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Abstract: Traditional heating, ventilation, and air conditioning (HVAC) control systems rely mostly
on static models, such as Fanger’s predicted mean vote (PMV) to predict human thermal comfort in
indoor environments. Such models consider environmental parameters, such as room temperature,
humidity, etc., and indirect human factors, such as metabolic rate, clothing, etc., which do not neces-
sarily reflect the actual human thermal comfort. Therefore, as electronic sensor devices have become
widely used, we propose to develop a thermal sensation (TS) model that takes in humans’ physiologi-
cal signals for consideration in addition to the environment parameters. We conduct climate chamber
experiments to collect physiological signals and personal TS under different environments. The
collected physiological signals are ECG, EEG, EMG, GSR, and body temperatures. As a preliminary
study, we conducted experiments on young subjects under static behaviors by controlling the room
temperature, fan speed, and humidity. The results show that our physiological-signal-based TS
model performs much better than the PMV model, with average RMSEs 0.75 vs. 1.07 (lower is better)
and R2 0.77 vs. 0.43 (higher is better), respectively, meaning that our model prediction has higher
accuracy and better explainability. The experiments also ranked the importance of physiological
signals (as EMG, body temperature, ECG, and EEG, in descending order) so they can be selectively
adopted according to the feasibility of signal collection in different application scenarios. This study
demonstrates the usefulness of physiological signals in TS prediction and motivates further thorough
research on wider scenarios, such as ages, health condition, static/motion/sports behaviors, etc.

Keywords: thermal sensation; thermal comfort; PMV (predicted mean vote); sensation modeling;
personalized thermal comfort strategy; EMG; ECG; EEG; GSR; body temperature

1. Introduction
1.1. Motivation and Objective

The purpose of heating, ventilation, and air conditioning (HVAC) systems is to pro-
vide comfortable thermal environments for occupants. The key problem is to predict
occupants’ thermal sensation (TS). Nowadays, the models for such prediction are mostly
static, with Fanger’s predicted mean vote (PMV) model [1] being a widely used one. It has
been adopted in ASHRAE 55 [2] and ISO 7730 [3] international standards for evaluating
indoor TS.
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PMV model predicts the thermal comfort based on environmental parameters, such
as temperature, air velocity, humidity, etc. In addition, PMV also takes into account
the occupant’s personal conditions, such as the clothing insulation and metabolic rate.
However, it is difficult to obtain a person’s actual metabolic rate in real time and, thus, a
representative value consulted from a metabolic rate database is often used. Therefore, it is
difficult to use PMV in real time.

As electronic sensors have become easily accessible, it is now possible to measure the
human body’s physiological signals in real time and use them for accurate HVAC control.
Therefore, we propose to develop a thermal sensation model which adopts occupants’
real-time physiological signals as an indication of their body status, in addition to the
environmental parameters. We conducted a climate chamber experiment to collect subjects’
physiological signals and TSs under different thermal conditions. There are five physiolog-
ical signals, ECG, EEG, EMG, GSR, and body temperature, measured. As a preliminary
study, we conducted experiments on young subjects under static behaviors by controlling
the room temperature, fan speed, and humidity. We modeled TS by 19 extracted physiolog-
ical features and 3 environmental features. The relationship between TS prediction and the
physiological signals is examined by the proposed modeling process. The physiological
signals were ranked to show the degree of their contributions to the TS prediction. Finally,
we will compare our proposed model with PMV model.

1.2. Current State of Research

Thermal comfort is closely related to the wellbeing of human beings. Uncomfortable
environment may cause a decline in work efficiency and occupants’ physical discomfort.
HVAC systems were invented and massively utilized in buildings. The energy consumption
for thermal adjustment in business buildings is around 50% of the total energy consump-
tion [4]. The thermal comfort of the environment not only affects the occupants’ work
quality, but the sustainability of the buildings [5].

Novel research of HVAC system focuses not only from the perspective of energy
efficiency, but also on how they act with occupants’ thermal comfort. Xie et al. [6] examined
the design factors of indoor radiant heating system and discovered that water temperature
within the radiator heavily affects thermal comfort. Oh et al. [7] examined the influence of
mist-spraying systems and proved the systems caused decreases in air temperature and
increases in thermal comfort in hot weather. Zhang et al. [8] found the effect of solar radiant
to the indoor environment is correlated with window’s characteristics.

