed as shaded regions

around the observed proportion trends.

Discipline by analytic method probability analysis

In order to understand the unique clustering of analytic method entities between disciplines,

we used a chi-squared contingency table approach. This approach provides a straightforward

way to identify those analytic methods that are used more frequently in a discipline relative to

others. Specifically, we organized the data into a discipline by analytic method count matrix

and calculated the Pearson chi-squared standardized residual for each cell (i.e., discipline and

analytic method pair). The standardized residual is simply the Pearson residual (observed–

expected frequency) divided by the square root of the expected frequency. The larger the posi-

tive value of the standardized residual, the greater than expected number of articles in a BLS

discipline mentioning that analytic method (in its “Materials and Methods” or “Results” sec-

tion). The top 10 standardized residuals for each BLS discipline are displayed in Fig 5.

Analysis of analytic method groupings

For any given study, a variety of analytic methods are typically used to understand a dataset.

We refer to groups of frequently co-occurring research methods as analytic method groupings,

or simply method groupings. We used a data-driven tensor decomposition approach to dis-

cover commonly used method groupings across BLS disciplines. The procedure was carried

out as follows: (1) analytic method by analytic method co-occurrence matrices were computed

by discipline; (2) co-occurrence values within each matrix were log-transformed to reduce the

influence of positively skewed analytic method counts; (3) co-occurrence matrices for each dis-

cipline were L2 normalized to remove the effect of differing total article counts between disci-

plines; (4) the log-normalized co-occurrence matrices were arranged into a 3-way tensor

(XN�N�D): analytic method (N = 250) by analytic method (N = 250) by discipline (D = 15); and

(5) a nonnegative PARAFAC/CANDECOMP decomposition was applied to the analytic

method co-occurrence by discipline tensor. The CANDECOMP decomposition factorizes a

given tensor into a linear combination of R rank one tensors. In the present case, the 3-way

entity co-occurrence by discipline tensor can be decomposed into a sum of R rank-one ten-

sors, referred to as components, as follows (the sum of outer products of 3 vectors):

X ¼
XR

r¼1

ar � br � cr

For a given component, the elements of a and b correspond to the weights of each analytic

method on the component (in the case of a symmetric co-occurrence matrix, a = b), and the

elements of c correspond to the weights of each discipline on the component. As our analytic

method co-occurrence matrices represent (log-normalized) counts, we add the additional con-

straint that the tensor is factorized as the additive sum of nonnegative components. This has

the benefit of enforcing sparsity on the components, and thus, increases the interpretability of

the solution. There are no universally agreed upon criteria for the choice of R, the number of

components. Analogous to some matrix factorization approaches (e.g., NMF), the more com-

ponents estimated, the finer details produced in the resulting solution. However, too many

components estimated may result in redundancy and/or modeling of noise. We chose a solu-

tion of 20 components, as this solution produced the most interpretable solution. Solutions

with components around this number yielded similar solutions.

PLOS BIOLOGY Trends in analytics across biological and social sciences

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001313 July 29, 2021 19 / 23

https://doi.org/10.1371/journal.pbio.3001313


Supporting information

S1 Fig. Analytic methods trends—all categories—part 1. Time series of 21 analytic method

categories from 2009 to 2020 (annual frequency). For each analytic method category, the time

series represents the proportion of articles that contained a mention of that category in their

“Methods/Materials” or “Results” section per year. The time series of each analytic method cat-

egory is displayed in its own plot with different y-axis scales. Note that because each plot differs

in y-axis scale, caution should be observed when comparing trends across categories. Propor-

tion of article counts by year for all analysis methods are provided in S2 Data. Python code for

modeling trends of analysis methods is provided at https://github.com/tsb46/stats_history/

blob/master/demo.ipynb.

(TIFF)

S2 Fig. Analytic methods trends—all categories—part 2. Time series of 11 analytic method

categories from 2009 to 2020 (annual frequency). For each analytic method category, the time

series represents the proportion of articles that contained a mention of that category in their

“Methods/Materials” or “Results” section per year. The time series of each analytic method cat-

egory is displayed in its own plot with different y-axis scales. Note that because each plot differs
in y-axis scale, caution should be observed when comparing trends across categories. Proportion

of article counts by year for all analysis methods are provided in S2 Data. Python code for

modeling trends of analysis methods is provided at https://github.com/tsb46/stats_history/

blob/master/demo.ipynb.

(TIFF)

S3 Fig. Data-driven analysis of individual analytic method trends. The trends in Figs 3 and

4 display trends in superordinate categories of conceptually similar in analytic methods. For

the sake of completeness, we conducted a cluster analysis of individual analytic method trends

(N = 250) (before categorization into superordinate categories). Hierarchical clustering was

performed to separate 3 clusters of analytic methods with approximately positive (Cluster 1),

negative (Cluster 3), and flat (Cluster 2) trends over the study time span. (A) Heatmap of pair-

wise correlations between analytic method trends sorted according to their cluster assignment.

(B) The trends of each cluster over the study time span (2009–2020). (C) The cluster assign-

ments of all analytic methods (N = 250). Cluster assignments for all analysis methods are pro-

vided in S5 Data.

(TIFF)

S4 Fig. Tensor decomposition weights for all 20 components. To understand what analytic

methods are frequently used together in the same study, we conducted a tensor decomposition

of an analytic method co-occurrence by discipline tensor. The tensor decomposition analysis

simultaneously models the co-occurrence between analytic methods, as well as their frequency

of mentions in each discipline. This figure displays the discipline and analytic method weights

from the tensor decomposition analysis. Components from the tensor decomposition are

referred to as “method groupings” or groups of analytic methods that frequently occur

together in study method and results sections. For each component, or “method grouping,” a

stem plot illustrates the weights for each discipline, as well as the top 10 analytic methods, in

terms of their weights (sized by their weight). For each component, the discipline weights rep-

resent the frequency of usage of that component across each discipline.

(TIFF)

S1 Data. Companion data to Fig 2. Excel spreadsheet containing 4 tabs: (1) the total number

of article counts per discipline; (2) the count of mentions for all analysis methods by year; (3)
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the top 50 journal counts by discipline; and (4) the embedding coordinates of each discipline

in the MDS space (Fig 2B). MDS, multidimensional scaling.

(XLSX)

S2 Data. Companion data to Figs 3 and 4. Excel spreadsheet containing, for all analysis meth-

ods, the proportion of articles mentioning an analysis method out of the total article count by

year. The code for generating the bootstrapped confidence intervals in Fig 3 is provided at

https://github.com/tsb46/stats_history.

(XLSX)

S3 Data. Companion data to Fig 5. Excel spreadsheet containing the standardized chi-

squared residuals for each analytic method by discipline.

(XLSX)

S4 Data. Companion data to Fig 6. Excel spreadsheet containing results from the “method

grouping” tensor decomposition analysis in 2 tabs: (1) the analysis method weights for all 20

components; and (2) the discipline weights for all 20 components.

(XLSX)

S5 Data. Companion data to S1 Fig. Excel spreadsheet containing the cluster assignments

(N = 3) from the hierarchical clustering analysis of analysis method trends.

(XLSX)
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