Thermal sensation is the occupants’ perceptual response to the thermal environment,
and a thermal sensation model is a simulation model to predict how occupants will respond
to the thermal environment. The pioneer study of thermal sensation model is Fanger’s PMV
model [1]. The concept of PMV is about thermal balance. Four environment parameters
(air temperature, air velocity, mean radiant temperature, and relative humidity) and two
body-related parameters (clothing and metabolism rate) are included in the PMV formula to
estimate the average TS of the occupants. PMV as a widely used TS index has been included
as an indoor environment quality metric in several indoor environment standards, such
as ISO 7730 [3] and ASHRAE Standard 55 [2]. In field applications, PMV model predicts
the range of acceptable temperature, airspeed, and relative humidity by considering target
thermal comfort level and the clothing insulation and metabolic rate of occupants.

Since stricter control of the thermal environment does not necessarily lead to a more
comfortable thermal environment [9], the accuracy of TS prediction is crucial in HVAC
control. PMV is not suitable for real-time operation, since it is difficult to obtain a per-
son’s actual metabolic rate in real time and, thus, a representative value consulted from a
metabolic rate database is often used. Nicol and Humphreys [5] mentioned PMV does not
outperform simple indices, such as air temperature in the field study, and non-real-time
adjustment may decrease occupant thermal comfort.

As an index according to the statistical result of experimental data over time, PMV
sometimes produces increasing errors over time. The range of temperature in ASHRAE



Int. J. Environ. Res. Public Health 2022, 19, 7292 3 of 16

suggested the winter comfort zone has risen year after year since the 1940s [9]. It shows the
habits of human beings changed as the climate, culture, and technology changed.

The adaptation of occupants would degrade the accuracy of PMV model. In experi-
ments, occupants might get used to the experimental field and lead to different response in
TS. De Dear and Brager [10] proposed an adaptive model and pointed out one’s TS will be
influenced by long-term outdoor climate. Wu et al. [11] found the adaptive model shows
better work than PMV model in thermal acceptance, thus reduce energy consumption in
summer with fewer AC operations. Albatayneh et al. [12] recorded the free-run indoor
environment change and calculated the equivalent necessary AC operations, and found the
adaptive model significantly reduces the time needed for heating and cooling. Soebarto
and Bennetts [13] found higher temperature is more tolerable for warm climate residents
than the ones who lived in a cold climate. It indicates that thermal sensation could be
affected by personal characteristics, such as cold syndrome, daily routine, disability, and
state of health [14].

It should be noted that thermal sensation models are restricted by their assumptions
on the environments, e.g., PMV performs better with AC environment and the adaptive
model is limited with free-run buildings [12]. Whether rebuilding TS models under dif-
ferent scenarios or developing methods to adjust existed TS models, enormous work is
required. To avoid tremendous beforehand investigation on historical area climate and
occupants’ behavior, an alternative approach is to model TS with physiological signals
which can state one’s body status. Li et al. [15] first modeled occupants’ thermal sensation
by the physiological signals, i.e., skin temperature and heart rate, measured by a wristband.
An HVAC control system was then built according to the thermal sensation model and
reached a more comfortable environmental conditioning and reduced 13.8% daily energy
consumption [16]. Mohammad et al. [17] used a wristband to obtain real-time metabolic
rates and enhance PMV calculation. Deng and Chen [18] developed an HVAC control
system based on the physiological features measured by a wristband, i.e., skin temperature,
skin humidity, and heart rate. The result shows that less than 5% of occupants feel discom-
fort under the system. The limitation is that the wristband measures only heart rate and
wrist temperature.

Thermal sensation is the consequence of complex interaction between thermoreg-
ulation and cognition. Takahashi et al. [19] indicate thermoregulation includes several
physiological activities, such as vasodilation, vasoconstriction, shivering, and sweating;
hence, the related physiological signals could possibly be the evidence of TS.

2. Proposed Methods

The objective of this study is to develop a TS model which can make TS predictions
by using physiological signals to reflect occupants’ physiological status in real time. To
develop the target model, we conduct a chamber experiment to collect the required data:
environmental and physiological signals under different environmental conditions. The
collected environmental and physiological signals are then used to infer the heat sensation
of each subject. The experiments are conducted in task-oriented environment-controllable
rooms. To make the experiment go smoothly, we have developed experiment assistant
tools to deal with environmental control and monitoring and physiological signal sensing.
After the experiments, based on the information obtained, several regression models are
selected for TS modeling.

2.1. Experiment Field

We prepared two rooms, the preparation room and the experiment room, as the
experiment sites (as shown in Figure 1). Both rooms were about 26.5 m2. The preparation
room was used to bring the subject’s physiological state back to a baseline value. The
equipment and decoration of the two rooms are the same. To make the subjects feel relaxed
during the experiment, wood-grain wallpaper and flooring were used, and daylight color
lighting was chosen, following Zhang et al. [20]. The desk and the seat position of subjects
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were in the center of the room. The air conditioner was about 3 m high on the wall and
in front of the desk, and its wind direction was downwards to avoid direct impact to the
subjects. The rooms had no window and only one door as a connection to outside. The
nearest window near the rooms was about 20 m from the entrance of the rooms; thus, solar
radiation could be considered minimized and no direct impact to the experiments.
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2.2. Experiment Assistant Tools

The experiment assistant tools (as shown in Figure 2) have been built to assist the staff
to control the equipment and integrate data gathered from various sensors. The experiment
assistant tools consist of three subsystems, i.e., (1) an environment measurement system
to record the environmental conditions, such as air temperature, air speed, and relative
humidity, that a subject was exposed to, (2) an environment control system for staff to easily
control the AC system, including the AC and the ceiling fan, and (3) a physiological signal
measurement system to record all physiological signals simultaneously. The information of
(1) and (2) were integrated into a GUI, so the control of the experiment environment and
the measurement could be synchronized.
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2.3. Experiment of Physiological Signal Measurement under Different Environmental Conditions

The experiment is shown in Figure 3a. The environment was adjusted by the staff
before the experiment. In the first 5 min (setup stage), the experiment procedure was
explained to the subject and physiological signal sensors were installed on the subject.
The next 15 min were the preparation stage, whereby the subject rested in the preparation
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room to reach a baseline physiological state. Following the 15-min experiment stage, a
physiological signal measurement was performed in the experiment room. Since Ji et al. [21]
indicate skin temperature will settle down to a relatively stable state after environment
change within 10 min, we allocated 15 min for this stage. The physiological features were
extracted from the last 5 min of the records. During the experiment stage, the subject was
asked to watch a peaceful educational video to simulate an office scenario and to avoid
emotional stimulation. At the end of the process, the subject was asked to fill out a thermal
comfort questionnaire to record their TSs and comfort levels at the time.
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signals and its body parts.

In each trial of the experiment, the experiment room was set to different environmental
conditions, while the preparation room was maintained the same. Subjects with similar
growing-up locations have similar thermal perceptions [9]. Since the subjects were healthy
Taiwanese residents, the experiment environment was set to be cold or hot for typical
Taiwanese residents. We set the preparation room as 25 ◦C, 70% relative humidity (RH),
and a medium speed ceiling fan. The experiment room had eight different environment
settings, which were formed by two kinds of temperature (23 ◦C and 27 ◦C), two kinds of
RH (60% and 80%), and two kinds of wind speed (breeze and strong wind of the ceiling
fan), as shown in Figure 3b.

The order of the environment settings was randomized as much as possible; the
subjects chose their own convenient time slots from our experiment schedule.

2.4. Measured Signals

We measured electroencephalography (EEG), electrocardiography (ECG), body tem-
perature, electromyography (EMG), and galvanic skin response (GSR). Figure 3c shows the
location of the measured signals:

• ECG: a single lead signal is measured across the chest, with the reference electrode
placed at the lower edge of the left costa.

• EEG: measurement site is the prefrontal lobe, with the electrodes placed at FP1 and
FP2 of the international 10–20 system, and the reference electrode placed behind the
right ear.

• EMG: measured from the gastrocnemius of the left calf, and the reference electrode is
placed on the knee.

• GSR: measured from the index finger and the middle finger of the left hand.
• Body temperature: Yao et al. [22] found the extremity body temperature is more

susceptible to environmental influences than the core body temperature. Body tem-
peratures are measured from the left arm, left chest, and left calf as representations for
core and extremity body temperatures.
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2.5. Subjects

We selected 20 healthy young adults, aged 24.1± 3.6 years, with a height of 167.7 ± 8.7 cm
and a weight of 69.3 ± 20.1 kg. The male-to-female ratio of these 20 subjects was 9:11. Each
subject had a meal before the experiment. Coffee, tea, and alcoholic drinks were prohibited
to avoid complex physiological influences.

2.6. IRB

This measurement was regulated by the Institutional Review Board (IRB) of Kaohsiung
Medical University with the number KMHIRB-E(I)-20200266. Each subject was informed of
the entire test procedure and signed the participant consent form and agreed that the data
measured in the experiment could be used for research purposes. In terms of dress, we
required subjects to wear short-sleeved shirts and shorts, and no additional warm clothing,
such as jackets, during the experiment.

2.7. Quality Filtering of Data

Some of the collected physiological signals are too noisy to be used. The collected
signals were analyzed to eliminate the low-quality samples to ensure the reliability of the
subsequent steps.

We removed the samples with serious noise. The total number of samples obtained
from the experiments was 160, and the number of samples that could be used after removing
the damaged samples was 90. The main reason for removing a larger number of samples is
that one impaired signal, e.g., EEG, would void all the sample data of the subject under the
corresponding room conditions.

2.8. Feature Extraction

We then extracted 19 physiological features from the 5 measured physiological signals
and 3 environmental features for regression analyses. Table 1 shows the extracted features
and their explanation.

Table 1. Extracted features and explanations.

Type Source Signal Feature Explanation

Physiological

ECG ECG_HR Heart rate
ECG_SDNN The deviation of heart beat RR interval

ECG_TP ECG total power
ECG_LF ECG low-frequency band (0.04~0.15 Hz) relative power
ECG_HF ECG high-frequency band (0.15~0.4 Hz) relative power

ECG_LF/HF Ratio of ECG_LF and ECG_HF
EMG EMG_IEMG Integration of EMG signal

EMG_MAV Mean absolute value of EMG
EMG_RMS Root mean square of EMG signal
EMG_SSI Simple square integration of EMG signal

EEG EEG_alpha Alpha band average of EEG
EEG_beta Beta band average of EEG
EEG_AVG Average of EEG signal

EEG_alpha_power Relative power of EEG alpha band
EEG_beta_power Relative power of EEG beta band

GSR GSR_avg5 hz Average of noise removed GSR signal (<5 hz)
Body Temp. T1 (Chest) Average body temperature from chest

T2 (Forearm) Average body temperature from forearm
T3 (Calf) Average body temperature from calf

Environmental
Air Temp. EnvTemp Average air temperature
Airspeed EnvWind Average air velocity
Humidity EnvRH Average relative humidity

ECG: electrocardiography, EMG: electromyography, EEG: electroencephalography, GSR: galvanic skin response,
Temp: temperature.
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2.9. Modeling

The modeling methods we used were linear regression, Gaussian process regression,
SVM regression, and decision tree. We used MATLAB R2020b and its application Regression
Learner for modeling as the signal process platform.

Due to the large number of extracted features, i.e., 22 physiological and environmental
features, it was not possible to try all combinations of features for modeling due to the time
constraint. Forward selection and backward elimination algorithms are commonly used
in multiple feature modeling. Forward selection starts from an empty set and adds one
feature at a time according to the feature’s correlation. If the added feature contributes to
the model performance, then it is retained, and vice versa. Backward elimination begins
from the combination of all features and removes one feature at a time according to the
correlation of each feature. If the removal benefits the model performance, then the selected
feature is eliminated from the combination. These methods do not consider the effect of
combining the features which are not contributing to the performance. We use the heuristic
algorithm to select the features used in the model.

The proposed feature selection algorithm contains two stages: feature increment and
redundant feature removal, as shown in Figure 4. In the feature increment process, as
depicted in Figure 4a, we start from setting the overall best combination Sbest and temporal
best combination Tbest as empty sets. In each round, we add one feature in the unselected
feature set Suc to Tbest to form a new combination Ti. The collection of all possible Ti forms
Cnew. Then, we build a set of TS models M(Cnew) for Cnew, and evaluate its performance
P(M(Cnew)). Tbest will be updated to the best Ti and the performance will be compared to the
current Sbest. If Tbest performs better than Sbest, then Sbest will be updated to Tbest and begin a
new round of feature increment. Once Tbest performs worse than Sbest, the feature increment
process will be ended. Then, the Sbest will be passed into the redundant feature removal
process as in Figure 4b. At the beginning, we set Tbest as Sbest, and form Cnew by removing
every feature in Tbest one by one. Similar to the feature increment process, we model
M(Cnew), evaluate performance P(M(Cnew)), update Tbest, and compare the P(M(Tbest)) and
P(M(Sbest)). If P(M(Tbest)) is better than P(M(Sbest)), then Sbest will be updated to Tbest. If
Tbest performs worse than Sbest, then the count of worse Tbest since the last time Sbest was
updated, Timeworse(after Sbest update), will be incremented. If it is not the first time that Tbest
performs worse than Sbest, the redundant feature removal process will be ended. Otherwise,
another round of redundant feature removal starts from forming new Cnew based on the
current Tbest. The result of Sbest and its model M(Sbest) are the final answer.
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performed model. Tbest: the feature combination of the stepwise best performed model. Suc: the set
of all unselected features. fi: symbol of a feature. Cnew: a set of all feature combinations in each step.
M (combinations): model of the combinations. P (model): performance of the model. Timeworse (after
Sbest update): the time that new models perform worse than the current best model on record.

2.10. Statistical Analysis

To make a preliminary estimation of the relationship between the measured physio-
logical signals and TS, we conducted an analysis of Pearson’s correlation between each
feature and TS. The analysis was carried out using the statistical software SPSS with the
selected 90 samples, including 50 samples of male and 40 samples of female subjects.

3. Results
3.1. Correlation Analysis of Thermal Sensation (TS)

The results of the correlation analysis are shown in Table 2. Of all 19 features, there are
13 features, marked with * or **, which show statistical significance (p < 0.05) and with a
moderate to weak correlation coefficient (0.558 through 0.168).

Table 2. Correlation coefficient between thermal sensation and each of the features.

Type Feature Correlation Coefficient (r) Significance (p-Value)

Physiological

ECG_HR 0.148 0.057
ECG_SDNN * −0.168 0.03

ECG_TP 0.031 0.688
ECG_LF −0.006 0.941
ECG_HF 0.029 0.704

ECG_LF/HF −0.049 0.53
EMG_IEMG ** −0.215 0.005
EMG_MAV ** −0.214 0.006
EMG_RMS ** −0.216 0.005
EMG_SSI ** −0.217 0.005
EEG_alpha 0.055 0.475
EEG_beta ** 0.411 0
EEG_AVG ** 0.393 0

EEG_alpha_power −0.112 0.147
EEG_beta_power −0.112 0.147
GSR_avg5 hz ** −0.285 0

T1 (Chest) ** 0.55 0
T2 (Forearm) ** 0.388 0

T3 (Calf) ** 0.558 0

Environmental
EnvTemp ** 0.496 0
EnvWind * 0.187 0.016

EnvRH −0.149 0.55
*. Correlation is significant at the 0.05 level (2-tailed); **. correlation is significant at the 0.01 level (2-tailed).

The results show that the most prominent features are EMG features (EMG_IEMG,
EMG_MAV, EMG_RMS, and EMG_SSI) and body temperatures. On the other hand, the
beta wave and average of EEG are also prominent.

As for the environment features, both the room temperature and wind velocity are
significant. The relative humidity, measurable under typical AC room conditions, is not
significant.

3.2. Modeling Results
3.2.1. Best Model

The proposed feature selection algorithm explored 92 feature combinations. The best
model used Gaussian process regression (GPR).
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The features used in the best model are shown in Table 3. The model performance
of the best feature combination can reach RMSE 0.807 and R2 0.75. During the modeling
process, it was found that RH does not help performance. Perhaps the RH setting points in
the experiment were typical to Taiwan residents and the difference between setting points
of RH was not enough to impact the TS.

Table 3. The best performed physiological feature combination.

Physiological Signal Feature Model RMSE Model R2

EMG EMG_MAV, EMG_IEMG, EMG_RMS

0.807 0.75
ECG ECG_LF/HF, ECG_SDNN
EEG EEG_beta_power, EEG_beta

Body Temp. T3 (Calf), T2 (Chest)
ECG: electrocardiography, EMG: electromyography, EEG: electroencephalography, Temp: temperature, RMSE:
root-mean-square error, R2: R-squared.

The best feature combination comes from four physiological signals, EMG, ECG, EEG,
and body temperature. We found the effect of EMG was particularly strong, and all EMG
features were included in the model. This coincides with the findings of Yao et al. [22]
and Sollers et al. [23]; they mentioned that ECG and EEG are related to thermal comfort.
We further conducted experiments to quantify the relationships. On the other hand,
body temperature, as an important characteristic of a warm-blooded animal, shows its
importance within the feature selection sequence of modeling.

3.2.2. Comparison with PMV

To evaluate the performance of the selected feature combination in assessing TS, PMV
was used as the comparison object. The PMV data were calculated from the CBE Thermal
Comfort Tool [24] provided by the U.C., Berkeley, CA, USA. The measured data were
used for air temperature, humidity, and wind speed, while the radiation temperature was
assumed to be equal to the air temperature with reference to Matzarakis and Amelung [25],
since the experiment rooms are considered to be uniform. There are two components
of personal factors, the human metabolic rate and clothing. We follow the ASHRAE-55
standard provided compliance table for various activities, with 1.0 met for seating and
0.5 clo for short-sleeved shirts and shorts as the set parameters. To avoid overlap between
the training data and test data, we randomly sampled 72 data as the training set and the
remaining 18 data as the test set. A total of three trial tests were conducted, with the test set
and training set resampled each time. Each time, the model was retrained using the best
feature combination and the Gaussian process regression model.

The results are shown in Table 4. In the three randomized 18 data, the R2 of the model
using physiological signals can reach above 0.7. The results of the three trials of modeling
showed an increase in R2 of at least 0.13 and a decrease in RMSE of at least 25.7% compared
to PMV, indicating that our proposed model, with higher explainability and lower error, is
better than the PMV model. This result demonstrates the feasibility of using physiological
signals to assist in the assessment of thermal comfort.

Table 4. Comparisons between the proposed model and PMV model.

Proposed Model Performance PMV Model Performance

Trial Number RMSE R2 RMSE R2

1 0.82 0.77 1.26 0.1
2 0.65 0.81 0.9 0.68
3 0.78 0.72 1.05 0.52

Average 0.75 0.77 1.07 0.43

RMSE: root-mean-square error, lower is better; R2: R-squared, higher is better.
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3.2.3. Examination on Gender

To evaluate whether gender will influence the performance of the proposed model,
we examine the TS prediction error of male and female subjects. We randomly select
40 male samples and 32 female samples as the training set, and the remaining 10 male
samples and 8 female samples are used as the test set. We intend to make the proportion
of males to females the same in the original sample set, training set, and test set. The
model was retrained with the training set, followed by the examination of the model’s TS
prediction error on test set. We performed independent sample t-test and Mann–Whitney
U test to examine the statistical difference in TS prediction error between male samples and
female samples within the test set. Independent sample t-test is commonly used on two
independent groups to determine whether there is any statistical evidence indicating that
the means of two groups are statistically different. Mann–Whitney U test is very similar
to the t-test but it examines the median of two groups and is specific for nonparametric
statistics. The RMSE of TS prediction error on the whole test set, male samples, and
female samples is 1.065, 1.092, and 1.03, respectively. Independent sample t-test and Mann–
Whitney U test are applied on the TS prediction error of each gender. The result of t-test
and Mann–Whitney U test are shown in Tables 5 and 6. The p-value of both tests are geater
than 0.05, indicating that the model errors of male subjects and of female subjects are not
statistically significantly different from each other. This shows our model is applicable to
both male and female genders.

Table 5. Result of independent sample t-test.

Mean (SD) t p-Value (2-Tailed)

Male −0.21 (1.13) −1.19 0.251Female 0.40 (1.02)
SD: standard deviation.

Table 6. Result of Mann–Whitney U test.

Median (Q1–Q3) Z p-Value (2-Tailed)

Male −0.35 (−0.97–0.71) −1.07 0.286Female 0.31 (−0.52–1.33)
Q1: first quartile, Q3: third quartile.

3.2.4. Physiological Signal Ranking

In the diverse real world, not all physiological signals are available; their measurement
costs are different. Therefore, we want to rank the importance of physiological signals in
assessing TS.

The process of ranking the importance of physiological signals is similar to the first
stage of the modeling algorithm but operates on signal-wise feature sets. The signal-wise
feature sets contain all features from a single physiological signal within the best feature
combination. It starts from the combination with only environmental features. In each
round, one best performed feature set is added until all signal-wise feature sets are tried.
The order of physiological signal addition is shown in Table 7. Since body temperature is a
physiological signal that can be measured more easily, we include this combination into
the table.

If only one physiological signal can be selected, the easiest signal is body temperature.
It is simple but, indeed, improves the performance. However, the even better one is EMG,
which has better performance than body temperature. If two signals can be considered,
EMG and body temperature could be selected. If three signals can be considered, ECG can
be included. Finally, if four signals can be considered, then EEG can also be included, result-
ing in the best performance (RMSE = 0.807, R2 = 0.75). The order can be used as a reference
for selecting the types of physiological signals under different application scenarios.
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Table 7. Sequence of ranking physiological signals.

Number of
Physiological Signal List of Signal RMSE R2

0 Environment Signal 1.03 0.58
1 Environment Signal, Body Temperature 0.97 0.63
1 Environment Signal, EMG 0.91 0.68
2 Environment Signal, EMG, Body Temperature 0.87 0.7
3 Environment Signal, EMG, Body Temperature, ECG 0.84 0.73
4 Environment Signal, EMG, Body Temperature, ECG, EEG 0.807 0.75

ECG: electrocardiography, EMG: electromyography, EEG: electroencephalography; RMSE: root-mean-square error,
lower is better, R2: R-squared, higher is better.

4. Discussion

This study tried to include physiological signals which are possibly related to ther-
moregulation. Besides widely used body temperature, the result shows EMG, EEG, and
ECG are also able to contribute to TS prediction. This demonstrates the possibility of ob-
taining personal sensations from physiological signals. The proposed TS model predicts TS
by using environmental and physiological signals and can provide a real-time prediction of
occupants’ demand. By contrast, most of the earlier TS models need to estimate occupants’
conditions beforehand, e.g., activity level and clothing insulation, and make them unable
to respond to occupants’ body status in real time.

The proposed model outperforms the PMV model. The proposed model gives an
average RMSE of 0.75 and R2 of 0.76, while the widely used PMV model’s ones are 1.07
and 0.43, respectively, in our study case. Koelblen et al. [26] collected data from previous
studies to validate several TS models, and the validation result of PMV shows the TS
prediction RMSEs of databases are ranged from 0.2 to 1, implicitly indicating that different
measurement scenarios lead to different prediction errors of the PMV model. A possible
reason for varied RMSEs is lacking consideration to long-term climate change. Humphreys
and Nicol [5] indicate that PMV may bias according to mean outdoor air temperature
instead of daily maximum or minimum. Another reason for the RMSE difference might
have been caused by our radiant temperature assumption. To lower the burden of data
acquisition, we assumed radiant temperature is equal to the indoor air temperature. The
difference between the two temperatures can cause the PMV model to perform worse. From
the perspective of information collection, the result still shows that, under the scenario of
lacking radiant temperature, the proposed model’s performance is better than the PMV
model. Besides comparison with the PMV model, the effect of physiological features on
TS prediction still can be found with our modeling procedure. During the procedure, the
models with both physiological and environmental features outperform the ones with only
environmental features.

Among the adopted signals of the proposed model, it shows EMG from the calf is the
most important factor. Studies of EMG show that activity of EMG will be influenced by
exposure temperature. Bell [27] examined the relationship between EMG amplitude and
force from rectus femoris under different exposure temperature and found EMG amplitude
increases while exposure temperature decreases with a fixed force given. Bell et al. [28]
recorded the shivering EMG signals from six muscle groups under a long exposure of cold
environment and found that EMG under shivering increased on both central and peripheral
muscles. Our modeling result also shows EMG could be an important factor to estimate
impacts from environment. A possible reason is the experiment conditions in this study
made subjects tend to feel cool or cold, causing subjects to make more small movements,
e.g., shivering, posture adjustment, or tapping their feet. EMG in static scenarios, e.g., the
difference in sedentary EMG between different temperatures, can be verified in the future.

Body temperature shows secondary importance. In previous studies, each part of the
body shows different fluctuation to the change in environment temperature. Body parts also
differ in thermal sensitivity. There are some studies that describe the relationship between
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temperatures from several body parts and TS. Yao et al. [22] analyzed the relationship
between thermal comfort and body temperature and discovered both local and mean
skin temperatures are sensitive to environment temperature. Zhang et al. [29] use local
body temperatures as indices of modeling thermal sensation and use the obtained thermal
sensations to model thermal comfort in the following research [30]. Our model includes the
temperatures from the chest and calf. The temperature from the chest stands for the core
temperature, which undulates less than the ones from other body parts and may be the
representative of the daily body temperature of a subject. The calf’s temperature presents
the easy-affected limb temperature. Perhaps the exposure level of wearing shorts made the
combination of temperatures from the chest and calf perform the best.

The third and fourth important signals are EEG from the forehead and ECG from the
chest. EEG from the forehead can judge whether the subject is relaxed or focused. The result
shows the beta band from EEG affects TS the most. The power of the beta band can be used
to score one’s attention level. It is possibly because a sufficiently low temperature is helpful
for being focused over a short period of time [31]. The features adopted from the ECG are
heart rate variability (HRV) features, i.e., SDNN and LF/HF. HRV is related to the activity
of the sympathetic and parasympathetic nervous systems [32,33], and can be used as an
index of body regulation. Choi et al. [34] verified the potential heart rate and its variation
as indices of the thermal comfort model under different activity levels and environment
temperatures. The result shows the variation in heart rate is more representative than the
heart rate itself. Our model also shows a similar result. The reason ECG features are not
highly important in the proposed model is possibly because the relationship between the
HRV features and TS is in the shape of a “smile curve”. LF/HF will be low when TS is
neutral and be high when TS is hot or cold [22]. With different ambient temperature in the
experiment, Zhu et al. [35] also found similar result on the LF/HF against TS curve. The
linear GRP method of our model is unable to respond to the nonlinear relationship. In the
future, more complex models, such as deep learning, can be adopted for TS modeling.

In this work, GSR did not show importance in TS modeling, and can be regarded as
the consequence of a sedentary scenario. In the results of Gerrett et al. [36] and Xu et al. [37],
GSR was highly correlated with TS in sporting scenarios. For the generality of the TS
model, the sporting scenarios should be considered and GSR should be further discussed
in future works.

Gender is a factor that influences one’s thermal sensation. To evaluate the effect
of gender on the proposed model, we test the error of thermal sensation prediction on
male and female groups by using t-test and Mann–Whitney U test. The RMSE of TS
prediction error on the whole test set, male samples, and female samples is 1.065, 1.092,
and 1.03, respectively. Although the RMSEs of two genders are a little bit different from
each other, the result of both tests shows no statistically significant difference between
two genders on TS prediction error. A possible reason is that the physiological signals
already contain information about the genders; thus, the proposed model is applicable
to both male and female genders. The PMV model also contains similar characteristics.
Although PMV model does not include gender, it adopts metabolic rate, which can be
affected by gender, as an input and, thus, need not additionally consider genders. Al-
Mallah et al. [38] found males have a higher metabolic rate than females who are in their
middle age. Sabounchi et al. [39] also show that gender is an important factor in Basel
metabolic rate prediction. Another possible reason is that gender may not be as effective
on thermal sensation as expected. Wang et al. [14] conducted a review of the studies on
thermal comfort and found no consistent conclusions on the efficacy of gender. Further
research on the relationship between gender and thermal sensation could be conducted in
the future.

The difference in thermal history may lead to a different result from this study. The
experiment in this work was conducted at Kaohsiung, Taiwan, and all subjects were healthy
residents in Taiwan. According to Gautam et al. [40], thermal history affects one’s thermal
preference. Chen et al. [41] discovered that people who lived in severe cold area feel
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comfortable with the thermal sensation ranging from “slightly cool” to “hot”. Subjects
from other countries might lead to different conclusions due to their thermal history, body
shape, and culture differences.

Physiological signals other than the chosen ones in our work may also have a potential
on thermal sensation assessment. Oi et al. [42] tried to include brain fMRI images as a
reference of TS estimation. fMRI images contain more spatial information of brain activities,
while the single-point EEG signal which we used contains more temporal information.
For long-term applications, compared with fMRI, EEG is a more suitable target due to its
convenience. Arens et al. [43] proposed a TS model by integrating TS from body parts.
It is possible to model TSs of different body parts with different models and merge into
the overall TS; each model could be modeled by adopting different physiological signals.
Kingma et al. [44] proposed a method of using the changes caused by nerve conduction to
evaluate TS. In the study, by verifying with history records, neurophysiology showed its
effectiveness in TS prediction. Neurophysiology methods can also be adopted in future
studies after careful consideration.

The fluctuation of environmental conditions could possibly introduce errors into
this study. Due to the limitation of the consumer-grade AC system, the environmental
conditions were not as stable as expected. The uniformity of the environment might not
be as expected consequently. Green [45] and Fang et al. [46] indexed that overall TS could
be affected by the TSs of body parts, which may be varied by the influence of nonuniform
environment. However, Arens et al. [43,47] showed overall TS is less sensitive than the TSs
of body parts. Although errors in uniformity might cause fluctuation in the TSs of body
parts, it may not overly bias the overall TS. The effect of environment control errors could
be further discussed in future studies, while the difference between experiment and field
studies could be researched at the same time.

The resolution on the environment control points might affect the accuracy of the
proposed model. Because of the limitation in experiment ability, we chose two setting points
on each environment condition, forming a total of eight environment settings. It is possible
to choose fewer environment conditions, e.g., air temperature and air velocity, which are
showing their importance in this study and increase the setting points on each condition.
This could enhance condition resolution and verify whether the linear relationship between
TS and environmental conditions persists.

The design of the questionnaire and subjects’ understanding of it may introduce errors.
The questionnaire in this study adopts ASHRAE 7-point TS scale. Humphreys et al. [48]
indicate same TS values from different subjects could be nonequivalent according to the
different understanding of each scale’s description. This could lead to errors in linear
regression. In the future, whether it would cause a drop in the model’s performance could
be further researched, or nonlinear modeling methods might be considered as replacements.

5. Conclusions

This study proposed a thermal sensation (TS) prediction model using physiological
and environmental features. By adopting physiological features as indications of body
status, TS prediction becomes more accurate and it is possible to measure response to occu-
pants’ personal feeling in real time. The results show that our physiological-signal-based TS
model outperforms the PMV model, with average RMSEs 0.75 vs. 1.07 (lower is better) and
R2 0.77 vs. 0.43 (higher is better), respectively, indicating our model prediction has higher
accuracy and better explainability. We also ranked the importance of adopted physiologi-
cal signals by their efficacy of TS prediction in descending order as follows: EMG, body
temperature, ECG, and EEG. In real-world applications, because not all the physiological
signals are available or the budgets are limited, a proper subset of physiological signals
can be selected from our proposed rank list. The physiological signals we adopted can be
easily measured by wearable sensing devices, making them feasible in a wide range of
application scenarios. The proposed model can be used not only for air conditioning, but
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also for assessing the TS needs of nonverbal subjects, such as infants or bedridden patients,
as a guide to environment adjustment.

Future research can extend and explore several points: (1) reducing measurement
noise to produce more usable samples, (2) applying more environmental set points and
scenarios of different activity to increase the applicability of the model, (3) conducting
measurements on different groups of subjects and study their TS similarity and differences,
(4) the relationship between physiological signals and TS may be nonlinear, so more com-
plex deep learning models can be used for modeling and prediction, and (5) incorporating
physiological signals into future intelligent AC control systems.
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